L2 / L3 Switches

Quality of Service (QoS)

Configuration Guide

Revision 1.0
The information in this USER’S MANUAL has been carefully reviewed and is believed to be accurate. The vendor assumes no responsibility for any inaccuracies that may be contained in this document, makes no commitment to update or to keep current the information in this manual, or to notify any person organization of the updates. Please Note: For the most up-to-date version of this manual, please see our web site at www.supermicro.com.

Super Micro Computer, Inc. ("Supermicro") reserves the right to make changes to the product described in this manual at any time and without notice. This product, including software, if any, and documentation may not, in whole or in part, be copied, photocopied, reproduced, translated or reduced to any medium or machine without prior written consent.

IN NO EVENT WILL SUPERMICRO BE LIABLE FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, SPECULATIVE OR CONSEQUENTIAL DAMAGES ARISING FROM THE USE OR INABILITY TO USE THIS PRODUCT OR DOCUMENTATION, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. IN PARTICULAR, SUPERMICRO SHALL NOT HAVE LIABILITY FOR ANY HARDWARE, SOFTWARE, OR DATA STORED OR USED WITH THE PRODUCT, INCLUDING THE COSTS OF REPAIRING, REPLACING, INTEGRATING, INSTALLING OR RECOVERING SUCH HARDWARE, SOFTWARE, OR DATA.

Any disputes arising between manufacturer and customer shall be governed by the laws of Santa Clara County in the State of California, USA. The State of California, County of Santa Clara shall be the exclusive venue for the resolution of any such disputes. Super Micro's total liability for all claims will not exceed the price paid for the hardware product.

FCC Statement: This equipment has been tested and found to comply with the limits for a Class A digital device pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the manufacturer’s instruction manual, may cause harmful interference with radiocommunications. Operation of this equipment in a residential area is likely to cause harmful interference, in which case you will be required to correct the interference at your own expense.

California Best Management Practices Regulations for Perchlorate Materials: This Perchlorate warning applies only to products containing CR (Manganese Dioxide) Lithium coin cells. Perchlorate Material-special handling may apply. See http://www.dtsc.ca.gov/hazardouswaste/perchlorate/ for further details.

Manual Revision 1.0

Release Date: October 23, 2013

Unless you request and receive written permission from Super Micro Computer, Inc., you may not copy any part of this document.

Information in this document is subject to change without notice. Other products and companies referred to herein are trademarks or registered trademarks of their respective companies or mark holders.

Copyright © 2013 by Super Micro Computer, Inc.
All rights reserved.
Printed in the United States of America
Contents

1 QoS Configuration Guide ... 4
 1.1 QoS Overview .. 4
 1.2 Policy-Based QoS ... 6
 1.2.1 Classification and Marking ... 6
 1.2.2 Policing .. 7
 1.3 CoS-Based QoS .. 7
 1.3.1 Egress Queuing .. 7
 1.3.2 Scheduling ... 8
 1.3.3 Default Priority .. 9
 1.3.4 Bandwidth Management .. 10
 1.4 Port-Based Rate Limit ... 10
 1.5 HOL blocking prevention .. 10
 1.6 QoS Configuration .. 10
 1.6.1 Default Configuration .. 10
 1.6.2 Enabling QoS ... 11
 1.6.3 Configuring Policy-Based QoS .. 12
 1.6.4 Configuring CoS-Based QoS ... 19
 1.6.5 Configuring Port Rate Limit ... 24
 1.6.6 Configuring HOL Blocking Prevention ... 25
1 QoS Configuration Guide

This document describes the system features supported in Supermicro Layer 2 / Layer 3 switches. This document describes the system features supported in Supermicro Layer 2 / Layer 3 switch products.

This document covers the system configurations for the below listed Supermicro switch products.

<table>
<thead>
<tr>
<th>Top of Rack Switches</th>
<th>Blade Switches</th>
</tr>
</thead>
<tbody>
<tr>
<td>• SSE-G24-TG4</td>
<td>• SBM-GEM-X2C</td>
</tr>
<tr>
<td>• SSE-G48-TG4</td>
<td>• SBM-GEM-X2C+</td>
</tr>
<tr>
<td>• SSE-X24S</td>
<td>• SBM-GEM-X3S+</td>
</tr>
<tr>
<td>• SSE-X3348S</td>
<td>• SBM-XEM-X10SM</td>
</tr>
<tr>
<td>• SSE-X3348T</td>
<td></td>
</tr>
</tbody>
</table>

The majority of this document applies to the above listed Supermicro switch products. In any particular subsection however, the contents might vary across these product models. In those sections, the differences are clearly identified with reference to a particular model(s). If any particular model is not referenced, the reader can safely assume that the content is applicable to all the above listed models.

Throughout this document, the common term “switch” refers to any of the above listed Supermicro switch models unless a particular model is noted.

1.1 QoS Overview

Typically, networks operate on a best-effort delivery basis providing all traffic equal priority and an equal chance of being delivered in a timely manner. However, during congestion, all traffic has an equal chance of being dropped. The QoS feature allows one to select specific network traffic and prioritize it according to its relative importance to provide preferential treatment. Implementing QoS makes network performance more predictable and bandwidth utilization more effective.

The QoS implementation in Supermicro switches is based on the Differentiated Services (DiffServ) architecture. DiffServ architecture specifies that each packet is classified upon entry into the
The classification is carried in the IP packet header using six bits from the deprecated IP type of service (ToS) field to carry the classification (class) information. Classification can also be carried in the Layer 2 frame.

- Classification bits in Layer 2 frames:
 Layer 2 frame headers contain a class of service (CoS) value as a 3-bit field in the VLAN Header. Layer 2 CoS values range from 0 for low priority to 7 for high priority.

- Classification bits in Layer 3 packets:
 Layer 3 IP packets can carry either an IP precedence value or a Differentiated Services Code Point (DSCP) value. QoS supports the use of either value because DSCP values are backward-compatible with IP precedence values. IP precedence values range from 0 to 7. DSCP values range from 0 to 63.

The same forwarding treatment is provided to packets with the same class information and different treatment to packets with different class information. The class information in the packet can be assigned by end hosts or by other switches or routers based on a configured policy, detailed examination of the packet, or both.

Switches and routers use the class information to limit the amount of resources allocated per traffic class. The behavior of a switch/router when handling traffic in the DiffServ architecture is called per-hop behavior. All devices along a network path must provide a consistent per-hop behavior in an end-to-end QoS solution.

Ingress Processing

Classification
 Classifies data based on ACL

Policing
 Forwards or drops data based on policy

Marking
 Modifies DSCP and/or CoS values

Egress Processing

Queueing and Scheduling
 Egress queue handling for data, based on CoS

Figure QoS-1: QoS Model

The QoS Model can be divided into Ingress packet processing and Egress packet processing.

Actions at the ingress interface include classifying traffic, policing, and marking:

- Classifying distinguishes one kind of traffic from another.

- Policing determines whether a packet is in or out of profile according to the configured policer. The policer also limits the bandwidth consumed by a flow of traffic.
• Marking allows for the differentiation of packets by designating different identifying values, e.g. packets can be marked by setting the IP precedence bits or the IP differentiated services code point (DSCP) in the type of service (ToS) byte.

Actions at the egress interface include queuing and scheduling:
• Queuing evaluates the CoS value and determines in which of the eight egress queues to place the packet.
• Scheduling services the eight egress queues based on a configured scheduling algorithm.

1.2 Policy-Based QoS
Supermicro switch features based on QoS Policies are:

• QoS Classification
• Marking
• Policing

1.2.1 Classification and Marking
Classification is the process of distinguishing one kind of traffic from another by examining the fields in the packet. Supermicro switches use ACL’s to specify the fields in the frame or packet based on which incoming IP traffic is classified.

Classification is enabled only if QoS is globally enabled on the switch. QoS is globally disabled by default, so no classification occurs. In Supermicro switches, classification can be configured for all interfaces of the switch or for particular interfaces only.

After classification, the packet is sent for policing, marking, queuing and scheduling. Marking is the process of setting or modifying values in the classified traffic. In Supermicro switches, marking can be configured using a policy map.

1.2.1.1 ClassMap and PolicyMap
IP standard, IP extended, and Layer 2 MAC access control lists (ACLs) can be used to define a group of packets with the same characteristics (class). Only the permit action of ACL’s is permitted for use with QoS.

The Deny and Redirect ACL actions are not applicable for QoS.

After an ACL is associated with a class-map, it can be applied for QoS. When such a configured ACL has a match with a permit action, further classification can be done using a policy map. A policy map specifies
the actions to perform for the traffic class of a class-map. Actions can include setting a specific DSCP value or the action to take when the traffic is out of profile.

An ACL must be created for each policy and class-map. If more than one type of traffic needs to be classified, another ACL and class map can be created and associated. This relationship between the ACL, class map and policy map is depicted below.

![Figure QoS-2: Relationship: ACL, Policy Map & Class Map](image)

1.2.2 Policing

Policing involves creating a policer that specifies the bandwidth limits for the traffic. Each policer specifies the action to take for packets that are in or out of profile. Packets that exceed the limits are out of profile and various actions are carried out by the marker on out of profile packets, which may include dropping the packet or marking down the packet with a new user-defined value.

1.3 CoS-Based QoS

Supermicro switch features based on Class of Service (CoS) are:

- Queuing
- Scheduling
- Bandwidth Management
- Default Priority

1.3.1 Egress Queuing

The CoS priority of a packet is mapped to a traffic class. Supermicro switches provide support to configure the mapping of CoS priority to a traffic class. Each traffic class is mapped to eight egress queues in the switch.
The traffic class is taken from the CoS value of the ingress packet. If an ingress packet does not have a CoS (untagged packets), the port default priority will be used.

Ingress Packets CoS-to-Traffic-class mappingEgress QueueEgress Packets

Figure QoS-3: Egress Queuing

The above figure shows the egress queuing procedure. When a tagged packet with CoS value 3(packet1) arrives in the switch, the CoS to egress queuemapping for the particular destination port is looked up. Based on CoS to egress queue mapping, packets with CoS value 3 are queued in Queue-3 and transmitted. Similarly, when a tagged packet with CoS value 7(packet2) arrives in switch, the CoS to egress queue mapping for the particular destination port is looked up. Based on CoS to egress queue mapping, packets with CoS value 7 are queued in Queue-7 and transmitted.

1.3.2 Scheduling

Supermicro switches support eight CoS queues for each egress port. For each of the eight queues, various types of scheduling can be configured:

- **Strict Priority**
 Strict priority scheduling is based on the priority of queues. Packets in a high-priority queue are always sent first and packets in a low-priority queue are not sent until all the high-priority queues are empty.

- **Round Robin (RR)**
 Using the round-robin (RR) scheduling algorithm, packets in queues are transmitted in a FIFO manner, i.e., one packet after the other. All queues have the same priority and weight in an RR configuration.
Weighted RoundRobin (WRR)
In WRR scheduling, the user specifies a number to indicate the importance (weight) of the queue relative to the other CoS queues. WRR scheduling prevents low-priority queues from being completely neglected during periods of high-priority traffic. The WRR scheduler sends some packets from each queue in turn. The number of packets it sends corresponds to the relative importance of the queue. By using WRR, low-priority queues can send packets even when high-priority queues are not empty.

Deficit WRR

Bandwidth allocation can be unfair when the average packet sizes are different between the queues and their flows. This behavior can result in service degradation for queues with smaller average packet sizes. Deficit Weighted Round Robin (DWRR) is a modified weighted round-robin scheduling that can handle packets of variable size.

1.3.3 Default Priority
The Class of Service (CoS) priority field is taken from the VLAN header of a received packet. If the received packet does not have a VLAN header, the default port priority is used as the CoS value. Supermicro switches provide an option to configure the default priority.

![Figure QoS-4: VLAN Tag and CoS Priority](image)

Figure QoS-4: VLAN Tag and CoS Priority

In the above figures, CoS priority is a 3-bit field in a tagged frame that indicates the frame priority level, ranging from 0 (best effort) to 7 (highest) with 1 representing the lowest priority. These values can be used to prioritize different classes of traffic (voice, video, data, etc.).

For IEEE 802.1Q frames with tag information, the priority value from the header frame is used. For native frames, the default priority of the input port is used. Supermicro switches allow users to configure the default port priority.

Each ingress port on the switch has a single receive queue buffer for incoming traffic. When an untagged frame arrives, it is assigned the value of the port as its port default priority. Tagged frames use the assigned CoS value when it passes through the ingress port.
1.3.4 Bandwidth Management
Bandwidth limiting is configured at the level of traffic classes. Traffic classes can be assigned minimum bandwidths, maximum bandwidths, and weights. Weights are used to divide the bandwidth proportionally among all traffic classes within a QoS policy, in such a way that a traffic class does not receive more than its maximum bandwidth or less than its minimum bandwidth.

1.4 Port-Based Rate Limit
Rate limits define which packets conform to or exceed the defined rate based on the following two parameters:

Average rate determines the average transmission rate. Traffic that falls under this rate will always conform.

Burst size specifies in bits (or bytes) per burst how much traffic can be sent within a given unit of time without causing scheduling concerns. It determines how large a traffic burst can be before it exceeds the rate limit.

Traffic that exceeds the rate limit is dropped. Supermicro switches support output rate limits.

1.5 HOL Blocking Prevention
Supermicro switches provide eight egress queues per port. Each queue has a dynamic packet limit based on the availability of packet buffer memory. When a switch receives packets at a fast rate destined to a particular egress port, its egress port queues become filled up. When the egress queue is full, all packets at ingress are dropped. This phenomenon of dropping ingress packets due to egress port/CoS queue over-subscription is called Head of Line (HOL) blocking.

Supermicro switches provide support to prevent HOL blocking. When HOL blocking prevention is enabled in the switch, it drops packets newly arriving on the ingress if they are destined to an oversubscribed egress port, based on the egress queue threshold. The switch stops dropping ingress packets once it determines the egress queue is not over-subscribed by using specific counters and thresholds. This mechanism ensures fair access to all port buffers.

HOL blocking prevention provides lossy buffer management, however it improves overall system throughput.

1.6 QoS Configuration
1.6.1 Default Configuration
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>QoS Status</td>
<td>Disabled</td>
</tr>
<tr>
<td>Class Map</td>
<td>None</td>
</tr>
<tr>
<td>Policy Map</td>
<td>None</td>
</tr>
<tr>
<td>Default Priority</td>
<td>0</td>
</tr>
<tr>
<td>Minimum Bandwidth</td>
<td>0</td>
</tr>
<tr>
<td>Maximum Bandwidth</td>
<td>0</td>
</tr>
<tr>
<td>Weight</td>
<td>1</td>
</tr>
<tr>
<td>Scheduling Algorithm</td>
<td>Strict Queuing</td>
</tr>
<tr>
<td>Rate Limit</td>
<td>0</td>
</tr>
<tr>
<td>Burst Size</td>
<td>0</td>
</tr>
<tr>
<td>HOL</td>
<td>Enabled</td>
</tr>
</tbody>
</table>

The default priority to traffic classqueue mapping:

<table>
<thead>
<tr>
<th>Priority</th>
<th>Traffic Class queue</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
</tr>
</tbody>
</table>

1.6.2 Enabling QoS

QoS is disabled by default in Supermicro switches. Follow the below steps to enable QoS.

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
<td>Enters the configuration mode</td>
</tr>
<tr>
<td>Step 2</td>
<td>set qos enable</td>
<td>Enables QoS on all interfaces</td>
</tr>
<tr>
<td>Step 3</td>
<td>End</td>
<td>Exits the configuration mode</td>
</tr>
</tbody>
</table>

The “set qos disable” command disables QoS in the switch.

QoS must be enabled before configuring any of the QoS features.

The example below shows the commands used to enable QoS.
SMIS# configure terminal
SMIS(config)# set qos enable
SMIS(config)# end

SMIS(config)# show running-config

Building configuration...
Switch ID Hardware Version Firmware Version
0 SBM-GEM-X3S+ (B4-01) 1.0.14-3

vlan 1
portsgi 0/1-24 untagged
ports ex 0/1-3 untagged
exit

setqos enable

1.6.3 Configuring Policy-Based QoS
Follow the steps below to configure Policy-Based QoS features such as classification, marking and policing.

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
<td>Enters the configuration mode</td>
</tr>
<tr>
<td>Step 2</td>
<td>Create MAC Extended or IP Standard or IP Extended ACL. If required, apply ACL to specific Interface(s).</td>
<td>Refer to the ACL Configuration Guide at www.supermicro.com/products/nfo/networking.cfm.</td>
</tr>
<tr>
<td>Step 3</td>
<td>class-map <class-map-number(1-65535)></td>
<td>Creates a class map and enters the class-map configuration mode. class-map-number - QoS class map number in range from 1-65535.</td>
</tr>
<tr>
<td>Step 4</td>
<td>match access-group { mac-access-list</td>
<td>ip-access-list } { <acl-index-num (1-65535) ></td>
</tr>
<tr>
<td>Step</td>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>Step 5</td>
<td>Exit</td>
<td>Exits the classmap configuration mode.</td>
</tr>
<tr>
<td>Step 6</td>
<td>policy-map <policy-map-number(1-65535)></td>
<td>Creates a policy map and enters the policy-map configuration mode.</td>
</tr>
<tr>
<td>Step 7</td>
<td>class <class-map-number(1-65535)></td>
<td>This command defines a traffic classification for the policy to act upon. The class-map-number that is specified in the policy map ties the characteristics for that class to the class map and its match criteria as configured with the class-map global configuration command. Upon execution of the class command, the switch enters the policy-map class configuration mode.</td>
</tr>
<tr>
<td>Step 8</td>
<td>set {cos<new-cos(0-7)></td>
<td>ipdscp<new-dscp(0-63)></td>
</tr>
<tr>
<td>Step 9</td>
<td>police <rate-Kbps(64-1048572)> exceed-action {drop</td>
<td>policed-dscp-transmit <new-dscp(0-63)}}</td>
</tr>
</tbody>
</table>

acl-index-num - Specifies the ACL index range. The ACL index range for an IP standard ACL is 1 to 1000 and 1001 to 65535 for an IP extended ACL. The ACL index range for a MAC extended ACL is 1 to 65535.

ACL-name – Specifies the configured ACL name as a string not exceeding 32 characters.

policy-map-number - QoS policy map number

class-map-number – The class map number to associate the policy, in range of 1-65535

cos - New COS value assigned to the classified traffic, in range of 0-7

ipdscp - New DSCP value assigned to the classified traffic, in range of 0-63

ip precedence - New IP-precedence value assigned to the classified traffic, in range of 0-7

rate-kbps - Average traffic rate in kilobits per second (Kbps), in range 64-1048572

exceed-action - Indicates the action of the switch when the specified rate is exceeded.
drop - drops the packet
dropped-dscp-transmit - changes the differentiated services code point (DSCP) of the packet to that specified in the policed-DSCP map and then sends the packet. The DSCP range is 0-63.

<table>
<thead>
<tr>
<th>Step 10</th>
<th>End</th>
<th>Exits the configuration mode.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 11</td>
<td>show class-map [<class-map-num(1-65535)>]</td>
<td>Displays the classmap configuration.</td>
</tr>
<tr>
<td></td>
<td>show policy-map [<policy-map-num(1-65535)>] [<class-map-num(1-65535)>]</td>
<td>Displays the policy map configuration.</td>
</tr>
</tbody>
</table>

ACL cannot be modified unless it is removed from the class-map.

For modifying an ACL associated with a classmap, follow the steps below:
1) Remove policy map
2) Remove classmap
3) Modify the ACL
4) Re-create the classmap
5) Re-create the policymap

If required, an ACL’s association with an interface must be configured before the “class-map” configuration, i.e. after associating the ACL with a classmap using the “match” command, the ACL cannot be associated with an interface.

These commands either delete the particular configuration or reset it to its default value.

no class-map <class-map-number(1-65535)>
no policy-map <policy-map-number(1-65535)>
no class <class-map-number(1-65535)>

Before deleting a classmap, any policy map associated with it must first be deleted.

The example below shows the commands used to configure QoS classification, marking and policing.

Example 1: Classification and Marking

Create a Layer 2 MAC ACL with two permit statements and attach it to an ingress interface. The first permit statement allows traffic from the host with a MAC address of 00:30:48:14:c8:29 to be sent to any host.
SMIS# configure terminal
SMIS(config)# mac access-list extended mac1
SMIS(config-ext-macl)# permit host 00:30:48:14:c8:29 any
SMIS(config-ext-macl)# exit

SMIS(config)# set qos enable

SMIS(config)# interface Gi 0/3
SMIS(config-if)# mac access-group mac1 in
SMIS(config-if)# exit

SMIS(config)# class-map 5
SMIS(config-cmap)# match access-group mac-access-list mac1
SMIS(config-cmap)# exit

SMIS(config)# policy-map 5
SMIS(config-pmap)# class 5

Existing Policymap configurations have been deleted. Please apply the policymap to make it active.
SMIS(config-pmap-c)# set cos 6
SMIS(config-pmap-c)# end

SMIS(config)# mac access-list extended mac2
SMIS(config-ext-macl)# permit host 00:b0:d0:86:bb:f7 any
SMIS(config-ext-macl)# exit

SMIS(config)# interface Gi 0/3
SMIS(config-if)# mac access-group mac2 in
SMIS(config-if)# exit

SMIS(config)# class-map 10
SMIS(config-cmap)# match access-group mac-access-list mac2
SMIS(config-cmap)# exit

SMIS(config)# policy-map 10
SMIS(config-pmap)# class 10

Existing policymap configurations have been deleted. Please apply the policymap to make it active.
SMIS(config-pmap-c)# set cos 7
SMIS(config-pmap-c)# end

SMIS# show policy-map

DiffServ Configurations:

Quality of Service has been enabled
Policy Map 5 is active

Class Map: 5

In Profile Entry

In profile action : policed-cos6

Policy Map 10 is active

Class Map: 10

In Profile Entry

In profile action : policed-cos7

SMIS# show class-map

DiffServ Configurations:

Class map 5

Filter ID : mac1
Filter Type : MAC-FILTER

DiffServ Configurations:

Class map 10

Filter ID : mac2
Filter Type : MAC-FILTER

SMIS# show running-config

Building configuration...
Switch ID Hardware Version Firmware Version
0 SBM-GEM-X3S+ (B4-01) 1.0.14-3

vlan 1
portsgi 0/1-24 untagged
ports ex 0/1-3 untagged
exit

mac access-list extended mac1
permit host 00:30:48:14:c8:29 any
exit
mac access-list extended mac2
permit host 00:b0:d0:86:bb:f7 any
exit

interfaceGi 0/3
mac access-group mac1 in
mac access-group mac2 in

exit
setqos enable
class-map 5
match access-group mac-access-list mac1
exit
class-map 10
match access-group mac-access-list mac2
exit
policy-map 5
class 5
setcos 6
exit
exit
policy-map 10
class 10
setcos 7
exit
exit

Example 2: Policing

Create a policy map for the switch without attaching it to an ingress interface. In the configuration, the IP standard ACL permits traffic from network 20.1.0.0. For traffic matching this classification, the DSCP value in the incoming packet is trusted. If the matched traffic exceeds an average traffic rate of 4800 bps, its DSCP is marked down to a value of 10 and transmitted.

SMIS# configure terminal
SMIS(config)# ip access-list standard 1
SMIS(config-std-nacl)# permit 20.1.0.0 255.255.0.0 any
SMIS(config-std-nacl)# exit
SMIS(config)# set qos enable

SMIS(config)# class-map 1
SMIS(config-cmap)# match access-group ip-access-list 1
SMIS(config-cmap)# exit

SMIS(config)# policy-map 1
SMIS(config-pmap)# class 1

Existing policymap configurations have been deleted. Please apply the policymap to make it active.
SMIS(config-pmap-c)# police 500000 exceed-action policed-dscp-transmit 10
SMIS(config-pmap-c)# end

SMIS# show policy-map

DiffServ Configurations:

Quality of Service has been enabled

Policy Map 1 is active

Class Map: 1

Out Profile Entry

Metering on
burst bytes/token size : 6
Refresh count : 500000
Out profile action : policed-dscp 10

SMIS# show class-map

DiffServ Configurations:

Class map 1

Filter ID : 1
Filter Type : IP-FILTER

SMIS# show running-config

Building configuration...
Switch ID Hardware Version Firmware Version
vlan 1
portsgi 0/1-24 untagged
ports ex 0/1-3 untagged
exit

ip access-list standard 1
permit 20.1.0.0 255.255.0.0 any
exit

setqos enable
class-map 1
match access-group ip-access-list 1
exit
policy-map 1
class 1
police 500000 exceed-action policed-dscp-transmit 10
exit
exit

1.6.4 Configuring CoS-Based QoS
Follow the steps below to configure CoS-Based features such as default priority, scheduling and bandwidth.

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
<td>Enters the configuration mode</td>
</tr>
<tr>
<td>Step 2</td>
<td>vlan map-priority <priority value(0-7)> traffic-class <Traffic class value(0-7)></td>
<td>Maps a priority to a traffic class in the switch. The frame received with the configured priority will be processed in the configured traffic class.</td>
</tr>
<tr>
<td>Priority- Priority of the packet, in range of 0-7.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Class –Traffic class in range of 0-7.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>interface <interface-type><interface-id> or interface range <interface-type><interface-id></td>
<td>(Optional) Enters the interface configuration mode.</td>
</tr>
</tbody>
</table>

interface-type – may be any of the following:
gigabit-ethernet – gi
extreme-ethernet – ex
qx-ethernet – qx
To configure multiple interfaces, use the "interface range ..." command. To provide a range use a hyphen (-) between the start and end interface numbers. E.g.: **int range gi 0/1-10**

To provide multiple interfaces or ranges, separate with a comma (,). E.g.: **int range gi 0/1-10, gi 0/20**

If multiple interfaces are provided, the next step will perform the particular configuration on all these interfaces.

<table>
<thead>
<tr>
<th>Step 4</th>
<th>switchport priority default <priority value(0-7)></th>
<th>(Optional) Configures the default priority for the interface in range of 0-7.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 5</td>
<td>cosq scheduling algorithm { strict</td>
<td>rr</td>
</tr>
<tr>
<td>Step 6</td>
<td>traffic-class <integer(0-7)> weight <integer(0-15)> [minbandwidth<integer(64-16777152)>] [maxbandwidth<integer(64-16777152)>]</td>
<td>(Optional) Configures the egress queue minimum and maximum bandwidth. weight - Configures the queue weights in range of 0-15 minbandwidth - Configures the minimum bandwidth for the queue in range of 64-16777152 maxbandwidth - Configures the maximum bandwidth for the queue in range of 64-16777152</td>
</tr>
<tr>
<td>Step 7</td>
<td>End</td>
<td>Exits the configuration mode.</td>
</tr>
<tr>
<td>Step 8</td>
<td>show vlan port config port [<interface-type><interface-id>]]</td>
<td>Displays the port default priority configuration.</td>
</tr>
<tr>
<td></td>
<td>show vlan traffic-classes</td>
<td>Display the traffic class and egress queue mapping.</td>
</tr>
</tbody>
</table>
The “no cosq scheduling algorithm” resets the CoS queue scheduling algorithm configuration to its default value of strict.

The “no traffic-class [<integer(0-7)>] [weight] [minbandwidth] [maxbandwidth]” command resets the minimum/maximum bandwidth configuration to its default value of 0 and weight to 1.

The “no switchport priority default” command resets the default priority configuration to its default value of 0.

The “no vlan map-priority <priority value (0-7)>” command resets the egress CoS queue mapping to its default value.

The example below shows the commands used to configure QoS default priority, scheduling and bandwidth.

Example 1: Default Priority

SMIS# configure terminal
SMIS(config)# interface Gi 0/10
SMIS(config-if)# switchport priority default 5
SMIS(config-if)# end

SMIS# show vlan port config port Gi 0/10

Vlan Port configuration table

Port Gi0/10
 Port Vlan ID : 1
 Port Access Vlan ID : 1
 Port Acceptable Frame Type : Admit All
 Port Ingress Filtering : Disabled
 Port Mode : Hybrid
 Port Gvrp Status : Disabled
 Port Gmrp Status : Disabled
 Port Gvrp Failed Registrations : 0
 Gvrp last pdu origin : 00:00:00:00:00:00
 Port Restricted Vlan Registration : Disabled
 Port Restricted Group Registration : Disabled
 Mac Based Support : Disabled
 Port-and-Protocol Based Support : Enabled
 Default Priority : 5
 Filtering Utility Criteria : Default
 Allowed Vlans on Trunk : 1-4069
 Trunk Native Vlan Id : 0
Example 2: Scheduling

The example below shows the commands used to configure the QoS scheduling algorithm.

SMIS# configure terminal
SMIS(config)# set qos enable
SMIS(config)# interface Gi 0/8
SMIS(config-if)# cosq scheduling algorithm wrr
SMIS(config-if)# end

SMIS# show cosq algorithm

CoSq Algorithm

<table>
<thead>
<tr>
<th>Interface</th>
<th>Algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gi0/1</td>
<td>StrictPriority</td>
</tr>
<tr>
<td>Gi0/2</td>
<td>StrictPriority</td>
</tr>
<tr>
<td>Gi0/3</td>
<td>StrictPriority</td>
</tr>
<tr>
<td>Gi0/4</td>
<td>StrictPriority</td>
</tr>
<tr>
<td>Gi0/5</td>
<td>StrictPriority</td>
</tr>
<tr>
<td>Gi0/6</td>
<td>StrictPriority</td>
</tr>
<tr>
<td>Gi0/7</td>
<td>StrictPriority</td>
</tr>
<tr>
<td>Gi0/8</td>
<td>WeightedRoundRobin</td>
</tr>
<tr>
<td>Gi0/9</td>
<td>StrictPriority</td>
</tr>
<tr>
<td>Gi0/10</td>
<td>StrictPriority</td>
</tr>
<tr>
<td>Gi0/11</td>
<td>StrictPriority</td>
</tr>
<tr>
<td>Gi0/12</td>
<td>StrictPriority</td>
</tr>
<tr>
<td>Gi0/13</td>
<td>StrictPriority</td>
</tr>
<tr>
<td>Gi0/14</td>
<td>StrictPriority</td>
</tr>
<tr>
<td>Gi0/15</td>
<td>StrictPriority</td>
</tr>
<tr>
<td>Gi0/16</td>
<td>StrictPriority</td>
</tr>
<tr>
<td>Gi0/17</td>
<td>StrictPriority</td>
</tr>
<tr>
<td>Gi0/18</td>
<td>StrictPriority</td>
</tr>
<tr>
<td>Gi0/19</td>
<td>StrictPriority</td>
</tr>
<tr>
<td>Gi0/20</td>
<td>StrictPriority</td>
</tr>
<tr>
<td>Gi0/21</td>
<td>StrictPriority</td>
</tr>
<tr>
<td>Gi0/22</td>
<td>StrictPriority</td>
</tr>
<tr>
<td>Gi0/23</td>
<td>StrictPriority</td>
</tr>
<tr>
<td>Gi0/24</td>
<td>StrictPriority</td>
</tr>
<tr>
<td>Ex0/1</td>
<td>StrictPriority</td>
</tr>
<tr>
<td>Ex0/2</td>
<td>StrictPriority</td>
</tr>
<tr>
<td>Ex0/3</td>
<td>StrictPriority</td>
</tr>
</tbody>
</table>
Example 3: Egress Bandwidth

SMIS# configure terminal
SMIS(config)# set qos enable
SMIS(config)# interface Gi 0/15
SMIS(config-if)# traffic-class 6 weight 7 minbandwidth 6400 maxbandwidth 6400000
SMIS(config-if)# end

SMIS# show cosq weights-bw interface Gi 0/15

CoSq Weights and Bandwidths

<table>
<thead>
<tr>
<th>Interface</th>
<th>CoSqId</th>
<th>CoSqWeight</th>
<th>MinBw</th>
<th>MaxBw</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gi0/15</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gi0/15</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gi0/15</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gi0/15</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gi0/15</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gi0/15</td>
<td>5</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gi0/15</td>
<td>6</td>
<td>7</td>
<td>6400</td>
<td>6400000</td>
</tr>
<tr>
<td>Gi0/15</td>
<td>7</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Example 4: Egress Queue

SMIS# configure terminal
SMIS(config)# vlan map-priority 2 traffic-class 7
SMIS(config)# end
SMIS# show vlan traffic-classes

Priority to Traffic Class Queue Mapping

<table>
<thead>
<tr>
<th>Priority</th>
<th>Traffic Class Queue</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
</tr>
</tbody>
</table>
1.6.5 Configuring Port Rate Limit
Rate limit is disabled by default in Supermicro switches. Follow the below steps to enable the port rate limit.

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
<td>Enters the configuration mode</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface <interface-type><interface-id> or interface range <interface-type><interface-id></td>
<td>(Optional) Enters the interface configuration mode.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>interface-type – may be any of the following: gigabit-ethernet – gi extreme-ethernet – ex qx-ethernet – qx</td>
</tr>
<tr>
<td></td>
<td></td>
<td>interface-id is in slot/port format for all physical interfaces.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>To configure multiple interfaces, use the “interface range ...” command. To provide a range, use a hyphen (-) between the start and end interface numbers. E.g.: int range gi 0/1-10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>To provide multiple interfaces or ranges, separate with a comma (,). E.g.: int range gi 0/1-10, gi 0/20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If multiple interfaces are provided, the next step will perform the particular configuration on all these interfaces.</td>
</tr>
<tr>
<td>Step 3</td>
<td>rate-limit output <rate-value-kbps (1-10000000)><burst-value-kbits (1-10000000)></td>
<td>Enables the egress rate limit for the interface(s), set to the closest rate (kbps) and burst size (kbits) as the hardware capabilities. Rate limiting is applied to packets sent out on a particular interface.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rate limit and burst size in range of1-10000000.</td>
</tr>
<tr>
<td>Step 4</td>
<td>End</td>
<td>Exits the configuration mode.</td>
</tr>
<tr>
<td>Step 5</td>
<td>show interface [(<interface-type><interface-id>)] rate-limit</td>
<td>Displays the rate limit configuration on an interface</td>
</tr>
</tbody>
</table>
The “no rate-limit output” command disables the ratelimit on a particular interface.

The example below shows the commands used to configure the rate limit.

```
SMIS# configure terminal
SMIS(config)# interface Gi 0/20
SMIS(config-if)# rate-limit output 500000 4800
SMIS(config-if)# end
```

```
SMIS# show interface Gi 0/20 rate-limit

Gi0/20
Rate Limit : 500000 Kbps
Burst Size  : 4800 Kbps
```

1.6.6 Configuring HOL Blocking Prevention

HOL is enabled by default in Supermicro switches. Follow the steps below to disable HOL blocking.

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
<td>Enters the configuration mode</td>
</tr>
<tr>
<td>Step 2</td>
<td>no hol blocking prevention</td>
<td>Disables HOL blocking</td>
</tr>
<tr>
<td>Step 3</td>
<td>End</td>
<td>Exits the configuration mode</td>
</tr>
<tr>
<td>Step 4</td>
<td>show interfaces {{ [<interface-type><interface-id>]}</td>
<td>Displays the interface configuration</td>
</tr>
</tbody>
</table>

The “hol blocking prevention” command enables HOL blocking.

The example below shows the commands used to disable HOL blocking.

```
SMIS# configure terminal
SMIS(config)# interface Gi 0/4
SMIS(config-if)# no hol blocking prevention
SMIS(config-if)# end
```

```
SMIS# show interface Gi 0/4

Gi0/4 up, line protocol is down (not connect)
```
Bridge Port Type: Customer Bridge Port

Hardware Address is 00:30:48:e3:04:78
MTU 1500 bytes, Full duplex, 1 Gbps, Auto-Negotiation
HOL Block Prevention disabled.
Input flow-control is off, output flow-control is off

Link Up/Down Trap is enabled

Reception Counters
Octets : 0
Unicast Packets : 0
Broadcast Packets : 0
Multicast Packets : 0
Pause Frames : 0
Undersize Frames : 0
Oversize Frames : 0
CRC Error Frames : 0
Discarded Packets : 0
Error Packets : 0
Unknown Protocol : 0

Transmission Counters
Octets : 0
Unicast Packets : 0
Non-Unicast Packets : 0
Pause Frames : 0
Discarded Packets : 0
Error Packets : 0