Large Language Models (LLM) to the AI Edge
AI GPU Solution Portfolio
Unlock Unprecedented Performance
Leveraging GPU Optimized Systems

GPU technology can bring unprecedented performance to a broad spectrum of workloads – up to 5X, 10X, … 100X improvements in performance and efficiency. These workloads span from the rapidly growing generative AI market to enterprise inferencing, product design, visualization, and to the intelligent edge. Supermicro has built a portfolio of workload-optimized systems for optimal GPU performance and efficiency across this broad spectrum of workloads.

TABLE OF CONTENTS

01 LARGE SCALE AI TRAINING WORKLOADS 4
02 HPC/AI WORKLOADS 8
03 ENTERPRISE AI INFERENCING & TRAINING 18
04 VISUALIZATION AND OMNIVERSE WORKLOADS 24
05 VIDEO DELIVERY WORKLOADS 30
06 AI EDGE WORKLOADS 38

SUPERMICRO SYSTEM COMPATIBILITY 43
#1 GPU SOLUTIONS IN THE MARKET

8U HGX H100 8-GPU System
- Large Language Models (LLM)
- 900GB/s NVLink 7x better performance than PCIe
- 1:1 networking slots for GPUs up to 400Gbps each

4U HGX H100 4-GPU System
- HPC/AI Workloads
- Double-precision Tensor Cores delivering up to 268 teraFLOPS
- Superior thermal design and liquid cooling option

SuperBlade®
- Up to 20 GPUs in 8U
- Highest Density
- Multi-Node Architecture

2U MGX System
- Modular Building Block Platform Supporting Today’s and Future GPUs, CPUs, and DPUs

Petabyte Scale Storage
- Maximum density design to support up to 1PB in 2U
- Up to 32 E3.S NVMe drives in 2U

1U Grace Hopper System
- CPU+GPU
- Coherent Memory System
Large Scale AI Training Workloads

Generative AI, Natural Language Processing (NLP), Computer Vision

Workload Sizes

Extra Large

Liquid Cooled AI Rack Solutions
NVIDIA HGX™ H100 SXM 8-GPU
Up to 80 kW/Rack

Large

Liquid Cooling

8U 8-GPU System
NVIDIA HGX H100 SXM 8-GPU

Medium

HGX H100 4-GPU

4U 4-GPU System
NVIDIA HGX H100 SXM 4-GPU

Storage

Petabyte Scale Storage
High throughput and High Capacity for AI Data Pipeline
Use Cases

- Large Language Models (LLMs)
- Autonomous Driving Training
- Recommender Systems

Opportunities and Challenges

- Continuous growth of data set size
- High performance everything: GPUs, memory, storage and network fabric
- Pool of GPU memory to fit large AI models and interconnect bandwidth for fast training

Key Technologies

- NVIDIA HGX H100 SXM 8-GPU/4-GPU
- GPU/GPU interconnect (NVLink and NVSwitch), up to 900GB/s – 7x greater than PCIe 5.0
- Dedicated high performance, high capacity GPU memory
- High throughput networking and storage per GPU enabling NVIDIA GPUDirect RDMA and Storage.

Solution Stack

- DL Frameworks: TensorFlow, PyTorch
- Transformers: BERT, GPT, Vision Transformer
- NVIDIA AI Enterprise Frameworks (NVIDIA Nemo, Metropolis, Riva, Morpheus, Merlin
- NVIDIA Base Command (infrastructure software libraries, workload orchestration, cluster management)
- High performance storage (NVMe) for training cache
- Scale-out storage for raw data (data lake)

HGX H100 Systems

- H100 SXMS board with 4-GPU or 8-GPU
- NVLink & NVSwitch Fabric
- Up to 700W per GPU
Large Scale AI Training Workloads

Al Rack Solutions
Multi-Architecture Flexibility with Future-Proof Open-Standards-Based Design for POD, and SuperPOD with Liquid Cooling

Benefits & Advantages
- Proven AI rack cluster deployment in some of the world’s largest AI clusters
- AI POD, SuperPOD customizable architecture
- Turn-key proven solutions accelerates time to market
- Traditional, free-air and liquid cooled configurations for optimal TCE/TCO

Key Features
- Factory integrated and fully tested multi-rack cluster
- Server, storage, networking, software, management total solutions designed, built and deployed to your specification
- Rack Scale L11/L12 testing and validation
- Factory tuned power and cooling design
- Single source liquid cooling solution available with reduced (weeks) lead time
Large Scale AI Training Workloads

HGX H100 Systems
Multi-Architecture Flexibility with Future-Proof Open-Standards-Based Design

Benefits & Advantages

• High performance GPU interconnect up to 900GB/s - 7x better performance than PCIe
• Superior thermal design supports maximum power/performance CPUs and GPUs
• Dedicated networking and storage per GPU with up to double the NVIDIA GPUDirect throughput of the previous generation
• Modular architecture for storage and I/O configuration flexibility with front and rear I/O options

Key Features

• 4 or 8 next-generation H100 SXM GPUs with NVLink, NVSwitch interconnect
• Dual 4th Gen Intel® Xeon® Scalable processors or AMD EPYC™ 9004 series processors
• Supports PCIe 5.0, DDR5 and Compute Express Link (CXL) 1.1+
• Innovative modular architecture designed for flexibility and futureproofing in 8U or 4U.
• Optimized thermal capacity and airflow to support CPUs up to 350W and GPUs up to 700W with air cooling and optional liquid cooling
• PCIe 5.0 x16 1:1 networking slots for GPUs up to 400Gbps each supporting GPUDirect Storage and RDMA and up to 16 U.2 NVMe drive bays

Medium

4U 4-GPU
NVIDIA HGX H100 SXM 4-GPU
6 U.2 NVMe Drives
8 PCIe 5.0 x16 networking slots
SYS-421GU-TNXR

Large

8U 8-GPU
NVIDIA HGX H100 SXM 8-GPU
16 U.2 NVMe Drives
8 PCIe 5.0 x16 networking slots
SYS-821GE-TNHR / AS-8125GS-TNHR
Petabyte Scale NVMe Flash

High Throughput and High Capacity Storage for AI Data Pipeline

Benefits & Advantages

- Maximum density design to support up to 1PB in 2U with next-generation drives
- Direct-attached EDSFF E3.S media for the best thermal and I/O performance
- Flexible topology allows distribution of PCIe lanes based on performance and density requirements

Key Features

- Dual 4th Gen Intel Xeon Scalable processors or single AMD EPYC™ 9004 Series processor
- Up to 32 E3.S NVMe drives in 2U
- Supports PCIe 5.0, DDR5 and Compute Express Link (CXL) 1.1+
Petabyte Scale HDD
Top-Loading Data Lake Storage

Benefits & Advantages

- Fully redundant dual-ported high availability/failover clustering for use with Parallel File Systems
- Dual ported SAS architecture with 60 and 90 Bay configurations
- Top-loading drawer with tool-less drive brackets for easy servicing and maintenance
- Industry standard SAS controllers and expander infrastructure to support the most popular SDS platforms like ZFS and Lustre

Key Features

- Two hot-pluggable system nodes
- Dual 3rd Gen Intel® Xeon® Scalable processors per node
- 3 PCIe 4.0 x16 slots per node for I/O
2 HPC/AI Workloads

Simulation: Stress Analysis, Aerodynamics, Device Performance Prediction, Fluid Dynamics, Research, Exploration, Weather Prediction

Workload Sizes

Large

- **8U 8-GPU or 4U 4-GPU System**
 - NVIDIA HGX H100 SXM
 - 8-GPU or 4-GPU

Medium

- **4U/5U 8-10 GPU PCIe**
 - Maximum Performance and Flexibility

- **1U NVIDIA MGX™ System**
 - NVIDIA GH200 Grace Hopper with CPU+GPU Coherent Memory

SuperBlade™
Highest Density
Multi-Node Architecture
HPC/AI Workloads

Use Cases

- Manufacturing and engineering simulations (CAE, CFD, FEA, EDA)
- Bio/life sciences (genomic sequencing, molecular simulation, drug discovery)
- Scientific simulations (astrophysics, energy exploration, climate modeling, weather forecasting)

Opportunities and Challenges

- Infusing machine learning algorithms to HPC workloads to achieve faster results and discoveries with more iterations.
- Parallel processing with massive datasets for data-intensive simulations and analytics
- High-resolution and real-time visualization of scientific simulations and modeling

Key Technologies

- NVIDIA H100 (SXM, NVL, PCIe), L40S, A100
- NVIDIA Grace Hopper™ Superchip (Grace CPU and H100) with NVLink® Chip-2-Chip (C2C) interconnect
- Dual socket Intel and AMD-based solutions with high CPU core counts
- CPUs integrated with High Bandwidth Memory/bigger L3 cache
- PCIe 5.0 storage and networking
- Liquid cooling

Solution Stack

- NVIDIA HPC Software Development Kit (SDK)
- NVIDIA CUDA
- Commercial and in-house CAE software

HGX H100, H100 NVL, and H100 PCIe

- H100 SXM5 board with 4-GPU or 8-GPU (HGX H100)
- NVLink & NVSwitch Fabric (HGX H100)
- NVLink Bridge (H100 NVL or H100 PCIe)
- 80GB HBM3 (HGX H100 or H100 PCIe), 96GB HBM3 (H100 NVL) per GPU

GRACE HOPPER SUPERCHIP

- Grace Arm Neoverse V2 CPU
- NVIDIA H100 with NVLink-C2C
- Up to 480GB LPDDR5X and 96GB HBM3

L40S

- FHFL DW
- PCIe 4.0 x16
- 300W
- 48GB GDDR6
Benefits & Advantages

- Double-precision Tensor Cores delivering up to 535/268 teraFLOPS at FP64 in the 8-GPU/4-GPU respectively.
- TF32 precision to reach nearly 8000 teraFLOPs for single-precision matrix-multiplication.
- Superior thermal design and liquid cooling option supports maximum power/performance CPUs and GPUs.
- Dedicated networking and storage per GPU with up to double the NVIDIA GPUDirect throughput of the previous generation.

Key Features

- 4 or 8 H100 SXM GPUs with NVLink, interconnect with up to 900GB/s.
- Dual 4th Gen Intel Xeon Scalable processors or AMD EPYC 9004 Series processors.
- Supports PCIe 5.0, DDR5, and Compute Express Link (CXL) 1.1+.
- Innovative modular architecture designed for flexibility and futureproofing in 8U, 5U, or 4U.
- Optimized thermal capacity and airflow to support CPUs up to 350W and GPUs up to 700W with air cooling and optional liquid cooling.
- PCIe 5.0 x16 1:1 networking slots for GPUs up to 400 Gbps each supporting GPUDirect Storage and RDMA, and up to 16 U.2 NVMe drive bays, high throughput data pipeline and clustering.
8U SuperBlade® - Highest Density Multi-Node Architecture for HPC, AI and Cloud Applications

Benefits & Advantages
• Up to 20 nodes in 8U – 100 blades per rack
• Single NVIDIA H100 PCIe GPU per blade
• High CPU to GPU ratio
• Integrated power, cooling, switch and management console
• Up to 95% cable reduction compared to traditional rackmount servers

Key Features
• 1 H100 or L40S PCIe GPU per blade
• Single 4th Gen Intel® Xeon® Scalable processor per blade
• Supports PCIe 5.0, DDR5 and Compute Express Link (CXL) 1.1
• Flexible storage options including U.2 NVMe, SAS including M.2 NVMe and EDSFF E1.S
• Shared power, cooling and switch for maximum efficiency with optional liquid cooling
• 2-port 25GbE (3rd and 4th LAN), 1x 200G HDR InfiniBand or 1x 100G EDR InfiniBand via mezzanine card
HPC/ AI Workloads

1U Grace Hopper MGX Systems
CPU+GPU Coherent Memory System for AI and HPC Applications

Benefits and Advantages

- Up to 2 NVIDIA GH200 Grace Hopper Superchips featuring 72-core CPU and H100 Tensor Core GPU tightly coupled with coherent memory
- NVLink® Chip-2-Chip (C2C) high-bandwidth and low-latency CPU-GPU interconnect
- Energy efficient 1000W per Grace Hopper Superchip with air cooling and liquid cooling options.
- Supports NVIDIA BlueField®-3 or ConnectX®-7 for fast clustering and advanced data processing with E1.S drives

Key Features

- Up to 144 Grace Arm Neoverse V2 CPU cores in 1U
- NVIDIA H100 Tensor Core GPU with 96GB of HMB3 or 144GB of HBM3e (coming soon) per node
- NVLink-C2C with 900GB/s of CPU-GPU interconnect and up to 576GB (480GB LPDDR5X + 96GB HMB3) of fast-access memory available to the GPU
- Up to 3 PCIe 5.0 x16 slots (1U 1-node) or 2 PCIe 5.0 x16 slots per node (1U 2-node)
- Up to 8 hot-swap E1.S drives and 2 M.2 NVMe drives
10 GPU Systems
4U/5U 8 or 10 GPU PCIe - Maximum Performance and Flexibility

Benefits & Advantages

- 13 PCIe 5.0 x16 slots with up to 10 PCIe FHFL GPUs supporting 8 NVIDIA H100 NVL (4 NVLink Bridge pairs) or 10 H100 PCIe GPUs.
- 4U or 5U configurations with superior thermal design supporting max power/performance CPUs and GPUs at up to 32°C ambient temperature with optional air cooling
 - Single Root, Dual Root or Direct Connect GPU configurations

Key Features

- Up to 8 or 10 H100 PCIe GPUs with optional NVLink Bridge (H100 NVL), or up to 10 L40S
- Dual 4th Gen Intel Xeon Scalable processors or AMD EPYC 9004 Series processors
- Supports PCIe 5.0 DDR5 and Compute Express Link 1.1+
- Configurable with 2 400G networking per root (4 for Dual Root) and Advanced I/O Module (AIOM) slot for high throughput data pipeline and clustering
Enterprise AI Inferencing & Training

Generative AI Inference, Large Language Model Inference, Speech Recognition, Recommendation, Computer Vision

Workload Sizes

Extra Large

4U/5U 8-10 GPU PCIe
GPU-based Inference and Training

Large

6U SuperBlade®
High Density, Disaggregated

Medium

2U MGX System
Modular Building Block
Platform Supporting Today’s and Future GPUs, CPUs, and DPUs

2U Grace MGX System
Modular Building Block
Platform with Energy-efficient Grace CPU Superchip
Use Cases
- Content creation (image, audio, video, writing)
- AI-enabled office applications and services
- Enterprise business process automation

Opportunities and Challenges
- Total solution complexity
- Open architecture, vendor flexibility, and fast deployment for rapidly evolving technologies
- High computational and resource costs, cloud vs. on-prem
- Utilization of frameworks, pre-trained or open-source AI models with fine-tuning

Key Technologies
- NVIDIA H100 (NVL, PCIe), A100, L40S, L40, and L4 GPUs
- PCIe 5.0 storage and networking
- Intel and AMD CPU options
- NVIDIA Grace™ Superchip (2 Grace CPUs on one Superchip) with NVLink® Chip-to-Chip (C2C) interconnect
- Flexible rackmount servers from 1U to 6U to balance compute, storage, and networking for various enterprise AI workload needs

Solution Stack
- NVIDIA AI Enterprise software
- NVIDIA NGC™ catalog: containers, pre-trained models
- RedHat OpenShift, VMWare

H100 NVL
- 2 FHFW H100 GPU with NVLink Bridge (4x faster than PCIe)
- PCIe 5.0 x16
- 400W per GPU
- 94GB HBM3 per GPU

H100 PCIe
- FHFL DW
- PCIe 5.0 x16
- 300W per GPU
- 80GB HBM2e

L40S\L40
- FHFL DW
- PCIe 4.0 x16
- 350W (L40S)/300W (L40)
- 48GB GDDR6

L4
- HHHL SW
- PCIe 4.0 x16
- 72W
- 24GB GDDR6
10 GPU Systems
4U/5U 8 or 10 GPU PCIe — Highly Flexible Architecture

Benefits & Advantages

• Up to 13 PCIe 5.0 slots for flexible GPUs, I/O and networking options
• 4U or 5U configurations with superior thermal design supporting max power/performance CPUs and GPUs at up to 32°C ambient temperature with air cooling
• Single Root, Dual Root or Direct Connect GPU configurations

Key Features

• Up to 8 or 10 H100 PCIe GPUs with optional NVLink Bridge (H100 NVL), or L40S
• Dual 4th Gen Intel® Xeon® Scalable processors or AMD EPYC™ 9004 Series processors
• Supports PCIe 5.0, DDR5 and Compute Express Link (CXL) 1.1+
• Optimized thermal capacity and airflow to support CPUs up to 350W and GPUs up to 700W with air cooling.

8-10 GPU (PCIe)
8 NVIDIA H100 NVL
or 10 H100 PCIe
8 NVMe and 8 SATA Drives
32 DIMMs DDR5-4800
SYS-421GE-TNRT / AS-4125GS-TNRT / SYS-521GE-TNRT
6U SuperBlade®
SuperBlade® - Highest Density Multi-Node Architecture for HPC, AI and Cloud Applications

Benefits & Advantages
- Up to 10 single-width nodes in 6U with up to 2 GPUs per blade, or 5 double-width nodes with up to 4 GPUs per blade
- Integrated power, cooling, switch and management console
- Up to 95% cable reduction compared to traditional rackmount servers
- High CPU to GPU Ratio

Key Features
- Up to 2 H100 PCIe or L40S GPUs per blade
- Single 4th Gen Intel® Xeon® Scalable processor per blade
- Supports PCIe 5.0, DDR5 and Compute Express Link (CXL) 1.1+
- Flexible storage options including U.2 (NVMe, SAS, SATA), M.2 (SATA/NVMe), and EDSFF E1.S
- Shared power, cooling and switch for maximum efficiency with optional liquid cooling
- Flexible networking up to 400G NDR InfiniBand
2U x86 MGX Systems

Modular Building Block Platform Supporting Today’s and Future GPUs, CPUs, and DPUs

Benefits & Advantages

- NVIDIA MGX reference design enabling to construct a wide array of platforms and configurations
- 7 PCIe 5.0 x16 slots in 2U with up to 4 PCIe FHFL DW GPUs and 3 NICs or DPUs.
- Supports both ARM and x86-based configurations and is compatible with current and future generations of GPUs, CPUs, and DPUs

Key Features

- Up to 4 H100 PCIe GPUs with optional NVLink Bridge (H100 NVL), L40S, or L40
- Up to 3 NVIDIA ConnectX-7 400G NDR InfiniBand cards or 3 NVIDIA BlueField®-3 cards
- Dual 4th Gen Intel Xeon Scalable processors
- 8 hot-swap E1.S and 2 M.2 slots
- Front I/O and Rear I/O configuration
- Supports PCIe 5.0 DDR5 and Compute Express Link 1.1+
2U Grace MGX System
Modular Building Block Platform with Energy-efficient Grace CPU Superchip

Benefits & Advantages
- Two NVIDIA Grace CPUs on one Superchip with 144-core and up to 500W CPU TDP
- 900GB/s NVLink® Chip-2-Chip (C2C) high-bandwidth and low-latency interconnect between Grace CPUs
- NVIDIA MGX reference design enabling to construct a wide array of platforms and configurations
- 7 PCIe 5.0 x16 slots in 2U with up to 4 PCIe FHFL DW GPUs and 3 NICs or DPUs.

Key Features
- Up to 144 high-performance Arm Neoverse V2 Cores with up to 960GB LPDDR5X onboard memory
- Up to 4 H100 PCIe GPUs with optional NVLink Bridge (H100 NVL), L40S, or L40
- Up to 3 NVIDIA ConnectX-7 400G NDR InfiniBand cards or 3 NVIDIA BlueField®-3 cards
- 8 hot-swap E1.S and 2 M.2 slots
- Front I/O and Rear I/O configuration
Visualization and Omniverse Workloads
Real-Time Collaboration, 3D Design, Game Development

Workload Sizes

Large

4U/5U 8 GPU
Tailored Architecture for NVIDIA Omniverse™

Medium

2U Hyper
4 FHFL DW GPUs
Compute Optimized Architecture

GPU Workstation
4-GPU Rackmount/Full Tower
Use Cases

- Game development
- Product design
- City planning/architectural
- Digital twins (manufacturing, assembly lines, logistics)

Opportunities and Challenges

- AI-aided game development and asset generation
- Closer to real world scenarios
- Integrated engineering
- Enterprise-scale simulations
- Lower latencies
- Cloud collaboration opportunities

Key Technologies

- NVIDIA OVX™ certified architecture
- NVIDIA L40S, L40, and RTX 6000 Ada GPUs
- NVIDIA BlueField®-2, or BlueField®-3 (DPU)
- NVIDIA RTX GPUs with ray tracing
- Rack-scale integration

Solution Stack

- Universal Scene Description Connectors
- NVIDIA Omniverse™ Enterprise

Visualization and Omniverse Workloads

L40S
- FHFL DW
- PCIe 4.0 x16
- 350W
- 48GB GDDR6

L40
- FHFL DW
- PCIe 4.0 x16
- 300W
- 48GB GDDR6

RTX 6000 ADA
- Graphics, Ray Tracing
- FHFL DW
- PCIe 4.0 x16
- 300W
- 48GB GDDR6
Omniverse Optimized Systems
Highest Performance, Tailored for NVIDIA Omniverse™

Benefits & Advantages

- New next-generation purpose-built system for NVIDIA Omniverse™ Enterprise
- Optimized for power immersive, photorealistic 3D models, simulations, and digital twins
- Flexible storage configurations
- Up to 2x more storage and I/O flexibility

Visualization and Omniverse Workloads

4U/5U 8 GPU (PCIe)
8 NVIDIA L40S/L40 PCIe
3 NVIDIA ConnectX-7
16 U.2 NVMe drives
SYS-421GE-TNRT / AS-4125GS-TNRT / SYS-521GE-TNRT

Key Features

- 8 NVIDIA L40S/L40 PCIe GPUs
- Dual 4th Gen Intel® Xeon® Scalable processors or AMD EPYC™ 9004 Series processors
- Supports PCIe 5.0, DDR5 and Compute Express Link (CXL) 1.1+
- 3 NVIDIA ConnectX-7
- Optimized thermal capacity and airflow to support CPUs up to 350W and GPUs up to 700W with air cooling.
- 16 U.2 NVMe drive bays
2U Hyper Systems
Hyper - Flagship Performance Rackmount System
Designed for Ultimate Flexibility

Benefits & Advantages
• Highly flexible modular architecture
• Compute optimized design for maximum airflow
• Maximum availability of PCIe lanes for GPUs and networking
• Tool-less platform for ease of configuration and servicing

Key Features
• Up to 4 NVIDIA L40S/L40 GPUs
• Dual 4th Gen Intel® Xeon® Scalable processors or AMD EPYC™ 9004 Series processors
• Optimized thermal capacity and airflow to support CPUs up to 350W with GPUs up to 350W with air cooling
• Supports PCIe 5.0, DDR5 and Compute Express Link (CXL) 1.1+
• Advanced I/O Module (AIOM) for flexible networking options - OCP 3.0 SFF compatible
AI Workstations
4-GPU 5U Full-Tower Rackmount Workstation

Benefits & Advantages
- Powerful, compact configuration optimized for Omniverse and AI development
- Rackmount data center server performance in portable tower form factor
- Ideal for office, school, lab or field deployment
- NVIDIA qualified system

Key Features
- 4 NVIDIA L40S/L40 PCIe GPUs
- Dual 4th Gen Intel Xeon Scalable processors
- Supports PCIe 5.0, DDR5 and Compute Express Link (CXL) 1.1+
- 8 3.5" hot-swap NVMe/SATA/SAS and 2 M.2 slots
- 4 PCIe 5.0 x16 double-width slots (for GPUs) and 3x PCIe 5.0 x16 single-width slots for maximum flexibility
- On-board 10GbE LAN
Graphic Workstations
4-GPU 5U Full-Tower Rackmount Workstation

Benefits & Advantages

• Versatile and flexible configuration for a range of media, visualization and AI workloads
• High core count to support maximum I/O for PCIe expansion, M.2 storage and SATA drive bays
• NVIDIA Certified platform

Key Features

• 4 NVIDIA RTX™ 6000 Ada or A6000 GPUs
• Single AMD Ryzen Threadripper PRO processor up to 64 cores
• 4 PCIe 4.0 x4 M.2 slots + 6 SATA drive bays
• Onboard 10GbE LAN
• Optional CPU liquid cooling
5 Video Delivery Workloads

Content Delivery Networks (CDNs), Transcoding, Compression, Cloud Gaming/Streaming

Workload Sizes

Large

BigTwin® 2U 4-Node
Content Delivery Networks

Medium

CloudDC 2U UP
Streaming and Transcoding

Small

Hyper-E 2U DP
Edge Video
Use Cases

- Content delivery networks
- 8K, 4K streaming, livebroadcast
- High resolution, high framerate cloud gaming and streaming

Opportunities and Challenges

- Save data bandwidth and reduce delivery delays
- Faster, more efficient transcoding and compression
- Reduce power consumption and infrastructure cost

Key Technologies

- GPU media engines with transcoding acceleration including AV1 encoding and decoding
- NVIDIA L40, L4, and RTX GPUs
- NVIDIA BlueField®-2 or BlueField-3 (DPU)
- Dense, resource-saving multi-node, multi-GPU systems for space and power efficiency
- High-capacity, high-throughput hot-swap storage

Solution Stack

- Red Hat, VMWare
- Container orchestration and management
- SDKs to accelerate and optimize decoding, encoding and transcoding workloads
BigTwin® 2U 4-Node

BigTwin – Award Winning Multi-Node System with Resource Saving Architecture

Benefits & Advantages

• Multi-node form factors optimized for compute or storage density
• Dual processors per node
• Free-air cooling and liquid cooling options
• Front hot-swap storage drives and rear hot-swap server nodes

Key Features

• Up to 1 GPUs per node
• Dual 4th Gen Intel® Xeon® Scalable processors per node
• Supports PCIe 5.0, DDR5 and Compute Express Link (CXL) 1.1+
• 2 PCIe 5.0 x16 (LP) slots
• 6 NVMe drives per node (2U4N) or 12 NVMe drives per node (2U2N)
• Networking via AIOM (OCP 3.0 compatible) per node
2U CloudDC UP
CloudDC - All-in-one Platform for Cloud Data Centers

Benefits & Advantages
• UP architecture for maximum performance with a single CPU
• Superior thermal design - Supports maximum power/performance CPUs and GPUs
• Flexible I/O and storage options supporting convenient serviceability with tool-less brackets and hot-swap drive bays

Key Features
• Up to 6 GPUs
• Single 4th Gen Intel® Xeon® Scalable processor or AMD EPYC™ 9004 Series processor
• Optimized thermal capacity and airflow to support CPUs up to 350W and GPUs up to 350W with air cooling
• Supports PCIe 5.0, DDR5 and Compute Express Link (CXL) 1.1+
• 16 DIMM slots DDR5
• Advanced I/O Module (AIOM) for flexible networking options (OCP 3.0 compatible)
Video Delivery Workloads

2U Hyper-E
Hyper-E- High Performance and Flexibility at the Edge

Benefits & Advantages

• Short-depth chassis ideal for edge deployments
• Front I/O with rear storage access
• AC and DC power options

Key Features

• 3 NVIDIA L40S/L40 PCIe GPUs
• Dual 4th Gen Intel® Xeon® Scalable processors
• Supports PCIe 5.0, DDR5 and Compute Express Link (CXL) 1.1
• 32 DIMM slots DDR5.
• Networking via AIOM (OCP 3.0 compatible)
Video Delivery Optimized Storage

Highly Efficient Sustainable Flash
For read-intensive content delivery

Benefits & Advantages

• Maximum density design to support up to 1PB in 2U with next-generation drives
• CPUs with built-in Intel Accelerator Engines to offload storage functions and improve performance
• Flexible topology allows distribution of PCIe lanes based on performance and density requirements

Key Features

• Dual 4th Gen Intel® Xeon® Scalable processors or single AMD EPYC 9004 Series processors
• Supports PCIe 5.0, DDR5 and Compute Express Link (CXL) 1.1
• Up to 24 drives in 1U or 32 drives in 2U
• 2 PCIe 5.0 x16 slots + 2 PCIe 5.0 x16 AIOM slots
Video Delivery Optimized Storage

Scale-Out Origin Storage
For active archive, user-licensed content, copyright compliance

Benefits & Advantages
- Storage Bays divided between 2x nodes to create scale-out architectures with maximum density
- Optimal Configurations using 30 or 45 HDD per node
- Top-loading drawer with tool-less drive brackets for easy servicing and maintenance
- Designed to be maintained with minimal datacenter staff

Key Features
- Dual node twin design
- Dual 3rd Gen Intel® Xeon® Scalable processors per node
- 3 PCIe 4.0 x16 slots per node for I/O
- Designed to be maintained with minimal datacenter staff

4U 30/45-Bay Top-Loading
SSG-540P-E1CTR45L
AI Edge Workloads
Edge Video Transcoding, Edge Inference, Edge Training

Workload Sizes

Extra Large
Hyper-E
Multi-GPU Inferencing and Training

Large
Compact
Multi-GPU Inferencing

Medium
Short-Depth Multi-GPU Edge Server

Small
Embedded
CPU (or ASIC) based Inference
Use Cases

- Video processing: decode, encode, and transcode
- Edge inference: vision, speech, anomaly detection, etc.
- Markets: security and surveillance, retail, manufacturing, healthcare, and medical devices

Opportunities and Challenges

- Size, weight, and power constraints
- Data throughput for video and audio
- Cost of storage, bandwidth constraints
- Latency impacting decision response times
- Data security, privacy, and sovereignty laws
- Resiliency in face of network outages
- Long product lifecycle requirements

Key Technologies

- CPU or GPU-based AI edge Inferencing, GPU-based AI edge training, and video transcoding/encoding/decoding
- NVIDIA L4, L40S, L40, A30, A40, T4, A2 GPUs
- Short-depth chassis design for edge locations with AC or DC power supply options
- Front I/O with broad range of expansion and I/O port for flexibility and serviceability
- Ruggedized systems designed to be placed outside of the data center

Solution Stack

- NVIDIA® TensorRT™ and Triton Inference Server
- NVIDIA DeepStream, Clara, Merlin, Metropolis, Morpheus, Omniverse, and Riva
- NVIDIA Fleet Command
- Intel® OpenVINO

AI Edge Workloads

L40S
- FHFL DW
- PCIe 4.0 x16
- 350W
- 48GB GDDR6

L40
- FHFL DW
- PCIe 4.0 x16
- 300W
- 48GB GDDR6

L4
- HHHL SW
- PCIe 4.0 x16
- 72W
- 24GB GDDR6
Short-Depth 5G/Edge & Hyper E

Compute and AI Performance at the Edge

Benefits & Advantages

• High-density systems for data center level performance at the Edge
• Flexible configurations with broad AI accelerator and AOC options
• Front I/O for easier serviceability in space-constrained environments
• Short-depth chassis design for easy deployment at edge locations
• Redundant AC or DC power supply options

SYS-111E-FWTR
1U Compact Edge/5G Server
2 NVIDIA L4
2 Internal Drive Bays
8 DIMMs DDR5-4800

2U Hyper-E
3 NVIDIA H100 PCIe
6 NVMe drives
32 DIMMs DDR5-4800

Key Features (SYS-111E-FWTR)

• Single 4th Gen Intel® Xeon® Scalable processor
• Dual 10 GbE connectivity
• Flexible configuration with 3 PCIe 5.0 x16 slots (2x FHFL and 1x LP)
• NEBS Level 3 design
• AC and DC power options available

Key Features (Hyper-E)

• Dual 4th Gen Intel® Xeon® Scalable processors
• Flexible network options with 2 AIOM slots
• 3 PCIe 5.0 x16 FHFL double-width slots or 6 single-width slots 2 PCIe 5.0 single width FHHL slots
Fanless and Wallmount Edge
Compact Systems for the Intelligent Edge

Benefits & Advantages
- Compact form factors for deployments at the edge and remote edge
- Designed for ruggedized environments outside the data center
- Deliver low-latency AI inferencing for intelligent edge applications
- Broad range of expansion and I/O port options

SYS-E100-13AD
Ultra-compact Fanless Edge Server
CPU (or ASIC) based Inference

Key Features (SYS-E100-13AD)
- 12th Gen Intel® Core™ processors
- Fanless design for best durability and silent operations
- 3 M.2 expansion slots (NVME, Wi-Fi, LTE/5G)
- USB, HDMI, DP, COM and GPIO ports

SYS-E403-13E
Powerful expandable Server for the Edge
1 NVIDIA L40S OR 2 NVIDIA L4
8 DIMM slots DDR5-4800
4 NVMe Drives

Key Features (SYS-E403-13E)
- 4th Gen Intel® Xeon® Scalable processor
- 3 PCIe 5.0 x16 FHFL slots
- Dual 10 GbE Ethernet
- Optional wall-mounted installation
AI GPU WORKLOADS

LARGE SCALE AI TRAINING

HPC

ENTERPRISE AI INFERENCING & TRAINING

VISUALIZATION AND OMNIVERSE

VIDEO DELIVERY

EDGE

CPU OPTIMIZED

MULTI-NODE BUILDING BLOCKS

RACKMOUNT BUILDING BLOCKS

EDGE OPTIMIZED
NVIDIA GPUs

LARGE SCALE AI TRAINING & HPC

- **H100 SXM5**
 - 4 or 8 H100 GPU Board
 - NVLink & NVSwitch Fabric
 - PCIe 5.0
 - 700W per GPU
 - 80GB HBM3 per GPU

- **H100 NVL**
 - 2 FHFL
 - H100 GPU with NVLink Bridge
 - (4x faster than PCIe)
 - PCIe 5.0
 - 400W per GPU
 - 94GB HBM3 per GPU

TRAINING & INFEERENCE

- **H100 PCIe**
 - FHFL DW
 - PCIe 5.0 x16
 - 350W
 - 80GB HBM2e

- **L405**
 - FHFL DW
 - PCIe 4.0 x16
 - 350W
 - 48GB GDDR6

- **L40**
 - FHFL DW
 - PCIe 4.0 x16
 - 300W
 - 48GB GDDR6

- **RTX 6000 ADA**
 - FHFL DW
 - PCIe 4.0 x16
 - 300W
 - 48GB GDDR6

OMNIVERSE

- **L4**
 - HHHL SW
 - PCIe 4.0 x16
 - 72W
 - 24GB GDDR6

VIDEO DELIVERY

EDGE
Supermicro System GPU Compatibility

<table>
<thead>
<tr>
<th></th>
<th>H100 (SXM)</th>
<th>H100 (NVL)</th>
<th>H100 (PCIe)</th>
<th>L4OS</th>
<th>L40</th>
<th>L4</th>
<th>RTX 6000 ADA</th>
</tr>
</thead>
<tbody>
<tr>
<td>4U/5U/8U GPU</td>
<td>4 (4U/5U)</td>
<td>10 (4U/5U)</td>
<td>10 (4U/5U)</td>
<td>10 (4U/5U)</td>
<td>10 (4U/5U)</td>
<td>10 (4U/5U)</td>
<td>8 (4U/5U)</td>
</tr>
<tr>
<td>4U/5U 10-GPU</td>
<td>20 (8U)</td>
<td>20 (8U)</td>
<td>20 (8U)</td>
<td>20 (8U)</td>
<td>40 (8U)</td>
<td>20 (6U)</td>
<td></td>
</tr>
<tr>
<td>SuperBlade</td>
<td>20 (8U)</td>
<td>20 (8U)</td>
<td>20 (8U)</td>
<td>20 (8U)</td>
<td>40 (8U)</td>
<td>20 (6U)</td>
<td></td>
</tr>
<tr>
<td>BigTwin</td>
<td>4 (2U2N)</td>
<td>4 (2U2N)</td>
<td>4 (2U2N)</td>
<td>4 (2U2N)</td>
<td>4 (2U2N)</td>
<td>2 (2U)</td>
<td></td>
</tr>
<tr>
<td>CloudDC</td>
<td>2 (2U)</td>
<td>2 (2U)</td>
<td>2 (2U)</td>
<td>4 (2U)</td>
<td>2 (1U)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hyper</td>
<td>4 (2U)</td>
<td>4 (2U)</td>
<td>4 (2U)</td>
<td>4 (2U)</td>
<td>2 (1U)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WIO</td>
<td>4 (2U)</td>
<td>4 (2U)</td>
<td>4 (2U)</td>
<td>2 (2U)</td>
<td>2 (1U)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hyper-E</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Short-Depth Edge</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compact Edge/IoT</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Workstation</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Better Performance Per Watt and Per Dollar

First-to-Market Innovation with the Highest Performance Server Designs

Reduced Environmental Impact and Lower TCO

Worldwide Headquarters
Super Micro Computer, Inc.
980 Rock Ave.
San Jose, CA 95131, USA
Tel: +1-408-503-8000
Fax: +1-408-503-8008
E-mail: Marketing@Supermicro.com

EMEA Headquarters
Super Micro Computer, B.V.
Het Sterrenbeeld 28, 5215 ML, 's-Hertogenbosch, The Netherlands
Tel: +31-73-640-0390
Fax: +31-73-641-6525
E-mail: Sales_Europe@supermicro.com

APAC Headquarters
Super Micro Computer, Taiwan Inc.
3F, No. 150, Jian 1st Rd., Zhonghe Dist., New Taipei City 235, Taiwan
Tel: +886-2-8226-3990
Fax: +886-2-8226-3991
E-mail: Marketing@Supermicro.com.tw

www.supermicro.com

©Super Micro Computer, Inc. Specifications subject to change without notice. All other brands and names are the property of their respective owners. All logos, brand names, campaign statements and product images contained herein are copyrighted and may not be reprinted and/or reproduced, in whole or in part, without express written permission by Supermicro Corporate Marketing.