AI GPU Solution Portfolio
Unlock Unprecedented Performance
Leveraging GPU Optimized Systems

GPU technology can bring unprecedented performance to a broad spectrum of workloads – up to 5X, 10X, ... 100X improvements in performance and efficiency. These workloads span from the rapidly growing generative AI market to enterprise inferencing, product design, visualization, and to the intelligent edge. Supermicro has built a portfolio of workload-optimized systems for optimal GPU performance and efficiency across this broad spectrum of workloads.

TABLE OF CONTENTS

01 LARGE SCALE AI TRAINING WORKLOADS 4
02 HPC/AI WORKLOADS 8
03 ENTERPRISE AI INFERENCING & TRAINING 18
04 VISUALIZATION AND OMNIVERSE WORKLOADS 24
05 VIDEO DELIVERY WORKLOADS 30
06 AI EDGE WORKLOADS 38
SUPERMICRO SYSTEM COMPATIBILITY 43
8U HGX H100 8-GPU System (Codenamed: Delta-Next)
- Large Language Models (LLM)
- 900GB/s NVLink 7x better performance than PCIe
- 1:1 networking slots for GPUs up to 400Gbps each

4U HGX H100 4-GPU System (Codenamed: Redstone-Next)
- HPC/AI Workloads
- Double-precision Tensor Cores delivering up to 268 teraFLOPS
- Superior thermal design and liquid cooling option

SuperBlade®
- Up to 20 GPUs in 8U
- Highest Density
- Multi-Node Architecture

Petabyte Scale Storage
- Maximum density design to support up to 1PB in 2U
- Up to 32 E3.S NVMe drives in 2U

2U MGX System
- Modular Building Block Platform Supporting Today’s and Future GPUs, CPUs, and DPUs

1U Grace Hopper System
- CPU+GPU Coherent Memory System

#1 GPU SOLUTIONS IN THE MARKET

Petabyte Scale Storage
- Maximum density design to support up to 1PB in 2U
- Up to 32 E3.S NVMe drives in 2U

1U Grace Hopper System
- CPU+GPU Coherent Memory System
1. Large Scale AI Training Workloads

Generative AI, Natural Language Processing (NLP), Computer Vision

Workload Sizes

Extra Large
- Liquid Cooled AI Rack Solutions
- NVIDIA HGX H100 SXM 8-GPU
- Up to 80 kW/Rack

Large
- 8U 8-GPU System
 (Codenamed: Delta-Next)
 NVIDIA HGX H100 SXM 8-GPU

Medium
- Redstone-Next

Storage
- Petabyte Scale Storage
 High throughput and High Capacity for AI Data Pipeline

E1.S E3.S
Large Scale AI Training Workloads

Use Cases

• Large Language Models (LLMs)
• Autonomous Driving Training
• Recommender Systems

Opportunities and Challenges

• Continuous growth of data set size
• High performance everything: GPUs, memory, storage and network fabric
• Pool of GPU memory to fit large AI models and interconnect bandwidth for fast training

Key Technologies

• NVIDIA HGX H100 SXM 8-GPU/4-GPU
• GPU/GPU interconnect (NVLink and NVSwitch), up to 900GB/s – 7x greater than PCIe 5.0
• Dedicated high performance, high capacity GPU memory
• High throughput networking and storage per GPU enabling NVIDIA GPUDirect RDMA and Storage.

Solution Stack

• DL Frameworks: TensorFlow, PyTorch
• Transformers: BERT, GPT, Vision Transformer
• NVIDIA AI Enterprise Frameworks (NVIDIA Nemo, Metropolis, Riva, Morpheus, Merlin
• NVIDIA Base Command (infrastructure software libraries, workload orchestration, cluster management)
• High performance storage (NVMe) for training cache
• Scale-out storage for raw data (data lake)

HGX H100 Systems

• H100 SXM5 board with 4-GPU or 8-GPU
• NVLink & NVSwitch Fabric
• Up to 700W per GPU
Large Scale AI Training Workloads

AI Rack Solutions

Multi-Architecture Flexibility with Future-Proof Open-Standards-Based Design for POD, and SuperPOD with Liquid Cooling

Benefits & Advantages

- Proven AI rack cluster deployment in some of the world’s largest AI clusters
- AI POD, SuperPOD customizable architecture
- Turn-key proven solutions accelerates time to market
- Traditional, free-air and liquid cooled configurations for optimal TCE/TCO

Key Features

- Factory integrated and fully tested multi-rack cluster
- Server, storage, networking, software, management total solutions designed, built and deployed to your specification
- Rack Scale L11/L12 testing and validation
- Factory tuned power and cooling design
- Single source liquid cooling solution available with reduced (weeks) lead time
Large Scale AI Training Workloads

HGX H100 Systems

Multi-Architecture Flexibility with Future-Proof Open-Standards-Based Design

Medium

4U 4-GPU

(Codenamed: RedStone-Next)

NVIDIA HGX H100 SXM 4-GPU

6 U.2 NVMe Drives

8 PCIe 5.0 x16 networking slots

SYS-421GU-TNXR

Large

8U 8-GPU

(Codenamed: Delta-Next)

NVIDIA HGX H100 SXM 8-GPU

16 U.2 NVMe Drives

8 PCIe 5.0 x16 networking slots

SYS-821GE-TNHR / AS-8125GS-TNHR

Benefits & Advantages

- High performance GPU interconnect up to 900GB/s - 7x better performance than PCIe
- Superior thermal design supports maximum power/performance CPUs and GPUs
- Dedicated networking and storage per GPU with up to double the NVIDIA GPUDirect throughput of the previous generation
- Modular architecture for storage and I/O configuration flexibility with front and rear I/O options

Key Features

- 4 or 8 next-generation H100 SXM GPUs with NVLink, NVSwitch interconnect
- Dual 4th Gen Intel® Xeon® Scalable processors or AMD EPYC™ 9004 series processors
- Supports PCIe 5.0, DDR5 and Compute Express Link (CXL) 1.1+
- Innovative modular architecture designed for flexibility and futureproofing in 8U or 4U.
- Optimized thermal capacity and airflow to support CPUs up to 350W and GPUs up to 700W with air cooling and optional liquid cooling
- PCIe 5.0 x16 1:1 networking slots for GPUs up to 400Gbps each supporting GPUDirect Storage and RDMA and up to 16 U.2 NVMe drive bays
Petabyte Scale NVMe Flash

High Throughput and High Capacity Storage for AI Data Pipeline

Benefits & Advantages

- Maximum density design to support up to 1PB in 2U with next-generation drives
- Direct-attached EDSFF E3.S media for the best thermal and I/O performance
- Flexible topology allows distribution of PCIe lanes based on performance and density requirements

Key Features

- Dual 4th Gen Intel Xeon Scalable processors or single AMD EPYC™ 9004 Series processor
- Up to 32 E3.S NVMe drives in 2U
- Supports PCIe 5.0, DDR5 and Compute Express Link (CXL) 1.1+
Large Scale AI Training Workloads

Petabyte Scale HDD
Top-Loading Data Lake Storage

Benefits & Advantages

- Fully redundant dual-ported high availability/failover clustering for use with Parallel File Systems
- Dual ported SAS architecture with 60 and 90 Bay configurations
- Top-loading drawer with tool-less drive brackets for easy servicing and maintenance
- Industry standard SAS controllers and expander infrastructure to support the most popular SDS platforms like ZFS and Lustre

Key Features

- Two hot-pluggable system nodes
- Dual 3rd Gen Intel® Xeon® Scalable processors per node
- 3 PCIe 4.0 x16 slots per node for I/O

4U 60/90-Bay Top-Loading
SSG-640SP-E1CR60 / SSG-640SP-E1CR90
HPC/AI Workloads

Simulation: Stress Analysis, Aerodynamics, Device Performance Prediction, Fluid Dynamics, Research, Exploration, Weather Prediction

Workload Sizes

Large

8U 8-GPU or 4U 4-GPU System
(Codename: Delta-Next and Redstone Next)
NVIDIA HGX H100 SXM 8-GPU or 4-GPU

Medium

4U/5U 8-10 GPU PCIe
Maximum Performance and Flexibility

SuperBlade®
Highest Density Multi-Node Architecture

1U Grace Hopper System
CPU+GPU Coherent Memory System

Simulation workloads:
- Stress Analysis
- Aerodynamics
- Device Performance Prediction
- Fluid Dynamics
- Research
- Exploration
- Weather Prediction

HPC/AI Workloads include simulation and HPC/AI workloads.
Use Cases
- Manufacturing and engineering simulations (CAE, CFD, FEA, EDA)
- Bio/life sciences (genomic sequencing, molecular simulation, drug discovery)
- Scientific simulations (astrophysics, energy exploration, climate modeling, weather forecasting)

Opportunities and Challenges
- Infusing machine learning algorithms to HPC workloads to achieve faster results and discoveries with more iterations.
- Parallel processing with massive datasets for data-intensive simulations and analytics
- High-resolution and real-time visualization of scientific simulations and modeling

Key Technologies
- NVIDIA H100 (SXM, NVL, PCIe), L40S, A100
- NVIDIA Grace Hopper™ Superchip (Grace CPU and H100) with NVLink® Chip-2-Chip (C2C) interconnect and NVLink Network (up to 256 GPUs)
- Dual socket Intel and AMD-based solutions with high CPU core counts
- CPUs integrated with High Bandwidth Memory/bigger L3 cache
- PCIe 5.0 storage and networking
- Liquid cooling

Solution Stack
- NVIDIA HPC Software Development Kit (SDK)
- NVIDIA CUDA
- Commercial and in-house CAE software

HGX H100, H100 NVL, and H100 PCIe
- H100 SXM5 board with 4-GPU or 8-GPU (HGX H100)
- NVLink & NVSwitch Fabric (HGX H100)
- NVLink Bridge (H100 NVL or H100 PCIe)
- 80GB HBM3 (HGX H100 or H100 PCIe), 96GB HBM3 (H100 NVL) per GPU

GRACE HOPPER SUPERCHIP
- Grace Arm Neoverse V2 CPU
- NVIDIA H100 with NVLink-C2C
- Up to 480GB LPDDR5X and 96GB HBM3

L40S
- FHFL DW
- PCIe 4.0 x16
- 300W
- 48GB GDDR6
HPC/AI Workloads

HGX H100 Systems
Designed for Largest AI-fused HPC Clusters

Benefits & Advantages
- Double-precision Tensor Cores delivering up to 535/268 teraFLOPS at FP64 in the 8-GPU/4-GPU respectively.
- TF32 precision to reach nearly 8000 teraFLOPs for single-precision matrix-multiplication
- Superior thermal design and liquid cooling option supports maximum power/performance CPUs and GPUs.
- Dedicated networking and storage per GPU with up to double the NVIDIA GPUDirect throughput of the previous generation

4U 4-GPU
(Codenamed: Redstone-Next)
NVIDIA HGX H100 SXM 4-GPU
6 U.2 NVMe Drives
8 PCIe 5.0 x16 networking slots
SYS-421GU-TNXR

Key Features
- 4 or 8 H100 SXM GPUs with NVLink, interconnect with up to 900GB/s
- Dual 4th Gen Intel Xeon Scalable processors or AMD EPYC 9004 Series processors
- Supports PCIe 5.0, DDR5, and Compute Express Link (CXL) 1.1+
- Innovative modular architecture designed for flexibility and futureproofing in 8U, 5U, or 4U
- Optimized thermal capacity and airflow to support CPUs up to 350W and GPUs up to 700W with air cooling and optional liquid cooling
- PCIe 5.0 x16 1:1 networking slots for GPUs up to 400 Gbps each supporting GPUDirect Storage and RDMA, and up to 16 U.2 NVMe drive bays, high throughput data pipeline and clustering
Benefits & Advantages

- Up to 20 nodes in 8U – 100 blades per rack
- Single NVIDIA H100 PCIe GPU per blade
- High CPU to GPU ratio
- Integrated power, cooling, switch and management console
- Up to 95% cable reduction compared to traditional rackmount servers

Key Features

- 1 H100 or L40S PCIe GPU per blade
- Single 4th Gen Intel® Xeon® Scalable processor per blade
- Supports PCIe 5.0, DDR5 and Compute Express Link (CXL) 1.1
- Flexible storage options including U.2 NVMe, SAS including M.2 NVMe and EDSFF E1.S
- Shared power, cooling and switch for maximum efficiency with optional liquid cooling
- 2-port 25GbE (3rd and 4th LAN), 1x 200G HDR InfiniBand or 1x 100G EDR InfiniBand via mezzanine card
HPC/ AI Workloads

1U Grace Hopper MGX Systems
CPU+GPU Coherent Memory System for AI and HPC Applications

Benefits and Advantages

• 72-core ARM CPU and H100 GPU combined with coherent memory
• NVLink® Chip-2-Chip (C2C) high-bandwidth and low-latency interconnect and NVLink Network (up to 256 NVLink-connected GPUs)
• Energy efficient 1000W per Grace Hopper Superchip (CPU + GPU + memory).
• Air cooling and Liquid cooling option
• 3 PCIe 5.0 x16 slots, 8 hot-swap E1.S and 2 M.2 slots

Key Features

• Grace ARM Neoverse V2 CPU + H100 Tensor Core GPU in a single chip
• Up to 96GB HBM3 and 480GB LPDDR5X integrated memory
• NVLink-C2C with coherent memory to enable 900GB/s of total bandwidth and up to 576GB (480GB + 96GB) of fast-access memory available to the GPU
• NVLink Network with 256 connected GPUs can access up to 150TB of memory at high bandwidth
• 3 PCIe 5.0 x16 slots, 8 hot-swap E1.S and 2 M.2 slots
10 GPU Systems
4U/5U 8 or 10 GPU PCIe - Maximum Performance and Flexibility

Benefits & Advantages

- 13 PCIe 5.0 x16 slots with up to 10 PCIe FHFL GPUs supporting 8 NVIDIA H100 NVL (4 NVLink Bridge pairs) or 10 H100 PCIe GPUs.
- 4U or 5U configurations with superior thermal design supporting max power/performance CPUs and GPUs at up to 32°C ambient temperature with optional air cooling
- *Single Root, Dual Root or Direct Connect GPU configurations*

Key Features

- Up to 8 or 10 H100 PCIe GPUs with optional NVLink Bridge (H100 NVL), or up to 10 L40s
- Dual 4th Gen Intel Xeon Scalable processors or AMD EPYC 9004 Series processors
- Supports PCIe 5.0 DDR5 and Compute Express Link 1.1+
- Configurable with 2 400G networking per root (4 for Dual Root) and Advanced I/O Module (AIOM) slot for high throughput data pipeline and clustering

5U 8-10 GPU
- 8 H100 NVL
- 8 NVMe + 8 SATA drives
- 4-5 PCIe 5.0 x16 networking slots
 - SYS-521GE-TNRT

4U 10-GPU
- 10 H100 PCIe
- 8 NVMe + 8 SATA drives
- 4-5 PCIe 5.0 x16 networking slots
 - SYS-421GE-TNRT / AS-41250S-TNRT
Enterprise AI Inferencing & Training

Generative AI Inference, Large Language Model Inference, Speech Recognition, Recommendation, Computer Vision

Workload Sizes

Extra Large
- 4U/5U 8-10 GPU PCIe
- GPU-based Inference and Training

Large
- 6U SuperBlade®
- High Density, Disaggregated

Medium
- 2U MGX System
- Modular Building Block
- Platform Supporting Today's and Future GPUs, CPUs, and DPUs

2U Grace MGX System (Codename: C2)
- Modular Building Block
- Platform with Energy-efficient Grace CPU Superchip
Enterprise AI Inferencing & Training

Use Cases

- Content creation (image, audio, video, writing)
- AI-enabled office applications and services
- Enterprise business process automation

Opportunities and Challenges

- Total solution complexity
- Open architecture, vendor flexibility, and fast deployment for rapidly evolving technologies
- High computational and resource costs, cloud vs. on-prem
- Utilization of frameworks, pre-trained or open-source AI models with fine-tuning

Key Technologies

- NVIDIA H100 (NVL, PCIe), A100, L40S, L40, and L4 GPUs
- PCIe 5.0 storage and networking
- Intel and AMD CPU options
- NVIDIA Grace™ Superchip (2 Grace CPUs on one Superchip) with NVLink® Chip-2-Chip (C2C) interconnect
- Flexible rackmount servers from 1U to 6U to balance compute, storage, and networking for various enterprise AI workload needs

Solution Stack

- NVIDIA AI Enterprise software
- NVIDIA NGC™ catalog: containers, pre-trained models
- RedHat OpenShift, VMWare

<table>
<thead>
<tr>
<th>H100 NVL</th>
<th>L40S\L40</th>
<th>H100 PCIe</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 FHFW H100 GPU with NVLink Bridge (4x faster than PCIe) PCIe 5.0 x16 400W per GPU 94GB HBM3 per GPU</td>
<td>FHFW 4.0 x16 350W (L40S)/300W (L40) 48GB GDDR6</td>
<td>FHFW 5.0 x16 300W per GPU 80GB HBM2e</td>
</tr>
</tbody>
</table>
10 GPU Systems
4U/5U 8 or 10 GPU PCIe — Highly Flexible Architecture

Benefits & Advantages

• Up to 13 PCIe 5.0 slots for flexible GPUs, I/O and networking options
• 4U or 5U configurations with superior thermal design supporting max power/performance CPUs and GPUs at up to 32°C ambient temperature with air cooling
• *Single Root, Dual Root or Direct Connect GPU configurations*

Key Features

• Up to 8 or 10 H100 PCIe GPUs with optional NVLink Bridge (H100 NVL), or L40S
• Dual 4th Gen Intel® Xeon® Scalable processors or AMD EPYC™ 9004 Series processors
• Supports PCIe 5.0, DDR5 and Compute Express Link (CXL) 1.1+
• Optimized thermal capacity and airflow to support CPUs up to 350W and GPUs up to 700W with air cooling.

8-10 GPU (PCIe)

- 8 NVIDIA H100 NVL
- or 10 H100 PCIe
- 8 NVMe and 8 SATA Drives
- 32 DIMMs DDR5-4800

SYS-421GE-TNRT / AS-4125GS-TNRT / SYS-521GE-TNRT
6U SuperBlade®
SuperBlade® - Highest Density Multi-Node Architecture
for HPC, AI and Cloud Applications

Benefits & Advantages

• Up to 10 single-width nodes in 6U with up to 2 GPUs per blade, or 5 double-width nodes with up to 4 GPUs per blade
• Integrated power, cooling, switch and management console
• Up to 95% cable reduction compared to traditional rackmount servers
• High CPU to GPU Ratio

Key Features

• Up to 2 H100 PCIe or L40S GPUs per blade
• Single 4th Gen Intel® Xeon® Scalable processor per blade
• Supports PCIe 5.0, DDR5 and Compute Express Link (CXL) 1.1+
• Flexible storage options including U.2 (NVMe, SAS, SATA), M.2 (SATA/ NVMe), and EDSFF E1.S
• Shared power, cooling and switch for maximum efficiency with optional liquid cooling
• Flexible networking up to 400G NDR InfiniBand

6U SuperBlade®
2 NVIDIA H100 PCIe
2 U.2 NVMe Drives
3 M.2 NVMe Drives
2 E1.S Drives
2x25GbE LOM
SBI-611E-ST2N
2U MGX Systems
Modular Building Block Platform Supporting Today’s and Future GPUs, CPUs, and DPUs

Benefits & Advantages

- NVIDIA MGX reference design enabling to construct a wide array of platforms and configurations
- 7 PCIe 5.0 x16 slots in 2U with up to 4 PCIe FHFL DW GPUs and 3 NICs or DPUs.
- Supports both ARM and x86-based configurations and is compatible with current and future generations of GPUs, CPUs and DPUs

Key Features

- Up to 4 H100 PCIe GPUs with optional NVLink Bridge (H100 NVL), L40S, or L40
- Up to 3 NVIDIA ConnectX-7 400G NDR InfiniBand cards or 3 NVIDIA BlueField®-3 cards
- Dual 4th Gen Intel Xeon Scalable processors
- 8 hot-swap E1.S and 2 M.2 slots
- Front I/O and Rear I/O configuration
- Supports PCIe 5.0 DDR5 and Compute Express Link 1.1+
2U Grace MGX System
Modular Building Block Platform with Energy-efficient Grace CPU Superchip

Benefits & Advantages

- Two NVIDIA Grace CPUs on one Superchip with 144-core and up to 500W CPU TDP
- 900GB/s NVLink® Chip-2-Chip (C2C) high-bandwidth and low-latency interconnect between Grace CPUs
- NVIDIA MGX reference design enabling to construct a wide array of platforms and configurations
- 7 PCIe 5.0 x16 slots in 2U with up to 4 PCIe FHFL DW GPUs and 3 NICs or DPUs.

Key Features

- Up to 144 high-performance Arm Neoverse V2 Cores with up to 960GB LPDDR5X onboard memory
- Up to 4 H100 PCIe GPUs with optional NVLink Bridge (H100 NVL), L40S, or L40
- Up to 3 NVIDIA ConnectX-7 400G NDR InfiniBand cards or 3 NVIDIA BlueField®-3 cards
- 8 hot-swap E1.S and 2 M.2 slots Front I/O and Rear I/O configuration
Visualization and Omniverse Workloads
Real-Time Collaboration, 3D Design, Game Development

Workload Sizes

Large

4U/5U 8 GPU
Tailored Architecture for NVIDIA Omniverse™

Medium

2U Hyper
4 FHFL DW GPUs
Compute Optimized Architecture

GPU Workstation
4-GPU Rackmount/Full Tower
Use Cases

- Game development
- Product design
- City planning/architectural
- Digital twins (manufacturing, assembly lines, logistics)

Opportunities and Challenges

- AI-aided game development and asset generation
- Closer to real world scenarios
- Integrated engineering
- Enterprise-scale simulations
- Lower latencies
- Cloud collaboration opportunities

Key Technologies

- NVIDIA OVX™ certified architecture
- NVIDIA L40S, L40, and RTX 6000 Ada GPUs
- NVIDIA BlueField®-2, or BlueField®-3 (DPU)
- NVIDIA RTX GPUs with ray tracing
- Rack-scale integration

Solution Stack

- Universal Scene Description Connectors
- NVIDIA Omniverse™ Enterprise

L40S
- FHFL DW
- PCIe 4.0 x16
- 350W
- 48GB GDDR6

L40
- FHFL DW
- PCIe 4.0 x16
- 300W
- 48GB GDDR6

RTX 6000 ADA
- Graphics, Ray Tracing
- FHFL DW
- PCIe 4.0 x16
- 300W
- 48GB GDDR6
Omniverse Optimized Systems

Highest Performance, Tailored for NVIDIA Omniverse™ Enterprise

Benefits & Advantages

- New next-generation purpose-built system for NVIDIA Omniverse™ Enterprise
- Optimized for power immersive, photorealistic 3D models, simulations, and digital twins
- Flexible storage configurations
- Up to 2x more storage and I/O flexibility

Visualization and Omniverse Workloads

4U/5U 8 GPU (PCIe)
8 NVIDIA L40S/L40 PCIe
3 NVIDIA ConnectX-7
16 U.2 NVMe drives
SYS-421GE-TNRT / AS-4125GS-TNRT / SYS-521GE-TNRT

Key Features

- 8 NVIDIA L40S/L40 PCIe GPUs
- Dual 4th Gen Intel® Xeon® Scalable processors or AMD EPYC™ 9004 Series processors
- Supports PCIe 5.0, DDR5 and Compute Express Link (CXL) 1.1+
- 3 NVIDIA ConnectX-7
- Optimized thermal capacity and airflow to support CPUs up to 350W and GPUs up to 700W with air cooling.
- 16 U.2 NVMe drive bays
2U Hyper Systems
Hyper - Flagship Performance Rackmount System
Designed for Ultimate Flexibility

Benefits & Advantages

• Highly flexible modular architecture
• Compute optimized design for maximum airflow
• Maximum availability of PCIe lanes for GPUs and networking
• Tool-less platform for ease of configuration and servicing

Visualization and Omniverse Workloads

2U Hyper
4 NVIDIA L40 PCIe
8 NVMe drives
32 DIMMs DDR5-4800
SYS-221H-TNR / AS-2115HS-TNR

Key Features

• Up to 4 NVIDIA L40S/L40 GPUs
• Dual 4th Gen Intel® Xeon® Scalable processors or AMD EPYC™ 9004 Series processors
• Optimized thermal capacity and airflow to support CPUs up to 350W with GPUs up to 350W with air cooling
• Supports PCIe 5.0, DDR5 and Compute Express Link (CXL) 1.1+
• Advanced I/O Module (AIOM) for flexible networking options - OCP 3.0 SFF compatible
AI Workstations

4-GPU 5U Full-Tower Rackmount Workstation

Benefits & Advantages

- Powerful, compact configuration optimized for Omniverse and AI development
- Rackmount data center server performance in portable tower form factor
- Ideal for office, school, lab or field deployment
- NVIDIA qualified system

5U Full-Tower Workstation

4 NVIDIA L40S PCIe
Dual 4th Gen Intel® Xeon® Scalable
16 DIMM slots DDR5-4800
SYS-741GE-TNRT

Visualization and Omniverse Workloads

Key Features

- 4 NVIDIA L40S/L40 PCIe GPUs
- Dual 4th Gen Intel Xeon Scalable processors Supports PCIe 5.0, DDR5 and Compute Express Link (CXL) 1.1+
- 8 3.5" hot-swap NVMe/SATA/SAS and 2 M.2 slots
- 4 PCIe 5.0 x16 double-width slots (for GPUs) and 3x PCIe 5.0 x16 single-width slots for maximum flexibility
- On-board 10GbE LAN
Graphic Workstations
4-GPU 5U Full-Tower Rackmount Workstation

Benefits & Advantages
- Versatile and flexible configuration for a range of media, visualization and AI workloads
- High core count to support maximum I/O for PCIe expansion, M.2 storage and SATA drive bays
- NVIDIA Certified platform

Key Features
- 4 NVIDIA RTX™ 6000 Ada or A6000 GPUs
- Single AMD Ryzen Threadripper PRO processor up to 64 cores
- 4 PCIe 4.0 x4 M.2 slots + 6 SATA drive bays
- Onboard 10GbE LAN
- Optional CPU liquid cooling
Video Delivery Workloads

Content Delivery Networks (CDNs), Transcoding, Compression, Cloud Gaming/Streaming

Workload Sizes

Large
- BigTwin® 2U 4-Node
 Content Delivery Networks

Medium
- CloudDC 2U UP
 Streaming and Transcoding

Small
- Hyper-E 2U DP
 Edge Video
Use Cases

- Content delivery networks
- 8K, 4K streaming, live broadcast
- High resolution, high framerate cloud gaming and streaming

Opportunities and Challenges

- Save data bandwidth and reduce delivery delays
- Faster, more efficient transcoding and compression
- Reduce power consumption and infrastructure cost

Key Technologies

- GPU media engines with transcoding acceleration including AV1 encoding and decoding
- NVIDIA L40, L4, and RTX GPUs
- NVIDIA BlueField®-2 or BlueField-3 (DPU)
- Dense, resource-saving multi-node, multi-GPU systems for space and power efficiency
- High-capacity, high-throughput hot-swap storage

Solution Stack

- Red Hat, VMWare
- Container orchestration and management
- SDKs to accelerate and optimize decoding, encoding and transcoding workloads

L40
- FHFL DW
- PCIe 4.0 x16
- 300W
- 48GB GDDR6

L4
- HHHL SW
- PCIe 4.0 x16
- 72W
- 24GB GDDR6
BigTwin® 2U 4-Node

BigTwin – Award Winning Multi-Node System with Resource Saving Architecture

Benefits & Advantages

- Multi-node form factors optimized for compute or storage density
- Dual processors per node
- Free-air cooling and liquid cooling options
- Front hot-swap storage drives and rear hot-swap server nodes

Key Features

- Up to 1 GPUs per node
- Dual 4th Gen Intel® Xeon® Scalable processors per node
- Supports PCIe 5.0, DDR5 and Compute Express Link (CXL) 1.1+
- 2 PCIe 5.0 x16 (LP) slots
- 6 NVMe drives per node (2U4N) or 12 NVMe drives per node (2U2N)
- Networking via AIOM (OCP 3.0 compatible) per node

BigTwin 2U 4-Node

1 NVIDIA L4 PCIe per node
6 2.5” NVMe drives per node
16 DIMMs DDR5-4800 per node

SYS-221BT-HNTR / SYS-621BT-HNTR
Video Delivery Workloads

2U CloudDC UP
CloudDC - All-in-one Platform for Cloud Data Centers

Benefits & Advantages

- UP architecture for maximum performance with a single CPU
- Superior thermal design - Supports maximum power/performance CPUs and GPUs
- Flexible I/O and storage options supporting convenient serviceability with tool-less brackets and hot-swap drive bays

Key Features

- Up to 6 GPUs
- Single 4th Gen Intel® Xeon® Scalable processor or AMD EPYC™ 9004 Series processor
- Optimized thermal capacity and airflow to support CPUs up to 350W and GPUs up to 350W with air cooling
- Supports PCIe 5.0, DDR5 and Compute Express Link (CXL) 1.1+
- 16 DIMM slots DDR5
- Advanced I/O Module (AIOM) for flexible networking options (OCP 3.0 compatible)
2U Hyper-E
Hyper-E- High Performance and Flexibility at the Edge

Video Delivery Workloads

Benefits & Advantages

- Short-depth chassis ideal for edge deployments
- Front I/O with rear storage access
- AC and DC power options

Key Features

- 3 NVIDIA L40S/L40 PCIe GPUs
- Dual 4th Gen Intel® Xeon® Scalable processors
- Supports PCIe 5.0, DDR5 and Compute Express Link (CXL) 1.1
- 32 DIMM slots DDR5.
- Networking via AIOM (OCP 3.0 compatible)
Video Delivery Optimized Storage

Highly Efficient Sustainable Flash
For read-intensive content delivery

Benefits & Advantages

- Maximum density design to support up to 1PB in 2U with next-generation drives
- CPUs with built-in Intel Accelerator Engines to offload storage functions and improve performance
- Flexible topology allows distribution of PCIe lanes based on performance and density requirements

Key Features

- Dual 4th Gen Intel® Xeon® Scalable processors or single AMD EPYC 9004 Series processors
- Supports PCIe 5.0, DDR5 and Compute Express Link (CXL) 1.1
- Up to 24 drives in 1U or 32 drives in 2U
- 2 PCIe 5.0 x16 slots + 2 PCIe 5.0 x16 AIOM slots
Video Delivery Optimized Storage

Scale-Out Origin Storage
For active archive, user-licensed content, copyright compliance

Benefits & Advantages
- Storage Bays divided between 2x nodes to create scale-out architectures with maximum density
- Optimal Configurations using 30 or 45 HDD per node
- Top-loading drawer with tool-less drive brackets for easy servicing and maintenance
- Designed to be maintained with minimal datacenter staff

Key Features
- Dual node twin design
- Dual 3rd Gen Intel® Xeon® Scalable processors per node
- 3 PCIe 4.0 x16 slots per node for I/O
- Designed to be maintained with minimal datacenter staff
AI Edge Workloads

Edge Video Transcoding, Edge Inference, Edge Training

Workload Sizes

- **Extra Large**
 - Hyper-E
 - Multi-GPU Inferencing and Training

- **Large**
 - Compact
 - Multi-GPU Inferencing

- **Medium**
 - Short-Depth Multi-GPU Edge Server

- **Small**
 - Embedded
 - CPU (or ASIC) based Inference
Use Cases

- Video processing: decode, encode, and transcode
- Edge inference: vision, speech, anomaly detection, etc.
- Markets: security and surveillance, retail, manufacturing, healthcare, and medical devices

Opportunities and Challenges

- Size, weight, and power constraints
- Data throughput for video and audio
- Cost of storage, bandwidth constraints
- Latency impacting decision response times
- Data security, privacy, and sovereignty laws
- Resiliency in face of network outages
- Long product lifecycle requirements

Key Technologies

- CPU or GPU-based AI edge Inferencing, GPU-based AI edge training, and video transcoding/encoding/decoding
- NVIDIA L4, L40S, L40, A30, A40, T4, A2 GPUs
- Short-depth chassis design for edge locations with AC or DC power supply options
- Front I/O with broad range of expansion and I/O port for flexibility and serviceability
- Ruggedized systems designed to be placed outside of the data center

Solution Stack

- NVIDIA® TensorRT™ and Triton Inference Server
- NVIDIA DeepStream, Clara, Merlin, Metropolis, Morpheus, Omniverse, and Riva
- NVIDIA Fleet Command
- Intel® OpenVINO

<table>
<thead>
<tr>
<th>AI Edge Workloads</th>
<th>L40S</th>
<th>L40</th>
<th>L4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FHFL DW</td>
<td>FHFL DW</td>
<td>HHHL SW</td>
</tr>
<tr>
<td></td>
<td>PCIe 4.0 x16</td>
<td>PCIe 4.0 x16</td>
<td>PCIe 4.0 x16</td>
</tr>
<tr>
<td></td>
<td>350W</td>
<td>300W</td>
<td>72W</td>
</tr>
<tr>
<td></td>
<td>48GB GDDR6</td>
<td>48GB GDDR6</td>
<td>24GB GDDR6</td>
</tr>
</tbody>
</table>
Short-Depth 5G/Edge & Hyper E

Benefits & Advantages

- High-density systems for data center level performance at the Edge
- Flexible configurations with broad AI accelerator and AOC options
- Front I/O for easier serviceability in space-constrained environments
- Short-depth chassis design for easy deployment at edge locations
- Redundant AC or DC power supply options

SYS-111E-FWTR
1U Compact Edge/5G Server
2 NVIDIA L4
2 Internal Drive Bays
8 DIMMs DDR5-4800

2U Hyper-E
3 NVIDIA H100 PCIe
6 NVMe drives
32 DIMMs DDR5-4800

Key Features (SYS-111E-FWTR)

- Single 4\(^{th}\) Gen Intel® Xeon® Scalable processor
- Dual 10 GbE connectivity
- Flexible configuration with 3 PCIe 5.0 x16 slots (2x FHFL and 1x LP)
- NEBS Level 3 design
- AC and DC power options available

Key Features (Hyper-E)

- Dual 4\(^{th}\) Gen Intel® Xeon® Scalable processors
- Flexible network options with 2 AIOM slots
- 3 PCIe 5.0 x16 FHFL double-width slots or 6 single-width slots 2 PCIe 5.0 single width FHHL slots
Fanless and Wallmount Edge
Compact Systems for the Intelligent Edge

Benefits & Advantages

- Compact form factors for deployments at the edge and remote edge
- Designed for ruggedized environments outside the data center
- Deliver low-latency AI inferencing for intelligent edge applications
- Broad range of expansion and I/O port options

SYS-E100-13AD
Ultra-compact Fanless Edge Server
CPU (or ASIC) based Inference

Key Features (SYS-E100-13AD)

- 12th Gen Intel® Core™ processors
- Fanless design for best durability and silent operations
- 3 M.2 expansion slots (NVME, Wi-Fi, LTE/5G)
- USB, HDMI, DP, COM and GPIO ports

SYS-E403-13E
Powerful expandable Server for the Edge

1 NVIDIA L40S OR 2 NVIDIA L4
8 DIMM slots DDR5-4800
4 NVMe Drives

Key Features (SYS-E403-13E)

- 4th Gen Intel® Xeon® Scalable processor
- 3 PCIe 5.0 x16 FHFL slots
- Dual 10 GbE Ethernet
- Optional wall-mounted installation
Supermicro System GPU Compatibility

<table>
<thead>
<tr>
<th></th>
<th>H100 (SXM)</th>
<th>H100 (NVL)</th>
<th>H100 (PCIe)</th>
<th>L40S</th>
<th>L40</th>
<th>L4</th>
<th>RTX 6000 Ada</th>
</tr>
</thead>
<tbody>
<tr>
<td>4U/5U/8U GPU</td>
<td>4 (4U/5U)</td>
<td>8 (4U)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4U/5U 10-GPU</td>
<td>10 (4U/5U)</td>
<td>10 (4U/5U)</td>
<td>10 (4U/5U)</td>
<td>10 (4U/5U)</td>
<td>10 (4U/5U)</td>
<td>8 (4U/5U)</td>
<td></td>
</tr>
<tr>
<td>SuperBlade</td>
<td>20 (8U)</td>
<td>20 (8U)</td>
<td>20 (8U)</td>
<td>20 (8U)</td>
<td>40 (8U)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10 (6U)</td>
<td>10 (6U)</td>
<td>10 (6U)</td>
<td>10 (6U)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BigTwin</td>
<td>4 (2U2N)</td>
<td>4 (2U2N)</td>
<td>4 (2U2N)</td>
<td>4 (2U2N)</td>
<td>2 (2U)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 (2U2N)</td>
<td>2 (2U2N)</td>
<td>2 (2U2N)</td>
<td>2 (2U2N)</td>
<td>2 (2U)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CloudDC</td>
<td>2 (2U)</td>
<td>2 (2U)</td>
<td>2 (2U)</td>
<td>4 (2U)</td>
<td>2 (1U)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hyper</td>
<td>4 (2U)</td>
<td>4 (2U)</td>
<td>4 (2U)</td>
<td>4 (2U)</td>
<td>2 (1U)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 (1U)</td>
<td>1 (1U)</td>
<td>1 (1U)</td>
<td>1 (1U)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WIO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hyper-E</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Short-Depth Edge</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compact Edge/IoT</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Workstation</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>