The information in this User’s Manual has been carefully reviewed and is believed to be accurate. The vendor assumes no responsibility for any inaccuracies that may be contained in this document, makes no commitment to update or to keep current the information in this manual, or to notify any person or organization of the updates. Please Note: For the most up-to-date version of this manual, please see our web site at www.supermicro.com.

Super Micro Computer, Inc. ("Supermicro") reserves the right to make changes to the product described in this manual at any time and without notice. This product, including software and documentation, is the property of Supermicro and/or its licensors, and is supplied only under a license. Any use or reproduction of this product is not allowed, except as expressly permitted by the terms of said license.

IN NO EVENT WILL SUPERMICRO BE LIABLE FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, SPECULATIVE OR CONSEQUENTIAL DAMAGES ARISING FROM THE USE OR INABILITY TO USE THIS PRODUCT OR DOCUMENTATION, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. IN PARTICULAR, SUPERMICRO SHALL NOT HAVE LIABILITY FOR ANY HARDWARE, SOFTWARE, OR DATA STORED OR USED WITH THE PRODUCT, INCLUDING THE COSTS OF REPAIRING, REPLACING, INTEGRATING, INSTALLING OR RECOVERING SUCH HARDWARE, SOFTWARE, OR DATA.

Any disputes arising between manufacturer and customer shall be governed by the laws of Santa Clara County in the State of California, USA. The State of California, County of Santa Clara shall be the exclusive venue for the resolution of any such disputes. Super Micro’s total liability for all claims will not exceed the price paid for the hardware product.

FCC Statement: This equipment has been tested and found to comply with the limits for a class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment to an outlet on a circuit different from that to which the receiver is connected.
- Consult the authorized dealer or an experienced radio/TV technician for help.

California Best Management Practices Regulations for Perchlorate Materials: This Perchlorate warning applies only to products containing CR (Manganese Dioxide) Lithium coin cells. “Perchlorate Material-special handling may apply. See www.dtsc.ca.gov/hazardouswaste/perchlorate”

WARNING: Handling of lead solder materials used in this product may expose you to lead, a chemical known to the State of California to cause birth defects and other reproductive harm.

Manual Revision 1.1a
Release Date: August 19, 2014

Unless you request and receive written permission from Super Micro Computer, Inc., you may not copy any part of this document. Information in this document is subject to change without notice. Other products and companies referred to herein are trademarks or registered trademarks of their respective companies or mark holders.

Copyright © 2014 by Super Micro Computer, Inc.
All rights reserved.

Printed in the United States of America
Preface

This manual is written for system integrators, IT technicians and knowledgeable end users. It provides information for the installation and use of the SUPER® X10SL7-F motherboard.

About This Motherboard

The SUPER® X10SL7-F supports a single Intel® Xeon E3-1200 v3 or 4th Generation Core i3 processor in an LGA 1150 (H3) socket. With the Intel® C222 Express chipset built in, the X10SL7-F motherboard supports Intel® Active Management Technology (iAMT), offering great system enhancement to high performance storage platforms. Please refer to our website (http://www.supermicro.com/products/) for processor and memory support updates. This product is intended to be installed and serviced by professional technicians.

Manual Organization

Chapter 1 describes the features, specifications and performance of the motherboard, and provides detailed information on the Intel® C222 Express chipset.

Chapter 2 provides hardware installation instructions. Read this chapter when installing the processor, memory modules and other hardware components into the system. If you encounter any problems, see Chapter 3, which describes troubleshooting procedures for video, memory and system setup stored in the CMOS.

Chapter 4 includes an introduction to the BIOS, and provides detailed information on running the CMOS Setup utility.

Appendix A provides BIOS Error Beep Codes.

Appendix B lists software program installation instructions.

Appendix C contains UEFI BIOS Recovery instructions.
Conventions Used in the Manual:

Special attention should be given to the following symbols for proper system installation:

Warning: Critical information given to prevent damage to the components or injury to yourself.

Note: Additional Information provided for correct system setup.
Contacting Supermicro

Headquarters
Address: Super Micro Computer, Inc.
980 Rock Ave.
San Jose, CA 95131 U.S.A.
Tel: +1 (408) 503-8000
Fax: +1 (408) 503-8008
Email: marketing@supermicro.com (General Information)
support@supermicro.com (Technical Support)
Web Site: www.supermicro.com

Europe
Address: Super Micro Computer B.V.
Het Sterrenbeeld 28, 5215 ML
's-Hertogenbosch, The Netherlands
Tel: +31 (0) 73-6400390
Fax: +31 (0) 73-6416525
Email: sales@supermicro.nl (General Information)
support@supermicro.nl (Technical Support)
rma@supermicro.nl (Customer Support)
Web Site: www.supermicro.nl

Asia-Pacific
Address: Super Micro Computer, Inc.
3F, No. 150, Jian 1st Rd.
Zhonghe Dist., New Taipei City 235
Taiwan (R.O.C)
Tel: +886-(2) 8226-3990
Fax: +886-(2) 8226-3992
Email: support@supermicro.com.tw
Web Site: www.supermicro.com.tw
Table of Contents

Preface

Chapter 1 Introduction

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1 Overview</td>
<td>1-1</td>
</tr>
<tr>
<td>1-2 Chipset Overview</td>
<td>1-9</td>
</tr>
<tr>
<td>1-3 Special Features</td>
<td>1-10</td>
</tr>
<tr>
<td>1-4 PC Health Monitoring</td>
<td>1-10</td>
</tr>
<tr>
<td>1-5 ACPI Features</td>
<td>1-11</td>
</tr>
<tr>
<td>1-6 Power Supply</td>
<td>1-11</td>
</tr>
<tr>
<td>1-7 Super I/O</td>
<td>1-12</td>
</tr>
</tbody>
</table>

Chapter 2 Installation

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-1 Standardized Warning Statements</td>
<td>2-1</td>
</tr>
<tr>
<td>2-2 Static-Sensitive Devices</td>
<td>2-4</td>
</tr>
<tr>
<td>2-3 Processor and Heatsink Installation</td>
<td>2-5</td>
</tr>
<tr>
<td>Installing the LGA1150 Processor</td>
<td>2-5</td>
</tr>
<tr>
<td>Installing a Passive CPU Heatsink</td>
<td>2-8</td>
</tr>
<tr>
<td>Removing the Heatsink</td>
<td>2-9</td>
</tr>
<tr>
<td>2-4 Installing DDR3 Memory</td>
<td>2-10</td>
</tr>
<tr>
<td>DIMM Installation</td>
<td>2-10</td>
</tr>
<tr>
<td>Removing Memory Modules</td>
<td>2-11</td>
</tr>
<tr>
<td>Memory Support</td>
<td>2-11</td>
</tr>
<tr>
<td>Memory Population Guidelines</td>
<td>2-11</td>
</tr>
<tr>
<td>2-5 Motherboard Installation</td>
<td>2-13</td>
</tr>
<tr>
<td>Tools Needed</td>
<td>2-13</td>
</tr>
<tr>
<td>Location of Mounting Holes</td>
<td>2-13</td>
</tr>
<tr>
<td>Installing the Motherboard</td>
<td>2-14</td>
</tr>
<tr>
<td>2-6 Connectors/IO Ports</td>
<td>2-15</td>
</tr>
<tr>
<td>Backplane I/O Panel</td>
<td>2-15</td>
</tr>
<tr>
<td>Universal Serial Bus (USB)</td>
<td>2-16</td>
</tr>
<tr>
<td>Ethernet Ports</td>
<td>2-17</td>
</tr>
<tr>
<td>Serial Ports (COM1/COM2)</td>
<td>2-17</td>
</tr>
<tr>
<td>Unit Identifier Switch/UID LED Indicator</td>
<td>2-18</td>
</tr>
<tr>
<td>VGA Port</td>
<td>2-18</td>
</tr>
<tr>
<td>Front Control Panel</td>
<td>2-19</td>
</tr>
<tr>
<td>Front Control Panel Pin Definitions</td>
<td>2-20</td>
</tr>
<tr>
<td>NMI Button</td>
<td>2-20</td>
</tr>
<tr>
<td>Power LED</td>
<td>2-20</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>2-7</td>
<td>Connecting Cables</td>
</tr>
<tr>
<td></td>
<td>ATX Main PWR & CPU PWR Connectors (JPW1 & JPW2)</td>
</tr>
<tr>
<td></td>
<td>Fan Headers (Fan 1-Fan 4 & Fan A)</td>
</tr>
<tr>
<td></td>
<td>Chassis Intrusion (JL1)</td>
</tr>
<tr>
<td></td>
<td>Internal Buzzer (SPKR1)</td>
</tr>
<tr>
<td></td>
<td>Onboard Power LED (JLED1)</td>
</tr>
<tr>
<td></td>
<td>DOM PWR Connector (JSD1)</td>
</tr>
<tr>
<td></td>
<td>Standby Power</td>
</tr>
<tr>
<td></td>
<td>T-SGPIO 1/2 & 6-SGPIO 1/2 Headers</td>
</tr>
<tr>
<td></td>
<td>Power SMB (I²C) Connector</td>
</tr>
<tr>
<td></td>
<td>TPM Header/Port 80 Header</td>
</tr>
<tr>
<td>2-8</td>
<td>Jumper Settings</td>
</tr>
<tr>
<td></td>
<td>Explanation of Jumpers</td>
</tr>
<tr>
<td></td>
<td>LAN1/LAN2 Enable/Disable</td>
</tr>
<tr>
<td></td>
<td>CMOS Clear (JBT1)</td>
</tr>
<tr>
<td></td>
<td>PCI-E Slot SMB Enable (I²C1/I²C2)</td>
</tr>
<tr>
<td></td>
<td>ME Recovery</td>
</tr>
<tr>
<td></td>
<td>Manufacturer Mode Select</td>
</tr>
<tr>
<td></td>
<td>Backplane USB Wake_Up Enable</td>
</tr>
<tr>
<td></td>
<td>SAS Enable</td>
</tr>
<tr>
<td></td>
<td>VGA Enable</td>
</tr>
<tr>
<td></td>
<td>Watch Dog Enable/Disable</td>
</tr>
<tr>
<td>2-9</td>
<td>Onboard Indicators</td>
</tr>
<tr>
<td></td>
<td>LAN 1/LAN 2 LEDs</td>
</tr>
<tr>
<td></td>
<td>IPMI Dedicated LAN LEDs</td>
</tr>
<tr>
<td></td>
<td>Onboard Power LED (LE3)</td>
</tr>
<tr>
<td></td>
<td>BMC Heartbeat LED</td>
</tr>
<tr>
<td></td>
<td>Power Status LED</td>
</tr>
<tr>
<td></td>
<td>SAS Heartbeat LED</td>
</tr>
<tr>
<td>2-10</td>
<td>SATA Connections</td>
</tr>
<tr>
<td></td>
<td>SATA/SAS Connections</td>
</tr>
</tbody>
</table>
Chapter 1

Introduction

1-1 Overview

Checklist

Congratulations on purchasing your computer motherboard from an acknowledged leader in the industry. Supermicro boards are designed with the utmost attention to detail to provide you with the highest standards in quality and performance.

Please check that the following items have all been included with your motherboard. If anything listed here is damaged or missing, contact your retailer.

The following items are included in the retail box.

• One (1) Supermicro Motherboard
• Six (6) SATA cables
• One (1) I/O shield
• One (1) Quick Reference Guide

Note: For your system to work properly, please follow the links below to download all necessary drivers/utilities and the user's manual for your motherboard.

SMCI product manuals: http://www.supermicro.com/support/manuals/

If you have any questions, please contact our support team at support@supermicro.com.
Note: All graphics shown in this manual were based upon the latest PCB Revision available at the time of publishing of the manual. Your motherboard or components may or may not look exactly the same as the graphics shown in this manual.
Notes:

- See Chapter 2 for detailed information on jumpers, I/O ports and JF1 front panel connections.

- "■" indicates the location of "Pin 1".

- Jumpers not indicated are for testing only.

- When the onboard Power LED Indicator (LE3) is on, system power is on. Unplug the power cable before installing or removing any components.
X10SL7-F Quick Reference

Jumper

<table>
<thead>
<tr>
<th>Jumper</th>
<th>Description</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>JBT1</td>
<td>CMOS Clear</td>
<td>(See Chpt. 2)</td>
</tr>
<tr>
<td>JF/C1/JF/C2</td>
<td>SMB to PCI-E Slots</td>
<td>Pins 2-3 (Disabled)</td>
</tr>
<tr>
<td>JPG1</td>
<td>VGA Enable</td>
<td>Pins 1-2 (Enabled)</td>
</tr>
<tr>
<td>JPL1/JPL2</td>
<td>LAN1/LAN2 Enable</td>
<td>Pins 1-2 (Enabled)</td>
</tr>
<tr>
<td>JPME1</td>
<td>ME Recovery</td>
<td>Pins 1-2 (Normal)</td>
</tr>
<tr>
<td>JPME2</td>
<td>Manufacture Mode Select</td>
<td>Pins 1-2 (Normal)</td>
</tr>
<tr>
<td>JPS1</td>
<td>SAS Enable</td>
<td>Pins 1-2 (Enabled)</td>
</tr>
<tr>
<td>JPUSB1</td>
<td>USB 4/5 Wake_up Enable</td>
<td>Pins 1-2 (Enabled)</td>
</tr>
<tr>
<td>JWD1</td>
<td>Watch Dog Enable</td>
<td>Pins 1-2 (Reset)</td>
</tr>
</tbody>
</table>
X10SL7-F Headers/Connectors

<table>
<thead>
<tr>
<th>Connector</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Battery</td>
<td>Onboard Battery</td>
</tr>
<tr>
<td>COM1/COM2</td>
<td>COM1 (Port)/COM2 (Header)</td>
</tr>
<tr>
<td>Fan1 - Fan4, FanA</td>
<td>System/CPU Fan Headers</td>
</tr>
<tr>
<td>JF1</td>
<td>Front Panel Control Header</td>
</tr>
<tr>
<td>JL1</td>
<td>Chassis Intrusion Header</td>
</tr>
<tr>
<td>JLED1</td>
<td>Power LED Indicator Header</td>
</tr>
<tr>
<td>JPI/FC1</td>
<td>Power SMB (System Management Bus)</td>
</tr>
<tr>
<td>JPW1</td>
<td>24-pin ATX Main Power Connector (Required)</td>
</tr>
<tr>
<td>JPW2</td>
<td>+12V 8-pin CPU power Connector (Required)</td>
</tr>
<tr>
<td>JSO1</td>
<td>SATA DOM (Device_On_Module) Power Connector</td>
</tr>
<tr>
<td>JSTBY1</td>
<td>Standby Power Header</td>
</tr>
<tr>
<td>JTPM1</td>
<td>Trusted Platform Module/Port 80 Connector</td>
</tr>
<tr>
<td>LAN1/LAN2</td>
<td>Gigabit (RJ45) Ports (LAN1/2)</td>
</tr>
<tr>
<td>IPMI_LAN</td>
<td>IPMI_Dedicated LAN</td>
</tr>
<tr>
<td>I-SATA0/I-SATA1</td>
<td>(Intel PCH) Serial ATA (SATA 3.0) Ports 0/1 (6Gb/sec)</td>
</tr>
<tr>
<td>I-SATA2 - I-SATA5</td>
<td>(Intel PCH) Serial ATA (SATA 2.0) Ports 2~5 (3Gb/sec)</td>
</tr>
<tr>
<td>L-SAS 0-7</td>
<td>SAS Connectors 0-7 (supported by the LSI 2308 SAS controller)</td>
</tr>
<tr>
<td>(PCH) Slot 5</td>
<td>PCI-Express 2.0 x4 in x8 Slot</td>
</tr>
<tr>
<td>(CPU) Slot 6</td>
<td>PCI-Express 3.0 x8 in x16 Slot</td>
</tr>
<tr>
<td>SPKR1</td>
<td>Internal Speaker/Buzzer</td>
</tr>
<tr>
<td>SW1</td>
<td>UID (Unit Identifier) Switch</td>
</tr>
<tr>
<td>6-SGPIO 1/2</td>
<td>Serial_Link General Purpose I/O Headers 1/2 for SAS Connections</td>
</tr>
<tr>
<td>T-SGPIO 1/2</td>
<td>Serial_Link General Purpose I/O Headers 1/2 for SATA Connections</td>
</tr>
<tr>
<td>USB 2/3, 4/5</td>
<td>Backpanel USB 2.0 Ports 2/3, 4/5</td>
</tr>
<tr>
<td>USB 0,1 (3.0)</td>
<td>USB 3.0 Ports 0, 1 (USB 0: Type A Connector)</td>
</tr>
<tr>
<td>USB 8/9</td>
<td>Front Panel Accessible USB 2.0 Headers 8/9</td>
</tr>
<tr>
<td>VGA</td>
<td>Backpanel VGA Port</td>
</tr>
</tbody>
</table>

X10SL7-F LED Indicators

<table>
<thead>
<tr>
<th>LED</th>
<th>Description</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>LE3</td>
<td>Standby Power LED</td>
<td>On: Power On</td>
</tr>
<tr>
<td>LE4</td>
<td>UID LED</td>
<td>Blue (On): Unit Identified</td>
</tr>
<tr>
<td>LE5</td>
<td>BMC Heartbeat LED</td>
<td>Green (Blinking): BMC Normal</td>
</tr>
<tr>
<td>LE6</td>
<td>Power Status LED</td>
<td>Red: PWR Fail/Yellow; Standby PWR Active/Green: PWR On Normal</td>
</tr>
<tr>
<td>LEDS2</td>
<td>SAS LED</td>
<td>Green (Blinking): SAS Active/Red (Solid On): SAS Error</td>
</tr>
</tbody>
</table>
Motherboard Features

<table>
<thead>
<tr>
<th>CPU</th>
<th>Single Intel® Xeon E3-1200 v3 or 4th Generation Core i3 processor in an LGA1150 socket.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Memory</td>
<td>Four (4) SDRAM slots support up to 32 GB of DDR3 Unbuffered, ECC 1600/1333 MHz memory</td>
</tr>
<tr>
<td>DIMM sizes</td>
<td>1 GB, 2 GB, 4GB, and 8GB</td>
</tr>
<tr>
<td>Chipset</td>
<td>Intel® C222 Express</td>
</tr>
<tr>
<td>Expansion Slots</td>
<td>One (1) PCI Express 2.0 x4 in x8 slot (PCH Slot 5)</td>
</tr>
<tr>
<td></td>
<td>One (1) PCI Express 3.0 x8 in x16 slot (CPU Slot 6)</td>
</tr>
<tr>
<td></td>
<td>Two (2) RJ-45 rear I/O panel connectors with Link and Activity LEDs</td>
</tr>
<tr>
<td>I/O Devices</td>
<td>SATA/SAS Connections</td>
</tr>
<tr>
<td></td>
<td>SATA 3.0 (6Gb/s)</td>
</tr>
<tr>
<td></td>
<td>RAID 0, 1</td>
</tr>
<tr>
<td></td>
<td>SATA 2.0 (3Gb/s)</td>
</tr>
<tr>
<td></td>
<td>RAID 0, 1, 5, 10 (MS Windows®)</td>
</tr>
<tr>
<td></td>
<td>RAID 0, 1, 10 (Linux)</td>
</tr>
<tr>
<td></td>
<td>SAS</td>
</tr>
<tr>
<td>USB Devices</td>
<td>Four (4) USB 2.0 ports on the rear I/O panel (USB 2/3, 4/5),</td>
</tr>
<tr>
<td></td>
<td>Two (2) USB 3.0 headers for USB 3.0 support (USB 0, USB 1) (USB 0 is a Type A connector)</td>
</tr>
<tr>
<td></td>
<td>Two (2) Front Accessible USB 2.0 ports on one header (USB 8/9)</td>
</tr>
<tr>
<td>Serial (COM) Ports</td>
<td>COM Port (COM1), COM Header (COM2)</td>
</tr>
<tr>
<td>Graphics Controller</td>
<td>AST 2400 Graphics Controller</td>
</tr>
<tr>
<td>Super I/O</td>
<td>Nuvoton NCT6776D</td>
</tr>
<tr>
<td>BIOS</td>
<td>128 Mb AMI BIOS® SPI Flash BIOS</td>
</tr>
<tr>
<td></td>
<td>Plug and Play (PnP), DMI 2.3, PCI 2.3, ACPI 1.0/2.0/3.0, USB Keyboard and SMBIOS 2.5</td>
</tr>
<tr>
<td>Power Configuration</td>
<td>ACPI/APM Power Management</td>
</tr>
<tr>
<td>---------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td></td>
<td>Main Switch Override Mechanism</td>
</tr>
<tr>
<td></td>
<td>Keyboard Wake-up from Soft-Off</td>
</tr>
<tr>
<td></td>
<td>Power-on mode for AC power recovery</td>
</tr>
<tr>
<td>PC Health Monitoring</td>
<td>CPU Monitoring</td>
</tr>
<tr>
<td></td>
<td>Onboard voltage monitors for CPU core, +3.3V, +5V, -12V, +12V, +3.3V Stdby, VBAT, Memory</td>
</tr>
<tr>
<td></td>
<td>CPU 3-phase switching voltage regulator</td>
</tr>
<tr>
<td></td>
<td>CPU/System overheat LED and control</td>
</tr>
<tr>
<td></td>
<td>CPU Thermal Trip support</td>
</tr>
<tr>
<td></td>
<td>Thermal Monitor 2 (TM2) support</td>
</tr>
<tr>
<td></td>
<td>vPro 9.0/AMT 9.0 support</td>
</tr>
<tr>
<td></td>
<td>Fan Control</td>
</tr>
<tr>
<td></td>
<td>Fan status monitoring with firmware 4-pin fan speed control via IPMI interface</td>
</tr>
<tr>
<td></td>
<td>Low noise fan speed control</td>
</tr>
<tr>
<td></td>
<td>System Management</td>
</tr>
<tr>
<td></td>
<td>PECI (Platform Environment Configuration Interface) 2.0 support</td>
</tr>
<tr>
<td></td>
<td>System resource alert via SuperDoctor® III</td>
</tr>
<tr>
<td></td>
<td>SuperDoctor® III, Watch Dog, NMI</td>
</tr>
<tr>
<td></td>
<td>Chassis Intrusion header and detection</td>
</tr>
<tr>
<td></td>
<td>CD Utilities</td>
</tr>
<tr>
<td></td>
<td>BIOS flash upgrade utility</td>
</tr>
<tr>
<td></td>
<td>Other</td>
</tr>
<tr>
<td></td>
<td>ROHS 6/6 (Full Compliance, Lead Free)</td>
</tr>
<tr>
<td></td>
<td>Dimensions</td>
</tr>
<tr>
<td></td>
<td>ATX form factor (9.6” x 9.6") (243.84 mm x 243.84 mm)</td>
</tr>
</tbody>
</table>
System Block Diagram

Note: This is a general block diagram and may not exactly represent the features on your motherboard. See the Motherboard Features pages for the actual specifications of each motherboard.
1-2 Chipset Overview

The X10SL7-F supports a Single Intel® Xeon E3-1200 v3 or 4th Generation Core i3 processor in an LGA1150 socket. Built upon the functionality and the capability of the C222 Express chipset, the motherboard provides substantial enhancement to system performance and storage capability for high performance platforms in a sleek package.

The high-speed Direct Media Interface (DMI) featured in the Intel® C222 Express chipset supports high-speed Direct Media Interface (DMI) for chip-to-chip true isochronous communication, providing up to 5 Gb/s of software-transparent data transfer rate on each read/write direction. In addition, the X10SL7-F also features a TCO timer which allows the system to recover from a software/hardware lock and perform tasks, including Function Disable and Intruder Detect.

Intel C222 Express Chipset Features

- Direct Media Interface (up 5 Gb/s transfer, Full Duplex)
- Dual NAND Interface
- Intel® I/O Virtualization (VT-d) Support
- Intel® Trusted Execution Technology Support
- PCI Express 2.0 Interface (up to 5.0 GT/s)
- SATA Controller (up to 6Gb/sec)
- Advanced Host Controller Interface (AHCI)
- Intel® Active Management Technology (iAMT) 9.0 and vPRO 9.0 support
1-3 Special Features

Recovery from AC Power Loss
Basic I/O System (BIOS) provides a setting for you to determine how the system will respond when AC power is lost and then restored to the system. You can choose for the system to remain powered off, (in which case you must press the power switch to turn it back on), or for it to automatically return to a power-on state. See the Advanced BIOS Setup section to change this setting. The default setting is Last State.

1-4 PC Health Monitoring

This section describes the PC health monitoring features of the board. All have an onboard System Hardware Monitoring chip that supports PC health monitoring. An onboard voltage monitor will scan these onboard voltages continuously: CPU Vcore, 12V, -12V, 5V, 3.3V, 3.3VSB, Memory, and Battery voltages. Once a voltage becomes unstable, a warning is given, or an error message is sent to the screen. The user can adjust the voltage thresholds to define the sensitivity of the voltage monitor.

Fan Status Monitor with Firmware Control
PC health monitoring in the BIOS can check the RPM status of the cooling fans. The onboard CPU and chassis fans are controlled by Thermal Management via IPMI Firmware.

Environmental Temperature Control
The thermal control sensor monitors the CPU temperature in real time and will turn on the thermal control fan whenever the CPU temperature exceeds a user-defined threshold. The overheat circuitry runs independently from the CPU. Once the thermal sensor detects that the CPU temperature is too high, it will automatically turn on the thermal fans to prevent the CPU from overheating. The onboard chassis thermal circuitry can monitor the overall system temperature and alert the user when the chassis temperature is too high.

Note: To avoid possible system overheating, please be sure to provide adequate airflow to your system.

System Resource Alert
This feature is available when the system is used with SuperDoctor® III in the Windows OS environment or used with SuperDoctor® II in Linux. SuperDoctor
is used to notify the user of certain system events. For example, you can also configure SuperDoctor to provide you with warnings when the system temperature, CPU temperatures, voltages and fan speeds go beyond predefined thresholds.

1-5 ACPI Features

ACPI stands for Advanced Configuration and Power Interface. The ACPI specification defines a flexible and abstract hardware interface that provides a standard way to integrate power management features throughout a PC system, including its hardware, operating system and application software. This enables the system to automatically turn on and off peripherals such as CD-ROMs, network cards, hard disk drives and printers.

In addition to enabling operating system-directed power management, ACPI also provides a generic system event mechanism for Plug and Play, and an operating system-independent interface for configuration control. ACPI leverages the Plug and Play BIOS data structures, while providing a processor architecture-independent implementation that is compatible with Windows 7, Windows 8, and Windows 2008 Operating Systems.

Slow Blinking LED for Suspend-State Indicator

When the CPU goes into a suspend state, the chassis power LED will start to blink to indicate that the CPU is in suspend mode. When the user presses any key, the CPU will "wake up", and the LED will automatically stop blinking and remain on.

1-6 Power Supply

As with all computer products, a stable power source is necessary for proper and reliable operation. It is even more important for processors that have high CPU clock rates.

This motherboard accommodates 24-pin ATX power supplies. Although most power supplies generally meet the specifications required by the CPU, some are inadequate. In addition, the 12V 8-pin power connector located at JPW2 is also required to ensure adequate power supply to the system.

Warning: To avoid damaging the power supply or motherboard, please use a power supply that contains a 24-pin and a 8-pin power connectors. Be sure to connect the 24-pin (JPW1) and the 8-pin (JPW2) power connectors on the motherboard to the power supply. Failure in doing so will void the manufacturer warranty on your power supply and motherboard.
It is strongly recommended that you use a high quality power supply that meets ATX power supply Specification 2.02 or above. It must also be SSI compliant. (For more information, please refer to the web site at http://www.ssiforum.org/). Additionally, in areas where noisy power transmission is present, you may choose to install a line filter to shield the computer from noise. It is recommended that you also install a power surge protector to help avoid problems caused by power surges.

1-7 Super I/O

The Super I/O supports two high-speed, 16550 compatible serial communication ports (UARTs). Each UART includes a 16-byte send/receive FIFO, a programmable baud rate generator, complete modem control capability and a processor interrupt system. Both UARTs provide legacy speed with baud rate of up to 115.2 Kbps as well as an advanced speed with baud rates of 250 K, 500 K, or 1 Mb/s, which support higher speed modems.

The Super I/O provides functions that comply with ACPI (Advanced Configuration and Power Interface), which includes support of legacy and ACPI power management through an SMI or SCI function pin. It also features auto power management to reduce power consumption.
2-1 Standardized Warning Statements

The following statements are industry-standard warnings, provided to warn the user of situations which have the potential for bodily injury. Should you have questions or experience difficulty, contact Supermicro's Technical Support department for assistance. Only certified technicians should attempt to install or configure components. Read this section in its entirety before installing or configuring components in the Supermicro chassis.

Battery Handling

Warning!

There is a danger of explosion if the battery is replaced incorrectly. Replace the battery only with the same or equivalent type recommended by the manufacturer. Dispose of used batteries according to the manufacturer's instructions.

電池の取り扱い

電池交換が正しく行われなかった場合、破裂の危険性があります。交換する電池はメーカーが推奨する型、または同等のものを使用下さい。使用済電池は製造元の指示に従って処分して下さい。

警告

电池更换不当会有爆炸危险。请只使用同类电池或制造商推荐的功能相当的电池更换原有电池。请按制造商的说明处理废旧电池。

警告

電池更換不當會有爆炸危險。請使用製造商建議之相同或功能相當的電池更換原有電池。請按照製造商的說明指示處理廢棄電池。

Warnung

Attention

Danger d'explosion si la pile n'est pas remplacée correctement. Ne la remplacer que par une pile de type semblable ou équivalent, recommandée par le fabricant. Jeter les piles usagées conformément aux instructions du fabricant.

¡Advertencia!

Existe peligro de explosión si la batería se reemplaza de manera incorrecta. Reemplazar la batería exclusivamente con el mismo tipo o el equivalente recomendado por el fabricante. Desechar las baterías gastadas según las instrucciones del fabricante.

경고!

배터리가 올바르게 교체되지 않으면 폭발의 위험이 있습니다. 기존 배터리와 동일하거나 제조사에서 권장하는 동등한 종류의 배터리로만 교체해야 합니다. 제조사의 안내에 따라 사용된 배터리를 처리하여 주십시오.

Waarschuwing

Er is ontploffingsgevaar indien de batterij verkeerd vervangen wordt. Vervang de batterij slechts met hetzelfde of een equivalent type die door de fabrikant aanbevolen wordt. Gebruikte batterijen dienen overeenkomstig fabrieksvoorschriften afgevoerd te worden.
Product Disposal

Warning!
Ultimate disposal of this product should be handled according to all national laws and regulations.

製品の廃棄
この製品を廃棄処分する場合、国の関係する全ての法律・条例に従い処理する必要があります。

警告
本产品的废弃处理应根据所有国家的法律和规章进行。

警告
本產品的廢棄處理應根據所有國家的法律和規章進行。

Warnung
Die Entsorgung dieses Produkts sollte gemäß allen Bestimmungen und Gesetzen des Landes erfolgen.

¡Advertencia!
Al deshacerse por completo de este producto debe seguir todas las leyes y reglamentos nacionales.

Attention
La mise au rebut ou le recyclage de ce produit sont généralement soumis à des lois et/ou directives de respect de l'environnement. Renseignez-vous auprès de l'organisme compétent.
2-2 Static-Sensitive Devices

Electrostatic-Discharge (ESD) can damage electronic components. To avoid damaging your system board, it is important to handle it very carefully. The following measures are generally sufficient to protect your equipment from ESD.

Precautions

- Use a grounded wrist strap designed to prevent static discharge.
- Touch a grounded metal object before removing the board from the antistatic bag.
- Handle the board by its edges only; do not touch its components, peripheral chips, memory modules or gold contacts.
- When handling chips or modules, avoid touching their pins.
- Put the motherboard and peripherals back into their antistatic bags when not in use.
- For grounding purposes, make sure your computer chassis provides excellent conductivity between the power supply, the case, the mounting fasteners and the motherboard.
- Use only the correct type of onboard CMOS battery. Do not install the onboard battery upside down to avoid possible explosion.

Unpacking

The motherboard is shipped in antistatic packaging to avoid static damage. When unpacking the board, make sure that the person handling it is static protected.
2-3 Processor and Heatsink Installation

Warning: When handling the processor package, avoid placing direct pressure on the label area of the fan.

Notes:

- Always connect the power cord last, and always remove it before adding, removing or changing any hardware components. Make sure that you install the processor into the CPU socket before you install the CPU heatsink.

- If you buy a CPU separately, make sure that you use an Intel-certified multidirectional heatsink only.

- Make sure to install the system board into the chassis before you install the CPU heatsink.

- When receiving a server board without a processor pre-installed, make sure that the plastic CPU socket cap is in place and none of the socket pins are bent; otherwise, contact your retailer immediately.

- Refer to the Supermicro website for updates on CPU support.

Installing the LGA1150 Processor

1. Gently press down the load plate handle and push it outward (to the right side) to unlock it.

2. Once the load plate handle is unlocked, gently lift the handle to open the load plate.
3. Once the load plate is open, use your thumb and your index finger to hold the CPU at the north center edge and the south center edge of the CPU.

4. Align the CPU keys, which are the semicircular cutouts on the sides of the CPU (shown below), against the socket keys, the semicircular notches on the sides of the CPU socket. Align CPU Pin 1, the triangle at the bottom left of the CPU, against Pin 1 of the socket, the triangle marker at the bottom left of the CPU socket.

5. Once they are aligned, carefully lower the CPU straight down into the socket. (To avoid damaging the CPU or the socket, do not drop the CPU on the socket. Do not rub the CPU against the surface or against any pins of the socket.)

6. With the CPU seated inside the socket, inspect the four corners of the CPU to ensure that it is properly installed.
7. Once the CPU is properly installed, use your thumb to gently push the load plate handle down to the handle lock and lock it.

8. When the CPU is securely locked into the CPU socket, the plastic cap will be automatically loosened from the load plate. Use your thumb and index finger to remove the plastic cap from the socket.

Warning: You can install the CPU inside the socket only in one direction. Make sure that it is properly inserted into the CPU socket before closing the load plate. If it doesn't close properly, do not force it, as that may damage your CPU. Instead, open the load plate again and check whether the CPU is properly aligned and securely seated inside the socket.
Installing a Passive CPU Heatsink

1. Do not apply thermal grease to the heatsink or the CPU die; the required amount has already been applied.

2. Place the heatsink on top of the CPU so that the four mounting holes are aligned with those on the motherboard and the underlying heatsink bracket.

3. Screw in two diagonal screws (the #1 and #2 screws in the figure below) until just snug. To avoid possible damage to the CPU, do not over tighten the screws.

4. Finish the installation by fully tightening all four screws.

Recommended Supermicro heatsink: SNK-P0046P heatsink with BKT-0028L bottom bracket
Removing the Heatsink

Warning: We do not recommend that the CPU or the heatsink be removed. However, if you do need to uninstall the heatsink, please follow the instructions below to remove the heatsink to avoid damaging the CPU or the CPU socket.

1. Unscrew the heatsink screws from the motherboard in the sequence as shown in the figure below.

2. **Gently** wriggle the heatsink to loosen it from the CPU. (Do not use excessive force)

3. Once the heatsink is loosened, remove the CPU from the CPU socket.

4. Clean the surface of the CPU and the heatsink, removing any thermal grease. Reapply the proper amount of fresh thermal grease on the surface before reinstalling the CPU and the heatsink.

Loosen screws in sequence as shown.
2-4 Installing DDR3 Memory

Note: Check the Supermicro website for recommended memory modules.

CAUTION
Exercise extreme care when installing or removing DIMM modules to prevent any possible damage.

DIMM Installation

1. Insert the desired number of DIMMs into the memory slots, starting with DIMMA1 (Channel A, Slot 1, see the next page for the location). For the system to work properly, please use the memory modules of the same type and speed in the same motherboard.

2. Push the release tabs outwards on both ends of the DIMM slot to unlock it.

3. Align the key of the DIMM module with the receptive point on the memory slot.

4. Align the notches on both ends of the module against the receptive points on the ends of the slot.

5. Use two thumbs together to press the notches on both ends of the module straight down into the slot until the module snaps into place.

6. Press the release tabs to the lock positions to secure the DIMM module into the slot.
Removing Memory Modules

Reverse the steps above to remove the DIMM modules from the motherboard.

Memory Support

The X10SL7-F supports up to 32GB of Unbuffered (UDIMM) DDR3 ECC 1600/1333 MHz in 4 memory slots. Populating these DIMM modules with a pair of memory modules of the same type and same size will result in interleaved memory, which will improve memory performance. Please refer to the table below:

Memory Population Guidelines

Please follow the table below when populating the X10SL7-F.

<table>
<thead>
<tr>
<th>DDR3 Unbuffered ECC (UDIMM) Memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIMM Slots per Channel</td>
</tr>
<tr>
<td>-------------------------</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>2</td>
</tr>
</tbody>
</table>

Notes

- Be sure to use memory modules of the same type, same speed, same frequency on the same motherboard. Mixing of memory modules of different types and speeds is not allowed.

- Due to memory allocation to system devices, the amount of memory that remains available for operational use will be reduced when 4 GB of RAM is used. The reduction in memory availability is disproportional. See the following table for details.
• For Microsoft Windows users: Microsoft implemented a design change in the Windows XP with Service Pack 2 (SP2) and Windows Vista. This change is specific to the behavior of Physical Address Extension (PAE) mode which improves driver compatibility. For more information, please read the following article at Microsoft’s Knowledge Base website at: http://support.microsoft.com/kb/888137.

Possible System Memory Allocation & Availability

<table>
<thead>
<tr>
<th>System Device</th>
<th>Size</th>
<th>Physical Memory Remaining (-Available) (4 GB Total System Memory)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Firmware Hub flash memory (System BIOS)</td>
<td>1 MB</td>
<td>3.99</td>
</tr>
<tr>
<td>Local APIC</td>
<td>4 KB</td>
<td>3.99</td>
</tr>
<tr>
<td>Area Reserved for the chipset</td>
<td>2 MB</td>
<td>3.99</td>
</tr>
<tr>
<td>I/O APIC (4 Kbytes)</td>
<td>4 KB</td>
<td>3.99</td>
</tr>
<tr>
<td>PCI Enumeration Area 1</td>
<td>256 MB</td>
<td>3.76</td>
</tr>
<tr>
<td>PCI Express (256 MB)</td>
<td>256 MB</td>
<td>3.51</td>
</tr>
<tr>
<td>PCI Enumeration Area 2 (if needed) -Aligned on 256-MB boundary-</td>
<td>512 MB</td>
<td>3.01</td>
</tr>
<tr>
<td>VGA Memory</td>
<td>16 MB</td>
<td>2.85</td>
</tr>
<tr>
<td>TSEG</td>
<td>1 MB</td>
<td>2.84</td>
</tr>
<tr>
<td>Memory available to OS and other applications</td>
<td></td>
<td>2.84</td>
</tr>
</tbody>
</table>
2-5 Motherboard Installation

All motherboards have standard mounting holes to fit different types of chassis. Make sure that the locations of all the mounting holes for both motherboard and chassis match. Although a chassis may have both plastic and metal mounting fasteners, metal ones are highly recommended because they ground the motherboard to the chassis. Make sure that the metal standoffs click in or are screwed in tightly. Then use a screwdriver to secure the motherboard onto the motherboard tray.

Tools Needed

- Philips Screwdriver (1)
- Philips Screws (8)
- Standoffs (8) Only if Needed

Location of Mounting Holes

Caution: 1) To avoid damaging the motherboard and its components, please do not use a force greater than 8 lb/inch on each mounting screw during motherboard installation. 2) Some components are very close to the mounting holes. Please take precautionary measures to avoid damaging these components when installing the motherboard to the chassis.
Installing the Motherboard

1. Install the I/O shield into the back of the chassis.

2. Locate the mounting holes on the motherboard. (See the previous page.)

3. Locate the matching mounting holes on the chassis. Align the mounting holes on the motherboard against the mounting holes on the chassis.

4. Install standoffs in the chassis as needed.

5. Install the motherboard into the chassis carefully to avoid damaging other motherboard components.

6. Using the Phillips screwdriver, insert a Phillips head #6 screw into a mounting hole on the motherboard and its matching mounting hole on the chassis.

7. Repeat Step 5 to insert #6 screws into all mounting holes.

8. Make sure that the motherboard is securely placed in the chassis.

Note: Images displayed are for illustration only. Your chassis or components might look different from those shown in this manual.
2-6 Connectors/IO Ports

The I/O ports are color coded in conformance with the industry standards. See the figure below for the colors and locations of the various I/O ports.

Backplane I/O Panel

<table>
<thead>
<tr>
<th>Backplane I/O Panel</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. COM1</td>
<td>F. USB Port 5 (2.0)</td>
</tr>
<tr>
<td>B. USB Port 2 (2.0)</td>
<td>G. LAN1</td>
</tr>
<tr>
<td>C. USB Port 3 (2.0)</td>
<td>H. LAN2</td>
</tr>
<tr>
<td>D. IPMI_LAN</td>
<td>I. VGA</td>
</tr>
<tr>
<td>E. USB Port 4 (2.0)</td>
<td>J. UID Switch</td>
</tr>
</tbody>
</table>
Universal Serial Bus (USB)

Four Universal Serial Bus 2.0 ports (2/3, 4/5) are located on the I/O back panel. In addition, one USB 2.0 header (two USB 2.0 connections: 8/9), and two USB 3.0 connectors (USB 0, USB 1) are also located on the motherboard to provide USB 3.0 support using USB cables (not included). USB 0 is a Type A connector. See the tables below for pin definitions.

| Back Panel USB (2.0) #2/3, 4/5 Pin Definitions |
|---|---|
| Pin# | Definition | Pin# | Definition |
| 1 | +5V | 5 | +5V |
| 2 | USB_PN1 | 6 | USB_PN0 |
| 3 | USB_PP1 | 7 | USB_PP0 |
| 4 | Ground | 8 | Ground |

| Front Panel USB (2.0) #8/9 Pin Definitions |
|---|---|
| Pin # | Definition | Pin # | Definition |
| 1 | +5V | 2 | +5V |
| 3 | USB_PN2 | 4 | USB_PN3 |
| 5 | USB_PP2 | 6 | USB_PP3 |
| 7 | Ground | 8 | Ground |
| 9 | Key | 10 | Ground |

| USB (3.0) USB #0, USB#1 Pin Definitions |
|---|---|
| Pin# | Description |
| 1 | VBUS |
| 2 | SSRX- |
| 3 | SSRX+ |
| 4 | Ground |
| 5 | SSTX- |
| 6 | SSTX+ |
| 7 | GND_DRAIN |
| 8 | D- |
| 9 | D+ |

A. Backpanel USB 2.0 #2
B. Backpanel USB 2.0 #3
C. Backpanel USB 3.0 #4
D. Backpanel USB 3.0 #5
E. Front Panel USB 2.0 #8/9
F. Type A USB 3.0 #0
G. Front Panel USB 3.0 #1
Ethernet Ports

Two Gigabit Ethernet ports (LAN1/LAN2) and an IPMI_LAN port are located on the I/O Backpanel to provide network connections. These ports accept RJ45 type cables.

Note: Please refer to the LED Indicator Section for LAN LED information.

<table>
<thead>
<tr>
<th>Pin#</th>
<th>Definition</th>
<th>Pin#</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>P2V5SB</td>
<td>10</td>
<td>SGND</td>
</tr>
<tr>
<td>2</td>
<td>TD0+</td>
<td>11</td>
<td>Act LED</td>
</tr>
<tr>
<td>3</td>
<td>TD0-</td>
<td>12</td>
<td>P3V3SB</td>
</tr>
<tr>
<td>4</td>
<td>TD1+</td>
<td>13</td>
<td>Link 100 LED (Green, +3V3SB)</td>
</tr>
<tr>
<td>5</td>
<td>TD1-</td>
<td>14</td>
<td>Link 1000 LED (Yellow, +3V3SB)</td>
</tr>
<tr>
<td>6</td>
<td>TD2+</td>
<td>15</td>
<td>Ground</td>
</tr>
<tr>
<td>7</td>
<td>TD2-</td>
<td>16</td>
<td>Ground</td>
</tr>
<tr>
<td>8</td>
<td>TD3+</td>
<td>17</td>
<td>Ground</td>
</tr>
<tr>
<td>9</td>
<td>TD3-</td>
<td>88</td>
<td>Ground</td>
</tr>
</tbody>
</table>

(NC: No Connection)

Serial Ports (COM1/COM2)

Serial port COM1 is located next to USB 2/3 on the I/O backplane. Another Serial port header (COM2) is located next to IPMI_LAN on the motherboard. See the table on the right for pin definitions.

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Definition</th>
<th>Pin #</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DCD</td>
<td>6</td>
<td>DSR</td>
</tr>
<tr>
<td>2</td>
<td>RXD</td>
<td>7</td>
<td>RTS</td>
</tr>
<tr>
<td>3</td>
<td>TXD</td>
<td>8</td>
<td>CTS</td>
</tr>
<tr>
<td>4</td>
<td>DTR</td>
<td>9</td>
<td>RI</td>
</tr>
<tr>
<td>5</td>
<td>Ground</td>
<td>10</td>
<td>N/A</td>
</tr>
</tbody>
</table>

A. LAN1
B. LAN2
C. IPMI_LAN
D. COM1
E. COM2
Unit Identifier Switch/UID LED Indicator

A Unit Identifier (UID) switch and an LED Indicator are located on the motherboard. The UID switch is located next to the VGA port on the backplane. The UID LED (LE4) is located next to the UID switch. When you press the UID switch, the UID LED will be turned on. Press the UID switch again to turn off the LED indicator. The UID Indicator provides easy identification of a system unit that may be in need of service.

Note: UID can also be triggered via IPMI on the motherboard. For more information on IPMI, please refer to the IPMI User's Guide posted on our website @http://www.supermicro.com.

<table>
<thead>
<tr>
<th>UID Switch</th>
<th>Pin#</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>Ground</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Ground</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Button In</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Ground</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UID LED Status</th>
<th>Color/State</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Blue: On</td>
<td>Unit Identified</td>
</tr>
</tbody>
</table>

VGA Port

The onboard VGA port is located next to LAN Ports 1/2 on the I/O backpanel. Use the connection for VGA display.
Front Control Panel

JF1 contains header pins for various buttons and indicators that are normally located on a control panel at the front of the chassis. These connectors are designed specifically for use with Supermicro chassis. See the figure below for the descriptions of the front control panel buttons and LED indicators. Refer to the following section for descriptions and pin definitions.
Front Control Panel Pin Definitions

NMI Button
The non-maskable interrupt button header is located on pins 19 and 20 of JF1. Refer to the table on the right for pin definitions.

<table>
<thead>
<tr>
<th>Pin#</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>Control</td>
</tr>
<tr>
<td>20</td>
<td>Ground</td>
</tr>
</tbody>
</table>

Power LED
The Power LED connection is located on pins 15 and 16 of JF1. Refer to the table on the right for pin definitions.

<table>
<thead>
<tr>
<th>Pin#</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>3.3V</td>
</tr>
<tr>
<td>16</td>
<td>PWR LED</td>
</tr>
</tbody>
</table>

A. NMI
B. PWR LED
Chapter 2: Installation

HDD LED

The HDD LED connection is located on pins 13 and 14 of JF1. Attach a cable here to indicate HDD activity. See the table on the right for pin definitions.

<table>
<thead>
<tr>
<th>Pin#</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>3.3V SB/UID_SW</td>
</tr>
<tr>
<td>14</td>
<td>HD Active</td>
</tr>
</tbody>
</table>

NIC1/NIC2 LEDs

The NIC (Network Interface Controller) LED connection for GLAN Port 1 is located on pins 11 and 12 of JF1, and the LED connection for GLAN Port 2 is on Pins 9 and 10. Attach the NIC LED cables to the LED indicators mentioned above to display network activity. Refer to the layout below for the locations of NIC LED indicators.

<table>
<thead>
<tr>
<th>Pin#</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Vcc</td>
</tr>
<tr>
<td>10</td>
<td>NIC 2 Link/Activity LED</td>
</tr>
<tr>
<td>11</td>
<td>Vcc</td>
</tr>
<tr>
<td>12</td>
<td>NIC 1 Link/Activity LED</td>
</tr>
</tbody>
</table>

A. HDD LED

B. LAN1 LED

C. LAN2 LED
Overheat (OH)/Fan Fail/PWR Fail/UID LED

Connect an LED cable to pins 7 and 8 of Front Control Panel to use the Overheat, Fan Fail, and Power Fail connections. Refer to the table on the right for pin definitions.

<table>
<thead>
<tr>
<th>Pin#</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Vcc</td>
</tr>
<tr>
<td>8</td>
<td>Red_LED-Cathode/OH/Fan Fail/Power Fail</td>
</tr>
</tbody>
</table>

Power Fail LED

The Power Fail LED connection is located on pins 5 and 6 of JF1. Refer to the table on the right for pin definitions.

<table>
<thead>
<tr>
<th>Pin#</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>3.3V</td>
</tr>
<tr>
<td>6</td>
<td>PWR LED Status</td>
</tr>
</tbody>
</table>

OH/Fan Fail/PWR Fail LED Status (Red LED)

<table>
<thead>
<tr>
<th>State</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>Normal</td>
</tr>
<tr>
<td>On</td>
<td>Overheat</td>
</tr>
<tr>
<td>Flashing</td>
<td>Fan Fail</td>
</tr>
<tr>
<td>Flashing</td>
<td>Redundant Power</td>
</tr>
<tr>
<td>Flashing</td>
<td>Supply Fail</td>
</tr>
</tbody>
</table>

A. OH/Fan Fail/PWR Fail/UID LED

B. PWR Fail LED
Reset Button

The Reset Button connection is located on pins 3 and 4 of JF1. Attach it to a hardware reset switch on the computer case. Refer to the table on the right for pin definitions.

Power Button

The Power Button connection is located on pins 1 and 2 of JF1. Momentarily contacting both pins will power on/off the system. This button can also be configured to function as a suspend button (with a setting in the BIOS - See Chapter 5). To turn off the power when the system is in suspend mode, press the button for 4 seconds or longer. Refer to the table on the right for pin definitions.
2-7 Connecting Cables

This section provides brief descriptions and pin-out definitions for onboard headers and connectors. Be sure to use the correct cable for each header or connector. For information on Backpanel USB and Front Panel USB ports, refer to Page 2-17.

ATX Main PWR & CPU PWR Connectors (JPW1 & JPW2)

The 24-pin main power connector (JPW1) is used to provide power to the motherboard. The 8-pin CPU PWR connector (JPW2) is also required for the processor. These power connectors meet the SSI EPS 12V specification. See the table on the right for pin definitions.

ATX Power 24-pin Connector Pin Definitions (JPW1)

<table>
<thead>
<tr>
<th>Pin#</th>
<th>Definition</th>
<th>Pin #</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>+3.3V</td>
<td>1</td>
<td>+3.3V</td>
</tr>
<tr>
<td>14</td>
<td>-12V</td>
<td>2</td>
<td>+3.3V</td>
</tr>
<tr>
<td>15</td>
<td>COM</td>
<td>3</td>
<td>COM</td>
</tr>
<tr>
<td>16</td>
<td>PS_ON</td>
<td>4</td>
<td>+5V</td>
</tr>
<tr>
<td>17</td>
<td>COM</td>
<td>5</td>
<td>COM</td>
</tr>
<tr>
<td>18</td>
<td>COM</td>
<td>6</td>
<td>+5V</td>
</tr>
<tr>
<td>19</td>
<td>COM</td>
<td>7</td>
<td>COM</td>
</tr>
<tr>
<td>20</td>
<td>Res (NC)</td>
<td>8</td>
<td>PWR_OK</td>
</tr>
<tr>
<td>21</td>
<td>+5V</td>
<td>9</td>
<td>5VSB</td>
</tr>
<tr>
<td>22</td>
<td>+5V</td>
<td>10</td>
<td>+12V</td>
</tr>
<tr>
<td>23</td>
<td>+5V</td>
<td>11</td>
<td>+12V</td>
</tr>
<tr>
<td>24</td>
<td>COM</td>
<td>12</td>
<td>+3.3V</td>
</tr>
</tbody>
</table>

12V 8-pin Power Connector Pin Definitions

<table>
<thead>
<tr>
<th>Pins</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 through 4</td>
<td>Ground</td>
</tr>
<tr>
<td>5 through 8</td>
<td>+12V</td>
</tr>
</tbody>
</table>

(Required)

A. 24-Pin ATX Main PWR
B. 8-Pin PWR
Fan Headers (Fan 1-Fan 4 & Fan A)

The X10SL7-F has five fan headers (Fan 1-Fan 4 & Fan A). These fans are 4-pin fan headers. Although pins 1-3 of the onboard fan headers are backward compatible with the traditional 3-pin fans, we recommend that you use 4-pin fans to take advantage of the fan speed control via IPMI interface. This allows the fan speeds to be automatically adjusted based on the motherboard temperature. Refer to the table on the right for pin definitions.

<table>
<thead>
<tr>
<th>Fan Header Pin Definitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin#</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
</tbody>
</table>

Chassis Intrusion (JL1)

A Chassis Intrusion header is located at JL1 on the motherboard. Attach the appropriate cable from the chassis to inform you of a chassis intrusion when the chassis is opened.

<table>
<thead>
<tr>
<th>Chassis Intrusion Pin Definitions (JL1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin#</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
</tbody>
</table>

A. Fan 1
B. Fan 2
C. Fan 3
D. Fan 4
E. Fan A
F. Chassis Intrusion
Internal Buzzer (SPKR1)
The Internal Buzzer (SPKR1) is used to provide audible indications for various beep codes. See the table on the right for pin definitions.

<table>
<thead>
<tr>
<th>Pin#</th>
<th>Definitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pos. (+) Beep In</td>
</tr>
<tr>
<td>2</td>
<td>Neg. (-) Alarm</td>
</tr>
</tbody>
</table>

Onboard Power LED (JLED1)
An onboard Power LED header is located at JLED1. This Power LED header is connected to Front Control Panel located at JF1 to indicate the status of system power. See the table on the right for pin definitions.

<table>
<thead>
<tr>
<th>Pin#</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Vcc</td>
</tr>
<tr>
<td>2</td>
<td>No Connection</td>
</tr>
<tr>
<td>3</td>
<td>Connection to PWR LED in JF1</td>
</tr>
</tbody>
</table>
DOM PWR Connector (JSD1)
The Disk-On-Module (DOM) power connector, located at JSD1, provides 5V power to a solid state DOM storage device connected to one of the SATA ports. See the table on the right for pin definitions.

<table>
<thead>
<tr>
<th>Pin#</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5V</td>
</tr>
<tr>
<td>2</td>
<td>Ground</td>
</tr>
<tr>
<td>3</td>
<td>Ground</td>
</tr>
</tbody>
</table>

Standby Power
The Standby Power header is located at JSTBY1 on the motherboard. See the layout below for the location.

<table>
<thead>
<tr>
<th>Pin#</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+5V Standby</td>
</tr>
<tr>
<td>2</td>
<td>Ground</td>
</tr>
<tr>
<td>3</td>
<td>No Connection</td>
</tr>
</tbody>
</table>

A. DOM PWR
B. Standby PWR
T-SGPIO 1/2 & 6-SGPIO 1/2 Headers

Four Serial-Link General Purpose Input/Output headers (T-SGPIO 1/2 & 6-SGPIO 1/2) are located on the motherboard. T-SGPIO 1/2 support onboard SATA interface, and 6-SGPIO 1/2 support onboard SAS connections. See the table on the right for pin definitions.

Power SMB (I²C) Connector

Power System Management Bus (I²C) Connector (JPI²C1) monitors power supply, fan and system temperatures. See the table on the right for pin definitions.

<table>
<thead>
<tr>
<th>T-SGPIO/6-SGPIO Pin Definitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin#</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>8</td>
</tr>
</tbody>
</table>

Note: NC= No Connection

<table>
<thead>
<tr>
<th>PWR SMB Pin Definitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin#</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
</tbody>
</table>

A. T-SGPIO 1
B. T-SGPIO 2
C. 6-SGPIO 1
D. 6-SGPIO 2
E. PWR SMB
TPM Header/Port 80 Header

A Trusted Platform Module/Port 80 header is located at JTPM1 to provide TPM support and Port 80 connection. Use this header to enhance system performance and data security. See the table on the right for pin definitions.

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Definition</th>
<th>Pin #</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>LCLK</td>
<td>2</td>
<td>GND</td>
</tr>
<tr>
<td>3</td>
<td>LFRAME#</td>
<td>4</td>
<td><(KEY)></td>
</tr>
<tr>
<td>5</td>
<td>LRESET#</td>
<td>6</td>
<td>+5V (X)</td>
</tr>
<tr>
<td>7</td>
<td>LAD 3</td>
<td>8</td>
<td>LAD 2</td>
</tr>
<tr>
<td>9</td>
<td>+3.3V</td>
<td>10</td>
<td>LAD1</td>
</tr>
<tr>
<td>11</td>
<td>LAD0</td>
<td>12</td>
<td>GND</td>
</tr>
<tr>
<td>13</td>
<td>SMB_CLK4</td>
<td>14</td>
<td>SMB_DAT4</td>
</tr>
<tr>
<td>15</td>
<td>+3V_DUAL</td>
<td>16</td>
<td>SERIRQ</td>
</tr>
<tr>
<td>17</td>
<td>GND</td>
<td>18</td>
<td>CLKRUN# (X)</td>
</tr>
<tr>
<td>19</td>
<td>LPCPD#</td>
<td>20</td>
<td>LDRQ# (X)</td>
</tr>
</tbody>
</table>

A. TPM/Port 80
2-8 Jumper Settings

Explanation of Jumpers
To modify the operation of the motherboard, jumpers can be used to choose between optional settings. Jumpers create shorts between two pins to change the function of the connector. Pin 1 is identified with a square solder pad on the printed circuit board.

Note: On two-pin jumpers, "Closed" means the jumper is on, and "Open" means the jumper is off the pins.

LAN1/LAN2 Enable/Disable
Jumpers JPL1/JPL2 enable or disable LAN ports 1/2 on the motherboard. See the table on the right for jumper settings. The default setting is enabled.

<table>
<thead>
<tr>
<th>Pin#</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2</td>
<td>Enabled (default)</td>
</tr>
<tr>
<td>2-3</td>
<td>Disabled</td>
</tr>
</tbody>
</table>

A. JPL1: LAN1 Enable
B. JPL2: LAN2 Enable
CMOS Clear (JBT1)

JBT1 is used to clear the saved system setup configuration stored in the CMOS chip. To clear the contents of the CMOS, completely shut down the system, remove the AC power cord and then short JBT1 with a jumper. Remove the jumper before powering on the system again. This will erase all user settings and revert everything to their factory-set defaults.

PCI-E Slot SMB Enable (I²C1/I²C2)

Use Jumpers I²C1/I²C2 to enable PCI-E SMB (System Management Bus) support to improve system management for the PCI-E slots. See the table on the right for jumper settings.

PCI-E Slot SMB Enable Jumper Settings

<table>
<thead>
<tr>
<th>Jumper Setting</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2</td>
<td>Enabled</td>
</tr>
<tr>
<td>2-3</td>
<td>Disabled</td>
</tr>
</tbody>
</table>

(Default)

A. Clear CMOS
B. JI²C1
C. JI²C2
ME Recovery

Set Jumper JPME1 to select ME Firmware Recovery mode, which will limit system resource for essential function use only without putting restrictions on power use. In the single operation mode, online upgrade will be available via Recovery mode. See the table on the right for pin definitions.

<table>
<thead>
<tr>
<th>Jumper Setting</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2</td>
<td>Normal (Default)</td>
</tr>
<tr>
<td>2-3</td>
<td>ME Recovery</td>
</tr>
</tbody>
</table>

Manufacturer Mode Select

Close this jumper (JPME2) to bypass SPI flash security and force the system to use the Manufacturer mode which will allow the user to flash the system firmware from a host server to modify system settings. See the table on the right for jumper settings.

<table>
<thead>
<tr>
<th>Jumper Setting</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2</td>
<td>Normal (Default)</td>
</tr>
<tr>
<td>2-3</td>
<td>Manufacture Mode</td>
</tr>
</tbody>
</table>
Backplane USB Wake_Up Enable

Close pins 1/2 of Jumper JPUSB1 to "wake up" the system when the device installed in Backplane USB 4 or USB 5 receives incoming signals. See the table on the right for jumper settings.

<table>
<thead>
<tr>
<th>Jumper Setting</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2</td>
<td>Enabled (Default)</td>
</tr>
<tr>
<td>2-3</td>
<td>Disabled</td>
</tr>
</tbody>
</table>

SAS Enable

Jumper JPS1 allows the user to enable the onboard SAS connectors (L-SAS Ports 0-7). The default setting is 1-2 to enable the connection. See the table on the right for jumper settings.

<table>
<thead>
<tr>
<th>Jumper Setting</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2</td>
<td>Enabled (Default)</td>
</tr>
<tr>
<td>2-3</td>
<td>Disabled</td>
</tr>
</tbody>
</table>

A. Backplane USB 4/5 Wake-Up Enable
B. SAS Enable
VGA Enable

Jumper JPG1 allows the user to enable the onboard VGA connector. The default setting is 1-2 to enable the connection. See the table on the right for jumper settings.

<table>
<thead>
<tr>
<th>Jumper Setting</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2</td>
<td>Enabled (Default)</td>
</tr>
<tr>
<td>2-3</td>
<td>Disabled</td>
</tr>
</tbody>
</table>

A. VGA Enable
Watch Dog Enable/Disable

Watch Dog (JWD1) is a system monitor that can reboot the system when a software application hangs. Close Pins 1-2 to reset the system if an application hangs. Close Pins 2-3 to generate a non-maskable interrupt signal for the application that hangs. See the table on the right for jumper settings. Watch Dog must also be enabled in the BIOS.

<table>
<thead>
<tr>
<th>Jumper Setting</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pins 1-2</td>
<td>Reset (default)</td>
</tr>
<tr>
<td>Pins 2-3</td>
<td>NMI</td>
</tr>
<tr>
<td>Open</td>
<td>Disabled</td>
</tr>
</tbody>
</table>
2-9 Onboard Indicators

LAN 1/LAN 2 LEDs

Two LAN ports (LAN 1/LAN 2) are located on the I/O backplane of the motherboard. Each Ethernet LAN port has two LEDs. The yellow LED indicates activity, while the Link LED may be green, amber, or off to indicate the speed of the connections. See the tables at right for more information.

IPMI Dedicated LAN LEDs

In addition to the Gigabit Ethernet ports, an IPMI Dedicated LAN is also located above the Backplane USB ports 2/3 on the motherboard. The yellow LED on the right indicates activity, while the green/amber LED on the left indicates the speed of the connection. See the tables at right for more information.

GLAN Ports 1/2 Link Indicator LED Settings

<table>
<thead>
<tr>
<th>Color</th>
<th>Status</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yellow</td>
<td>Flashing</td>
<td>Active</td>
</tr>
</tbody>
</table>

GLAN 1/2 Activity Indicator LED Settings

<table>
<thead>
<tr>
<th>Color</th>
<th>Status</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>Off</td>
<td>No Connection/10 Mbps/</td>
</tr>
<tr>
<td>Green</td>
<td>Solid</td>
<td>100 Mbps</td>
</tr>
<tr>
<td>Amber</td>
<td>Solid</td>
<td>1 Gbps</td>
</tr>
</tbody>
</table>

IPMI LAN Link LED (Left) & Activity LED (Right)

<table>
<thead>
<tr>
<th>Color/State</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link (Left)</td>
<td>Amber: Solid 1 Gbps</td>
</tr>
<tr>
<td></td>
<td>Green: Solid 100 Mbps</td>
</tr>
<tr>
<td>Activity (Right)</td>
<td>Yellow: Blinking Active</td>
</tr>
</tbody>
</table>

A. LAN 1/2 LEDs

B. IPMI LAN LED
Onboard Power LED (LE3)

An Onboard Power LED is located at LE3 on the motherboard. When LE3 is on, the AC power cable is connected. Make sure to disconnect the power cable before removing or installing any component. See the layout below for the LED location.

<table>
<thead>
<tr>
<th>Status</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>System Off</td>
</tr>
<tr>
<td>On</td>
<td>System on, or System off and PWR Cable Connected</td>
</tr>
</tbody>
</table>

BMC Heartbeat LED

A BMC Heartbeat LED is located at LE5 on the X10SL7-F. See the table at right for more information.

<table>
<thead>
<tr>
<th>Color/State</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green: Blinking</td>
<td>BMC: Normal</td>
</tr>
</tbody>
</table>

A. PWR LED
B. BMC Heartbeat LED
Power Status LED

A Power Status LED is located at LE6 on the motherboard. When the LED indicator turns to color red, power supply has a problem. See the table at right for more information.

<table>
<thead>
<tr>
<th>Color</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>System Power On (Power Normal)</td>
</tr>
<tr>
<td>Yellow</td>
<td>Standby Power Active (System Off)</td>
</tr>
<tr>
<td>Red</td>
<td>System Power has a problem (Power Failure)</td>
</tr>
</tbody>
</table>

SAS Heartbeat LED

A SAS Heartbeat LED is located at LEDs2 on the motherboard. See the table at right for more information.

<table>
<thead>
<tr>
<th>Color/State</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green: Blinking</td>
<td>SAS Active</td>
</tr>
<tr>
<td>Red: Solid On</td>
<td>SAS Error</td>
</tr>
</tbody>
</table>

A. Power Status LED
B. SAS Heartbeat LED
2-10 SATA Connections

SATA/SAS Connections

Two Serial ATA (SATA) 3.0 connectors (I-SATA 0/1) and four SATA 2.0 (I-SATA 2-5) connectors are located on the board. These SATA ports are supported by the Intel® C222 PCH chip. In addition to SATA connections, eight SAS connections (L-SAS 0-7), supported the LSI 2308 SAS controller, are also located on the motherboard. These Serial Link connections provide faster data transmission than legacy Parallel ATA. See the table on the right for pin definitions.

<table>
<thead>
<tr>
<th>Pin#</th>
<th>Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ground</td>
</tr>
<tr>
<td>2</td>
<td>SATA_TXP</td>
</tr>
<tr>
<td>3</td>
<td>SATA_TXN</td>
</tr>
<tr>
<td>4</td>
<td>Ground</td>
</tr>
<tr>
<td>5</td>
<td>SATA_RXN</td>
</tr>
<tr>
<td>6</td>
<td>SATA_RXP</td>
</tr>
<tr>
<td>7</td>
<td>Ground</td>
</tr>
</tbody>
</table>

A. I-SATA 0 (3.0)
B. I-SATA 1 (3.0)
C. I-SATA 2 (2.0)
D. I-SATA 3 (2.0)
E. I-SATA 4 (2.0)
F. I-SATA 5 (2.0)
G. L-SAS 0
H. L-SAS 1
I. L-SAS 2
J. L-SAS 3
K. L-SAS 4
L. L-SAS 5
M. L-SAS 6
N. L-SAS 7
Chapter 3

Troubleshooting

3-1 Troubleshooting Procedures

Use the following procedures to troubleshoot your system. If you have followed all of the procedures below and still need assistance, refer to the ‘Technical Support Procedures’ and/or ‘Returning Merchandise for Service’ section(s) in this chapter. Always disconnect the AC power cord before adding, changing or installing any hardware components.

Before Power On
1. Make sure that the Standby PWR LED is not on. (Note: If it is on, the onboard power is on. Be sure to unplug the power cable before installing or removing the components.)

2. Make sure that there are no short circuits between the motherboard and chassis.

3. Disconnect all ribbon/wire cables from the motherboard, including those for the keyboard and mouse. Also, be sure to remove all add-on cards.

4. Install a CPU and heatsink (be sure that it is fully seated) and then connect the chassis speaker and the power LED to the motherboard. Check all jumper settings as well.

No Power
1. Make sure that there are no short circuits between the motherboard and chassis.

2. Make sure that all jumpers are set to their default positions.

3. Check if the 115V/230V switch on the power supply is properly set.

4. Turn the power switch on and off to test the system.

5. The battery on your motherboard may be old. Check to make sure that it still supplies ~3VDC. If it does not, replace it with a new one.
No Video
1. If the power is on, but you have no video--in this case, you will need to remove all the add-on cards and cables first.

2. Use the speaker to determine if any beep codes exist. (Refer to Appendix A for details on beep codes.)

3. Remove all memory modules and turn on the system. (If the alarm is on, check the specifications of memory modules, reset the memory or try a different one.)

Memory Errors
1. Make sure that the DIMM modules are properly installed and fully seated in the slots.

2. You should be using unbuffered ECC DDR3 (1.5V/1.35V) 1600/1333 MHz memory recommended by the manufacturer. Also, it is recommended that you use the memory modules of the same type and speed for all DIMMs in the system. Do not use memory modules of different sizes, different speeds and different types on the same motherboard.

3. Check for bad DIMM modules or slots by swapping modules between slots to see if you can locate the faulty ones.

4. Check the switch of 115V/230V power supply.

Losing the System’s Setup Configuration
1. Please be sure to use a high quality power supply. A poor quality power supply may cause the system to lose CMOS setup information. Refer to Section 1-6 for details on recommended power supplies.

2. The battery on your motherboard may be old. Check to verify that it still supplies ~3VDC. If it does not, replace it with a new one.

3. If the above steps do not fix the Setup Configuration problem, contact your vendor for repairs.
3-2 Technical Support Procedures

Before contacting Technical Support, please make sure that you have followed all the steps listed below. Also, Note that as a motherboard manufacturer, Supermicro does not sell directly to end users, so it is best to first check with your distributor or reseller for troubleshooting services. They should know of any possible problem(s) with the specific system configuration that was sold to you.

1. Please go through the ‘Troubleshooting Procedures’ and 'Frequently Asked Question' (FAQ) sections in this chapter or see the FAQs on our website (http://www.supermicro.com/support/faqs/) before contacting Technical Support.

2. BIOS upgrades can be downloaded from our website at (http://www.supermicro.com/support/bios/).

 Note: Not all BIOS can be flashed. Some cannot be flashed; it depends on the boot block code of the BIOS.

3. If you've followed the instructions above to troubleshoot your system, and still cannot resolve the problem, then contact Supermicro's technical support and provide them with the following information:

 • Motherboard model and PCB revision number

 • BIOS release date/version (this can be seen on the initial display when your system first boots up)

 • System configuration

 • An example of a Technical Support form is on our website at (http://www.supermicro.com/support/contact.cfm).

4. Distributors: For immediate assistance, please have your account number ready when placing a call to our technical support department. We can be reached by e-mail at support@supermicro.com, by phone at: (408) 503-8000, option 2, or by fax at (408)503-8019.
3-3 Frequently Asked Questions

Question: What type of memory does my motherboard support?

Answer: The X10SL7-F supports up to 32GB of unbuffered ECC DDR3 SDRAM (1.5V/1.35V, 1600/1333 MHz). See Section 2-4 for details on installing memory.

Question: How do I update my BIOS?

Answer: We do NOT recommend that you upgrade your BIOS if you are not experiencing any problems with your system. Updated BIOS files are located on our website at http://www.supermicro.com/support/bios/. Please check our BIOS warning message and the information on how to update your BIOS on our web site. Select your motherboard model and download the BIOS ROM file to your computer. Also, check the current BIOS revision to make sure that it is newer than your BIOS before downloading. You may choose the zip file. If you choose the zipped BIOS file, please unzip the BIOS file onto a bootable device or a USB pen/thumb drive. To flash the BIOS, run the batch file named "ami.bat" with the new BIOS ROM file from your bootable device or USB pen/thumb drive. Use the following format:

F:!> ami.bat BIOS-ROM-filename.xxx <Enter>

Note: Always use the file named “ami.bat” to update the BIOS, and insert a space between "ami.bat" and the filename. The BIOS-ROM-filename will bear the motherboard name (i.e., X10SL7-F) and build version as the extension. For example, "X10SL7-F.115". When completed, your system will automatically reboot.

When the BIOS flashing screen is completed, the system will reboot and will show “Press F1 or F2”. At this point, you will need to load the BIOS defaults. Press <F1> to go to the BIOS setup screen, and press <F9> to load the default settings. Next, press <F10> to save and exit. The system will then reboot.

Warning: Do not shut down or reset the system while updating the BIOS to prevent possible system boot failure!

Note: The SPI BIOS chip installed on this motherboard is not removable. To repair or replace a damaged BIOS chip, please send your motherboard to RMA at Supermicro for service.

Question: I think my BIOS is corrupted. How can I recover my BIOS?

Answer: Please see Appendix C-BIOS Recovery for detailed instructions.

Question: What is the heatsink part number for my X10SL7-F motherboard?

Answer: For the 1U passive heatsink, use SNK-P0046P (back plate is included). For the 2U active heatsink, use SNK-P0046A4.
3-4 Battery Removal and Installation

Battery Removal
To remove the onboard battery, follow the steps below:
1. Power off your system and unplug your power cable.
2. Locate the onboard battery as shown below.
3. Using a tool such as a pen or a small screwdriver, push the battery lock outwards to unlock it. Once unlocked, the battery will pop out from the holder.
4. Remove the battery.

Proper Battery Disposal
Warning: Please handle used batteries carefully. Do not damage the battery in any way; a damaged battery may release hazardous materials into the environment. Do not discard a used battery in the garbage or a public landfill. Please comply with the regulations set up by your local hazardous waste management agency to dispose of your used battery properly.

Battery Installation
1. To install an onboard battery, follow the steps 1 & 2 above and continue below:
2. Identify the battery's polarity. The positive (+) side should be facing up.
3. Insert the battery into the battery holder and push it down until you hear a click to ensure that the battery is securely locked.

Warning: When replacing a battery, be sure to only replace it with the same type.
3-5 Returning Merchandise for Service

A receipt or copy of your invoice marked with the date of purchase is required before any warranty service will be rendered. You can obtain service by calling your vendor for a Returned Merchandise Authorization (RMA) number. For faster service, you may also obtain RMA authorizations online (http://www.supermicro.com/support/rma/). When you return the motherboard to the manufacturer, the RMA number should be prominently displayed on the outside of the shipping carton, and mailed prepaid or hand-carried. Shipping and handling charges will be applied for all orders that must be mailed when service is complete.

This warranty only covers normal consumer use and does not cover damages incurred in shipping or from failure due to the alteration, misuse, abuse or improper maintenance of products.

During the warranty period, contact your distributor first for any product problems.
Chapter 4

BIOS

4-1 Introduction

This chapter describes the AMI BIOS Setup Utility for the X10SL7-F. The ROM BIOS is stored in a Flash EEPROM and can be easily updated. This chapter describes the basic navigation of the AMI BIOS Setup Utility setup screens.

Note: For AMI BIOS Recovery, please refer to the UEFI BIOS Recovery Instructions in Appendix C.

Starting BIOS Setup Utility

To enter the AMI BIOS Setup Utility screens, press the <Delete> key while the system is booting up.

Note: In most cases, the <Delete> key is used to invoke the AMI BIOS setup screen. There are a few cases when other keys are used, such as <F1>, <F2>, etc.

Each main BIOS menu option is described in this manual. The Main BIOS setup menu screen has two main frames. The left frame displays all the options that can be configured. Grayed-out options cannot be configured. Options in blue can be configured by the user. The right frame displays the key legend. Above the key legend is an area reserved for a text message. When an option is selected in the left frame, it is highlighted in white. Often a text message will accompany it. (Note: the AMI BIOS has default text messages built in. Supermicro retains the option to include, omit, or change any of these text messages.)

The AMI BIOS Setup Utility uses a key-based navigation system called "hot keys". Most of the AMI BIOS setup utility "hot keys" can be used at any time during the setup navigation process. These keys include <F1>, <F4>, <Enter>, <ESC>, arrow keys, etc.

Note: Options printed in Bold are default settings.

How To Change the Configuration Data

The configuration data that determines the system parameters may be changed by entering the AMI BIOS Setup utility. This Setup utility can be accessed by pressing at the appropriate time during system boot.
How to Start the Setup Utility

Normally, the only visible Power-On Self-Test (POST) routine is the memory test. As the memory is being tested, press the <Delete> key to enter the main menu of the AMI BIOS Setup Utility. From the main menu, you can access the other setup screens. An AMI BIOS identification string is displayed at the left bottom corner of the screen, below the copyright message.

Warning! Do not upgrade the BIOS unless your system has a BIOS-related issue. Flashing the wrong BIOS can cause irreparable damage to the system. In no event shall Supermicro be liable for direct, indirect, special, incidental, or consequential damages arising from a BIOS update. If you have to update the BIOS, do not shut down or reset the system while the BIOS is updating. This is to avoid possible boot failure.

4-2 Main Setup

When you first enter the AMI BIOS Setup utility, you will enter the Main setup screen. You can always return to the Main setup screen by selecting the Main tab on the top of the screen. The Main BIOS Setup screen is shown below.
The following Main menu items will display:

System Time/System Date

Use this option to change the system date and time. Highlight *System Date* or *System Time* using the arrow keys. Enter new values through the keyboard. Press the <Tab> key or the arrow keys to move between fields. The date must be entered in Day MM/DD/YY format. The time is entered in HH:MM:SS format.

Note: The time is in the 24-hour format. For example, 5:30 P.M. appears as 17:30:00.

The following BIOS items will also be displayed:

Supermicro X10SL7-F

Version

Build Date

Memory Information

Total Memory

This displays the total size of memory available in the system.
Use the arrow keys to select Boot Setup and press <Enter> to access the submenu items:

Warning: Take Caution when changing the Advanced settings. An incorrect value, a very high DRAM frequency, or an incorrect DRAM timing setting may make the system unstable. When this occurs, revert to the setting to its manufacture default setting.

Boot Feature

Quiet Boot
This feature selects the screen display between POST messages or the OEM logo at bootup. Select Disabled to display the POST messages. Select Enabled to display the OEM logo instead of the normal POST messages. The options are Enabled and Disabled.

AddOn ROM Display Mode
This feature sets the display mode for the Option ROM. Select Keep Current to use the current AddOn ROM display setting. Select Force BIOS to use the Option ROM display mode set by the system BIOS. The options are Force BIOS and Keep Current.

Bootup Num-Lock
This feature selects the Power-on state for the Numlock key. The options are Off and On.
Wait For 'F1' If Error

This feature forces the system to wait until the 'F1' key is pressed if an error occurs. The options are Disabled and Enabled.

Interrupt 19 Capture

Interrupt 19 is the software interrupt that handles the boot disk function. When this item is set to Enabled, the ROM BIOS of the host adaptors will "capture" Interrupt 19 at bootup and allow the drives that are attached to these host adaptors to function as bootable disks. If this item is set to Disabled, the ROM BIOS of the host adaptors will not capture Interrupt 19, and the drives attached to these adaptors will not function as bootable devices. The options are Enabled and Disabled.

Re-try Boot

If this item is enabled, the BIOS will automatically reboot the system from a specified boot device after its initial boot failure. The options are Disabled, Legacy Boot, and EFI Boot.

Power Configuration

Watch Dog Function

If enabled, the Watch Dog Timer will allow the system to reboot when it is inactive for more than 5 minutes. The options are Enabled and Disabled.

Power Button Function

This feature controls how the system shuts down when the power button is pressed. Select 4 Seconds Override for the user to power off the system after pressing and holding the power button for 4 seconds or longer. Select Instant Off to instantly power off the system as soon as the user presses the power button. The options are 4 Seconds Override and Instant Off.

Restore on AC Power Loss

Use this feature to set the power state after a power outage. Select Power-Off for the system power to remain off after a power loss. Select Power-On for the system power to be turned on after a power loss. Select Last State to allow the system to resume its last power state before a power loss. The options are Power-On, Stay-Off and Last State.
CPU Configuration

The following CPU information will be displayed:

- Type of CPU
- CPU Signature
- Microcode Patch
- Max (Maximum) CPU Speed
- Min (Minimum) CPU Speed
- CPU Speed
- Processor Cores
- Intel HT (Hyper-Threading) Technology
- Intel VT-x (Virtualization) Technology
- Intel SMX (Trusted Execution) Technology
- 64-bit
- EIST Technology
- CPU C3 State
- CPU C6 State
- CPU C7 State
- L1 Data Cache
- L1 Code Cache
- L2 Cache
- L3 Cache
Hyper-threading

Select Enabled to support Intel Hyper-threading Technology to enhance CPU performance. The options are Enabled and Disabled.

Active Processor Cores

This feature determines how many CPU cores will be activated for each CPU. When all is selected, all cores in the CPU will be activated. (Please refer to Intel's web site for more information.) The options are All, 1, 2, and 3.

Limit CPUID Maximum

Select Enabled to set the maximum CPU ID value and to boot the legacy operating systems that cannot support processors with extended CPUID functions. The options are Enabled and Disabled (for the Windows OS).

Execute Disable Bit Capability (Available if supported by the OS & the CPU)

Set to Enabled to enable the Execute Disable Bit which will allow the processor to designate areas in the system memory where an application code can execute and where it cannot, thus preventing a worm or a virus from flooding illegal codes to overwhelm the processor or damage the system during an attack. The default is Enabled. (Refer to Intel and Microsoft Web Sites for more information.)

Intel® Virtualization Technology (Available when supported by the CPU)

Select Enabled to use the Intel Virtualization Technology to allow one platform to run multiple operating systems and applications in independent partitions, creating multiple "virtual" systems in one physical computer. The options are Enabled and Disabled.

Hardware Prefetcher (Available when supported by the CPU)

If set to Enabled, the hardware prefetcher will prefetch streams of data and instructions from the main memory to the L2 cache to improve CPU performance. The options are Disabled and Enabled.

Adjacent Cache Line Prefetch (Available when supported by the CPU)

Select Enabled for the CPU to prefetch both cache lines for 128 bytes as comprised. Select Disabled for the CPU to prefetch both cache lines for 64 bytes. The options are Disabled and Enabled.

Note: If there is any change to this setting, you will need to reboot the system for the change to take effect. Please refer to Intel’s web site for detailed information.
CPU AES

Select Enable to enable Intel CPU Advanced Encryption Standard (AES) Instructions for CPU to enhance data integrity. The options are Enabled and Disabled.

EIST

EIST (Enhanced Intel SpeedStep Technology) allows the system to automatically adjust processor voltage and core frequency in an effort to reduce power consumption and heat dissipation. Please refer to Intel's web site for detailed information. The options are Disabled and Enabled.

Turbo Mode

This feature allows processor cores to run faster than the frequency recommended by the manufacturer. The options are Disabled and Enabled. If this feature is set to Enabled, the following items will display:

CPU Power Limit1 (Available when "Turbo Mode" is set to Enabled)

Use this feature to set the power limit for CPU1. Use the number keys on your keyboard to enter the value. Enter 0 to use the manufacture default setting.

CPU Power Limit1 Time (Available when "Turbo Mode" is set to Enabled)

This item allows the user to determine how long CPU1 should operate at the power limit set by the user for the item above. Use the number keys on your keyboard to enter the value. Enter 0 to use the manufacture default setting.

CPU Power Limit2 (Available when "Turbo Mode" is set to Enabled)

Use this feature to set the power limit for CPU2. Use the number keys on your keyboard to enter the value. Enter 0 to use the manufacture default setting.

DDR Power Limit1 (Available when "Turbo Mode" is set to Enabled)

Use this feature to set the power limit for DDR1. Use the number keys on your keyboard to enter the value. Enter 0 to use the manufacture default setting.

DDR Power Limit1 Time (Available when "Turbo Mode" is set to Enabled)

This item allows the user to determine how long DDR1 should operate at the power limit set by the item above. Use the number keys on your keyboard to enter the value. Enter 0 to use the manufacture default setting.

DDR Power Limit2 (Available when "Turbo Mode" is set to Enabled)

Use this feature to set the power limit for DDR2. Use the number keys on your keyboard to enter the value. Enter 0 to use the manufacture default setting.
1-Core Ratio Limit (Available when "Turbo Mode" is set to Enabled)
This increases (multiplies) 1 clock speed in the CPU core in relation to the bus speed when one CPU core is active. Press "+" or "+" on your keyboard to change the value. Enter 0 to use the manufacture default setting.

2-Core Ratio Limit (Available when "Turbo Mode" is set to Enabled)
This increases (multiplies) 2 clock speeds in the CPU core in relation to the bus speed when two CPU cores are active. Press "+" or "+" on your keyboard to change the value. Enter 0 to use the manufacture default setting.

3-Core Ratio Limit (Available when "Turbo Mode" is set to Enabled)
This increases (multiplies) 3 clock speeds in the CPU core in relation to the bus speed when three CPU cores are active. Press "+" or "+" on your keyboard to change the value. Enter 0 to use the manufacture default setting.

4-Core Ratio Limit (Available when "Turbo Mode" is set to Enabled)
This increases (multiplies) 4 clock speeds in the CPU core in relation to the bus speed when four CPU cores are active. Press "+" or "+" on your keyboard to change the value. Enter 0 to use the manufacture default setting.

Energy Performance
Use this feature to select an appropriate fan setting to achieve the maximum system performance (with maximum cooling) or maximum energy efficiency (with maximum power saving). The fan speeds are controlled by the firmware management via IPMI 2.0. The options are Performance, Balanced Performance, Balanced Energy, and Energy Efficient.

VR Current Value
Use this feature to set the limit on the current voltage regulator (VR). Press "+" or "+" on your keyboard to change this value. Enter 0 to use the manufacture default setting.

CPU C-States
C-States architecture, a processor power management platform developed by Intel, can further reduce power consumption from the basic C1 (Halt State) state that blocks clock cycles to the CPU. Select Enabled for CPU C-Sates support. The options are Enabled and Disabled. If this feature is set to Enabled, the following items will display:

Enhanced C1E State (Available when "CPU C-States" is set to Enabled)
Select Enabled to enable Enhanced C1 Power State to boost system performance. The options are Enabled and Disabled.
CPU C3 Report (Available when "CPU C-States" is set to Enabled)
Select Enabled to allow the BIOS to report the CPU C3 State (ACPI C2) to the operating system. During the CPU C3 State, the CPU clock generator is turned off. The options are Enabled and Disabled.

CPU C6 Report (Available when "CPU C-States" is set to Enabled)
Select Enabled to allow the BIOS to report the CPU C6 State (ACPI C3) to the operating system. During the CPU C6 State, the power to all caches is turned off. The options are Enabled and Disabled.

C6 Latency (Available when "CPU C-States" is set to Enabled)
Select Short to set a short delay time(period) during which the BIOS reports CPU C6 State (ACPI C3) to the operating system. Select Long to set a long delay time(period) during which the BIOS reports CPU C6 State (ACPI C3) to the operating system. The options are Short and Long.

CPU C7 Report (Available when "CPU C-States" is set to Enabled)
Select Enabled to allow the BIOS to report the CPU C7 State (ACPI C3) to the operating system. CPU C7 State is a processor-specific low C-State. The options are Disabled, CPU C7, and CPU C7s

C7 Latency (Available when "CPU C-States" is set to Enabled)
Select Short to set a short delay time(period) during which the BIOS reports CPU C7 State (ACPI C3) to the operating system. Select Long to set a long delay time(period) during which the BIOS reports CPU C7 State (ACPI C3) to the operating system. The options are Short and Long.

C1 State Auto Demotion
When this item is enabled, the CPU will conditionally demote C3, C6 or C7 requests to C1 State based on un-cored auto-demote information. The options are Disabled and Enabled.

C3 State Auto Demotion
When this item is enabled, the CPU will conditionally demote C6 or C7 requests to C3 State based on un-cored auto-demote information. The options are Disabled and Enabled.

C-State Pre-Wake
Select Enabled to support C State Pre-Wake State features. The options are Enabled and Disabled.
Package C-State limit

Select Auto for the AMI BIOS to automatically set the limit on the C-State package register. The options are C0/C1, C2, C3, C6, C7 and **Auto**.

Chipset Configuration

Warning! Setting the wrong values in the following sections may cause the system to malfunction.

System Agent (SA) Configuration

The following System Agent (SA) information will be displayed:

- System Agent Bridge Name
- VT-d Capability

VT-d

Select Enabled to enable Intel Virtualization Technology support for Direct I/O VT-d by reporting the I/O device assignments to VMM through the DMAR ACPI Tables. This feature offers fully-protected I/O resource-sharing across the Intel platforms, providing the user with greater reliability, security and availability in networking and data-sharing. The settings are **Enabled** and Disabled.

Graphics Configuration

This item displays the following graphics information:

- IGFX VBIOS Version
- IGfx Frequency

Primary Display

Use this feature to select the graphics device to be used as the primary display. You can select from a IGFX, a PGE or a PCIE device. The options are **Auto**, PEG, and PCIE.

Primary PEG (PCI-Express Graphics)

This feature allows the user to specify which graphics card to be used as the primary graphics card. The options are **Auto**, PEG11 and PEG12.
Primary PCIE (PCI-Express Device)
This feature allows the user to specify which graphics card to be used as the primary graphics card. The options are PCIE1, PCIE2, PCIE3, PCIE4, PCIE5, PCIE6, PCIE7 and Auto.

PCI-E Configuration
This item displays the information of the (graphics) device installed on a PCI-E slot.

Riser Card on CPU Slot 6
PEG0 Gen X/PEG1 Gen X/PEG2 Gen X
This feature allows the user to select PCI-E support for the device installed on SLOT6. The options are Auto, Gen1 (Generation 1), Gen 2 and Gen 3.

Detect Non-Compliance Device
Select Enabled for the AMI BIOS to automatically detect a PCI-E device that is not compliant with the PCI-E standards. The options are Enabled and Disabled.

Program PCI-E ASPM After OpROM
PCI-E ASPM, the Active State Power Management for PCI-Express slots, is a power management protocol used to manage power consumption of serial-link devices installed on PCI-Exp slots during a prolonged off-peak time. If this item is set to Enabled, PCI-E ASMP will be programmed after OpROM. If this item is set to Disabled, the PCI-E ASPM will be programmed before OpROM. The options are Enabled and Disabled.

PEG0-ASPM/PEG1-ASPM/PEG2-ASPM/
Use this feature to set the ASPM (Active State Power Management) level for the graphics device installed on a PCI-E slot specified by the user. The options are Disabled, Auto, ASPM L0s, ASPM L1, and, ASPM L0sL1.

PCI-E SLOT 0 ASPM ~ PCI-E SLOT 7 ASPM
This feature configures the ASPM (Active State Power Management) settings for the graphics devices installed on PCI-E SLOT 0 to PCI-E SLOT 7. The options are Disabled, L0s, L1, L0sL1 and Auto.
Memory Configuration

This item displays the information on the memory modules installed on the motherboard.

- Memory RC Version
- Memory Frequency
- Total Memory
- Memory Voltage
- DIMMA1
- DIMMA2
- DIMMB1
- DIMMB2
- CAS Latency (tCL)
- Minimum Delay Time
 - CAS to RAS (tRODmin)
 - Row Precharge (tRPmin)
 - Active to Precharge (tRASmin)

Memory Frequency Limiter

This feature sets the limit of memory frequency for DIMM modules installed on the motherboard. The options are Auto, 1067 (MHz), 1333 (MHz), and 1600 (MHz).

Max TOLUD (Top of Low Usable DRAM)

This feature sets the maximum TOLUD value, which specifies the "Top of Low Usable DRAM" memory space to be used by internal graphics devices, GTT Stolen Memory, and TSEG, respectively, if these devices are enabled. The options are Enabled and Dynamic, 1 GB, 1.25 GB, 1.5 GB, 1.75 GB, 2 GB, 2.25 GB, 2.5 GB, 2.75 GB, 3 GB and 3.25 GB.

Note: TSEG is a block of memory that is only accessible by the processor while operating in SMM mode.
Memory Scrambler
This feature enables or disables memory scrambler support for memory error correction. The settings are **Enabled** and Disabled.

PCH-IO Configuration
This item displays the information for PCH-IO Chip.

- Intel PCH Rev ID
- USB Configuration
- USB Devices

EHCI1
Select Enabled to enable EHCI (Enhanced Host Controller Interface) Controller 1 for USB 2.0 support. One EHCI controller must always be enabled. The settings are **Enabled** and Disabled.

EHCI2
Select Enabled to enable EHCI (Enhanced Host Controller Interface) Controller 2 for USB 2.0 support. One EHCI controller must always be enabled. The settings are **Enabled** and Disabled.

Legacy USB Support
This feature enables support for legacy USB devices. Select Auto to disable legacy support if USB devices are not present. Select Disable to have USB devices available only for EFI applications. The options are **Enabled**, **Disabled**, and Auto.

Port 60/64 Emulation
This feature enables or disables I/O port 60h/64h emulation support. This should be enabled for complete USB keyboard legacy support for non-USB-aware operating systems. The options are **Disabled** and **Enabled**.

XHCI Hand-Off
This item is a work-around solution for operating systems that do not support XHCI (Extensible Host Controller Interface) hand-off. The XHCI ownership change should be claimed by the XHCI driver. The settings are **Enabled** and **Disabled**.
EHCI Hand-Off

This item is for Operating Systems that do not support Enhanced Host Controller Interface (EHCI) hand-off. When this item is enabled, EHCI ownership change will be claimed by the EHCI driver. The settings are **Enabled** and **Disabled**.

XHCI Mode

This feature handles the operation mode for the XHCI (Extensible Host Controller Interface) controller. The settings are **Smart Auto**, Auto, **Enabled**, **Disabled** and Manual.

► **SATA Configuration**

When this submenu is selected, the AMI BIOS automatically detects the presence of the SATA Devices and displays the following items:

SATA Controllers

This item Enables or Disables the built-in SATA controllers on the motherboard. The options are **Enabled** and **Disabled**.

SATA Mode Selection

This item selects the mode for the installed SATA drives. The options are IDE, **AHCI** and RAID.

SATA RAID Option ROM/UEFI Driver (Available if the item above - SATA Mode Select is set to AHCI or RAID)

Select **Enabled** to use the SATA RAID Option ROM/UEFI driver for system boot. The options are **Enabled** and **Disabled**.

If the item above -SATA Mode Select is set to AHCI, the following items are displayed:

Serial ATA Port 0~ Port 5

This item displays the information detected on the installed SATA drives on the particular SATA port.

- Model number of drive and capacity
- Software Preserve Support

Port 0 ~ Port 5 Hot Plug

This feature designates the port specified for hot plugging. Set this item to **Enabled** for hot-plugging support, which will allow the user to replace a SATA disk drive without shutting down the system. The options are **Enabled** and **Disabled**.
Port 0 ~ Port 1 SATA Device Type

This feature configures the selected SATA port to support either a solid state drive or hard disk drive. The options are **Hard Disk Drive** and **Solid State Drive**.

Port 0 ~ Port 5 Spin Up Device

On an edge detect from 0 to 1, set this item to allow the PCH to start a COMRE-SET initialization sequence to the device. The options are **Enabled** and **Disabled**.

If the item above - SATA Mode Select is set to IDE, the following items are displayed:

Serial ATA Port 0~ Port 5

This item displays the information detected on the installed SATA drives on the particular SATA port.

- Model number of drive and capacity

- Software Preserve Support

If the item above - SATA Mode Select is set to RAID, the following items are displayed:

Serial ATA Port 0~ Port 5

This item displays the information detected on the installed SATA drives on the particular SATA port.

- Model number of drive and capacity

- Software Preserve Support

Port 0 ~ Port 5 Hot Plug

This feature designates this port for hot plugging. Set this item to **Enabled** for hot-plugging support, which will allow the user to replace a SATA drive without shutting down the system. The options are **Enabled** and **Disabled**.

Port 0 ~ Port 1 SATA Device Type

This feature configures the selected SATA port to support either a solid state drive or hard disk drive. Set this item to **Enabled** to enable hot-plugging. The options are **Hard Disk Drive** and **Solid State Drive**.

Port 0 ~ Port 5 Spin Up Device

On an edge detect from 0 to 1, set this item to allow the PCH to start a COMRE-SET initialization sequence to the device. The options are **Enabled** and **Disabled**.
Chapter 4: AMI BIOS

PCIe/PCI/PnP Configuration
This feature allows the user to set the PCI/PnP configurations for the following items:

Above 4G Decoding
Select Enabled for 64-bit devices to be decoded above the 4GB address space if 64bit PCI decoding is supported by the system. The options are Disabled and Enabled.

VGA Palette Snoop
Select Enabled to support VGA palette register snooping which will allow the PCI cards that do not contain their own VGA color palette to examine the video cards palette and mimic it for proper color display. The options are Disabled and Enabled.

PERR# Generation
Select Enabled to allow a PCI device to generate a PERR number for a PCI Bus Signal Error Event. The options are Disabled and Enabled.

SERR# Generation
Select Enabled to allow a PCI device to generate an SERR number for a PCI Bus Signal Error Event. The options are Enabled and Disabled.

Slot 1 PCI 33MHz OPROM/Slot 2 PCI 33MHz OPROM
Use this feature to enable or disable PCI slot Option ROMs. This is to boot the computer using a device installed on the slot specified. The options are Disabled, Legacy and EFI.

Launch Storage OPROM Policy
This feature controls how the system executes UEFI (Unified Extensible Firmware Interface), and legacy storage OPROM. Select Legacy Only to boot the system using a legacy device installed in a PCI slot. The options are UEFI Only and Legacy Only.

Other PCI Device ROM Priority
This feature selects a PCI device OPROM to launch for system boot if this device is not a network, mass storage, or video device. The options are UEFI Only and Legacy Only.
Onboard LAN1/LAN2 Option ROM

Select iSCSI to use the iSCSI Option ROM to boot the computer using an iSCSI device installed in a LAN port specified. Select PXE (Preboot Execution Environment) to boot the computer using a PXE device installed in a LAN port specified. Select Disabled to prevent system boot using a device installed in a LAN port to boot the system. The options for Onboard LAN1 Option ROM are Disabled, PXE and iSCSI. The options Onboard for LAN2 Option ROM are PXE and Disabled.

Onboard SAS Option ROM

Select Enabled to boot the computer using a SAS device installed in the system. The options for SAS Onboard Option ROM are Disabled and Enabled.

Network Stack

Select Enabled enable PXE (Preboot Execution Environment) or UEFI (Unified Extensible Firmware Interface) for network stack support. The options are Enabled and Disabled.

▶ ACPI Settings

High Precision Event Timer

Select Enabled to activate the High Performance Event Timer (HPET) that produces periodic interrupts at a much higher frequency than a Real-time Clock (RTC) does in synchronizing multimedia streams, providing smooth playback and reducing the dependency on other timestamp calculation devices, such as an x86 RDTSC Instruction embedded in the CPU. The High Performance Event Timer is used to replace the 8254 Programmable Interval Timer. The options are Enabled and Disabled.

ACPI Sleep State

This feature selects the ACPI Sleep State that the system will enter into when the suspend button is activated. The options are Suspend Disabled, and S3 only (suspend to RAM).

WHEA Support

This feature Enables the Windows Hardware Error Architecture (WHEA) support for the Windows 2008 (or a later vision) operating system. The options are Enabled and Disabled.
Intel Server Platform Services Configuration

The following status information for this motherboard are displayed:

- ME (Management Engine) BIOS Interface Version
- SPS Version
- ME FW (Firmware) Status Value
- ME FW State
- ME FW Operation State
- ME FW Error Code
- ME NM FW Status Value
- BIOS Booting Mode
- Cores Disabled
- ME FW SKU Information
- End-of-POST Status

Trusted Computing Configuration (Available when a TPM Device is Detected and TPM Jumper is Enabled)

Configuration

Security Device Support

Select Enable for the AMI BIOS to automatically download the drivers needed to provide Trusted Computing platform support for this machine to ensure date integrity and network security. The options are Disable and Enable.

TPM State

Select Enabled to use TPM (Trusted Platform Module) settings for system data security. The options are Disabled and Enabled.

Note: The system will reboot for the change on TPM State to take effect.
Pending Operation

Use this item to schedule a TPM-related operation to be performed by a security device for TPM support. The options are None, Enable Take Ownership, Disable Take Ownership, and TPM Clear.

Note: The computer will reboot to carry out a pending TPM operation and change TPM state for a TPM device.

Current Status Information

This feature indicates the status of the following TPM items:

- TPM Enabled Status
- TPM Active Status
- TPM Owner Status

Intel TXT (LT) Support

Intel TXT (Trusted Execution Technology) helps protect against software-based attacks to ensure the security, confidentiality, and integrity of all data stored in the system. The options are Enabled and Disabled.

Super IO Configuration

Super IO Chip NCT6776F

Serial Port 1 Configuration /Serial Port 2 Configuration

Select Enabled to enable the onboard serial port. The options are Enabled and Disabled.

Change (Serial Port 1 / Serial Port 2) Settings

This option specifies the base I/O port address and the Interrupt Request address of Serial Port 1 and 2. Select Auto to let the BIOS automatically assign the base I/O and IRQ address.

The options for Serial Port 1 are Auto, (IO=3F8h; IRQ=4), (IO=3F8h; IRQ=3, 4, 5, 6, 7, 9, 10, 11, 12), (IO=2F8h; IRQ=3, 4, 5, 6, 7, 9, 10, 11, 12), (IO=3E8h; IRQ=3, 4, 5, 6, 7, 9, 10, 11, 12) and (IO=2E8h; IRQ=3, 4, 5, 6, 7, 9, 10, 11, 12).

The options for Serial Port 2 are Auto, (IO=2F8h; IRQ=3), (IO=3F8h; IRQ=3, 4, 5, 6, 7, 9, 10, 11, 12), (IO=2F8h; IRQ=3, 4, 5, 6, 7, 9, 10, 11, 12), (IO=3E8h; IRQ=3, 4, 5, 6, 7, 9, 10, 11, 12) and (IO=2E8h; IRQ=3, 4, 5, 6, 7, 9, 10, 11, 12).
Serial Port Console Redirection

COM1/COM2

Use this feature to enable console redirection for COM1 and COM2 ports. The options are Enabled and Disabled. The default setting is **Disabled**.

Console Redirection Settings

This feature allows the user to specify how the host computer will exchange data with the client computer, which is the remote computer used by the user.

Terminal Type

This feature allows the user to select the target terminal emulation type for Console Redirection. Select VT100 to use the ASCII Character set. Select VT100+ to add color and function key support. Select ANSI to use the Extended ASCII Character Set. Select VT-UTF8 to use UTF8 encoding to map Unicode characters into one or more bytes. The options are ANSI, VT100, **VT100+**, and VT-UTF8.

Bits Per second

Use this feature to set the transmission speed for a serial port used in Console Redirection. Make sure that the same speed is used in the host computer and the client computer. A lower transmission speed may be required for long and busy lines. The options are 9600, 19200, 38400, 57600 and **115200** (bits per second).

Data Bits

Use this feature to set the data transmission size for Console Redirection. The options are 7 Bits and **8 Bits**.

Parity

A parity bit can be sent along with regular data bits to detect data transmission errors. Select Even if the parity bit is set to 0, and the number of 1's in data bits is even. Select Odd if the parity bit is set to 0, and the number of 1's in data bits is odd. Select None if you do not want to send a parity bit with your data bits in transmission. Select Mark to add a mark as a parity bit to be sent along with the data bits. Select Space to add a Space as a parity bit to be sent with your data bits. The options are **None**, Even, Odd, Mark and Space.

Stop Bits

A stop bit indicates the end of a serial data packet. Select 1 Stop Bit for standard serial data communication. Select 2 Stop Bits if slower devices are used. The options are 1 and 2.
Flow Control
This feature allows the user to set the flow control for Console Redirection to prevent data loss caused by buffer overflow. Send a "Stop" signal to stop sending data when the receiving buffer is full. Send a "Start" signal to start sending data when the receiving buffer is empty. The options are None and Hardware RTS/CTS.

VT-UTF8 Combo Key Support
Select Enabled to enable VT-UTF8 Combination Key support for ANSI/VT100 terminals. The options are Enabled and Disabled.

Recorder Mode
Select Enabled to capture the data displayed on a terminal and send it as text messages to a remote server. The options are Disabled and Enabled.

Resolution 100x31
Select Enabled for extended-terminal resolution support. The options are Disabled and Enabled.

Legacy OS Redirection Resolution
Use this feature to select the number of rows and columns used in Console Redirection for legacy OS support. The options are 80x24 and 80x25.

Putty KeyPad
This feature selects Function Keys and KeyPad settings for Putty, which is a terminal emulator designed for the Windows OS. The options are VT100, LINUX, XTERMR6, SC0, ESCN, and VT400.

Redirection After BIOS Post
Use this feature to enable or disable legacy console redirection after BIOS POST. When set to Bootloader, legacy console redirection is disabled before booting the OS. When set to Always Enable, legacy console redirection remains enabled when booting the OS. The options are Always Enable and Bootloader.

Serial Port for Out-of-Band Management/Windows Emergency Management Services (EMS)
The submenu allows the user to configure Console Redirection settings to support Out-of-Band Serial Port management.

Console Redirection (for EMS)
Select Enabled to use a COM Port selected by the user for Console Redirection. The options are Enabled and Disabled.
Console Redirection Settings (for EMS)
This feature allows the user to specify how the host computer will exchange data with the client computer, which is the remote computer used by the user.

Out-of-Band Management Port
The feature selects a serial port used by the Microsoft Windows Emergency Management Services (EMS) to communicate with a remote server. The options are COM1 and COM2.

Terminal Type
This feature allows the user to select the target terminal emulation type for Console Redirection. Select VT100 to use the ASCII character set. Select VT100+ to add color and function key support. Select ANSI to use the extended ASCII character set. Select VT-UTF8 to use UTF8 encoding to map Unicode characters into one or more bytes. The options are ANSI, VT100, VT100+, and VT-UTF8.

Bits Per Second
This item sets the transmission speed for a serial port used in Console Redirection. Make sure that the same speed is used in the host computer and the client computer. A lower transmission speed may be required for long and busy lines. The options are 9600, 19200, 57600, and 115200 (bits per second).

Flow Control
This feature allows the user to set the flow control for Console Redirection to prevent data loss caused by buffer overflow. Send a "Stop" signal to stop sending data when the receiving buffer is full. Send a "Start" signal to start sending data when the receiving buffer is empty. The options are None, Hardware RTS/CTS, and Software Xon/Xoff.

Data Bits, Parity, Stop Bits
The status of each item above is displayed.
H/W (Hardware) Monitor

PC Health Status

Fan Speed Control Mode

This feature allows the user to decide how the system controls the speeds of the onboard fans. The CPU temperature and the fan speed are correlative. When the CPU on-die temperature increases, the fan speed will also increase for effective system cooling. Select "Full Speed" to allow the onboard fans to run at full speed (of 100% Pulse Width Modulation Duty Cycle) for maximum cooling. This setting is recommended for special system configuration or debugging. Select "Standard" for the onboard fans to run at 50% of the Initial PWM Cycle in order to balance the needs between system cooling and power saving. This setting is recommended for regular systems with normal hardware configurations. The options are Full Speed (@100% of PWM Cycle) and Standard (@50% of PWM Cycle).

The following items will be displayed:

• CPU Temperature (PECI)
• Front Side Sys. (System) Temperature
• Rear Side Sys. (System) Temperature
• PCH Temperature
• Fan1 Speed/Fan2 Speed/Fan3 Speed/Fan4 Speed/Fan5 Speed
• VCORE
• 12V
• VDIMM
• 5Vcc
• PCH 1.05V
• AVCC
• 3.3Vcc
• VSB
• VBAT
Chapter 4: AMI BIOS

4-4 Event Logs

Change SMBIOS Event Log Settings

Enabling/Disabling Options

SMBIOS Event Log
Change this item to enable or disable all features of the SMBIOS Event Logging during system boot. The options are Enabled and Disabled.

Erasing Settings

Erase Event Log
If No is selected, data stored in the event log will not be erased. Select Yes, Next Reset, data in the event log will be erased upon next system reboot. Select Yes, Every Reset, data in the event log will be erased upon every system reboot. The options are No, Yes, Next reset, and Yes, Every reset.

When Log is Full
Select Erase Immediately for all messages to be automatically erased from the event log when the event log memory is full. The options are Do Nothing and Erase Immediately.

SMBIOS Event Long Standard Settings

Log System Boot Event
This option toggles the System Boot Event logging to enabled or disabled. The options are Disabled and Enabled.
MECI

The Multiple Event Count Increment (MECI) counter counts the number of occurrences a duplicate event must happen before the MECI counter is incremented. This is a numeric value. The default value is 1.

METW

The Multiple Event Time Window (METW) defines number of minutes must pass between duplicate log events before MECI is incremented. This is in minutes, from 0 to 99. The default value is 60.

▶ View SMBIOS Event Log

This section displays the contents of the SMBIOS Event Log.
The following IPMI information will be displayed:

- IPMI Firmware Revision
- IPMI Status

System Event Log

This feature is used to change the System Event Log (SEL) configuration.

SEL Components - Change this item to enable or disable all features of System Event Logging. The options are Enabled and Disabled. When this feature is set to Enabled, the following can be configured:

- **Erase SEL** - This option erases all logged SEL events. The options are No, Yes, On Next reset and Yes, On Every reset.

When SEL Full

This option automatically clears the System Event Log memory of all messages when it is full. The options are Do Nothing and Erase Immediately.
BMC Network Configuration

LAN Channel 1: This feature allows the user to configure the settings for LAN1 Port.

Update IPMI LAN Configuration
This feature allows the BIOS to implement any IP/MAC address changes at the next system boot. If the option is set to Yes, any changes made to the settings below will take effect when the system is rebooted. The options are No and Yes.

IPMI LAN Selection
This feature displays the IPMI LAN Selection setting. The default setting is Failover.

IPMI Network Link Status
This feature displays the IPMI Network Link status. The default setting is Shared LAN.

Configuration Address Source
This feature allows the user to select the source of the IP address for this computer. If Static is selected, you will need to know the IP address of this computer and enter it to the system manually in the field. If DHCP is selected, the BIOS will search for a DHCP (Dynamic Host Configuration Protocol) server in the network that is attached to and request the next available IP address for this computer. The options are DHCP and Static. The following items are assigned IP addresses automatically if DHCP is selected, or can be configured manually if Static is selected.

Station MAC Address
This item displays the Station MAC address for this computer. Mac addresses are 6 two-digit hexadecimal numbers.

Station IP Address
This item displays the Station IP address for this computer. This should be in decimal and in dotted quad form (i.e., 192.168.10.253).

Subnet Mask
This item displays the sub-network that this computer belongs to. The value of each three-digit number separated by dots should not exceed 255.

Gateway IP Address
This item displays the Gateway IP address for this computer. This should be in decimal and in dotted quad form (i.e., 192.168.10.253).
4-6 Boot Settings

Use this feature to configure Boot Settings:

Set Boot Priority
This option prioritizes the order of bootable devices that the system to boot from. Press [ENTER] on each entry from top to bottom to select devices.

- 1st Boot Device
- 2nd Boot Device
- 3rd Boot Device
- 4th Boot Device
- 5th Boot Device
- 6th Boot Device

❖ Hard Disk Drive BBS Priorities
- 1st Device
- 2nd Device

❖ Network Device BBS Priorities
- 1st Device

❖ UEFI Boot Drive BBS Priorities
- 1st Boot Device
Delete Boot Option

Use this feature to remove a pre-defined boot device from which the system will boot during startup.

The settings are [any pre-defined boot device]

Delete Driver Option

This feature allows the user to delete a previously defined boot device from which the system boots during startup.

The settings are [any pre-defined boot device]
4-7 Security Settings

This menu allows the user to configure the following security settings for the system.

- If the Administrator password is defined ONLY - this controls access to the BIOS setup ONLY.
- If the User’s password is defined ONLY - this password will need to be entered upon each system boot, and will also have Administrator rights in the setup.
- Passwords must be at least 3 and up to 20 characters long.

Administrator Password

Press Enter to create a new, or change an existing Administrator password.
Save & Exit

Select the Exit tab from the BIOS Setup Utility screen to enter the Exit BIOS Setup screen.

Discard Changes and Exit
Select this option to quit the BIOS Setup without making any permanent changes to the system configuration, and reboot the computer. Select Discard Changes and Exit from the Exit menu and press <Enter>.

Save Changes and Reset
When you have completed the system configuration changes, select this option to leave the BIOS Setup Utility and reboot the computer, so the new system configuration parameters can take effect. Select Save Changes and Exit from the Exit menu and press <Enter>.

Save Options

Save Changes
When you have completed the system configuration changes, select this option to save any changes made. This will not reset (reboot) the system.

Discard Changes
Select this option and press <Enter> to discard all the changes and return to the AMI BIOS Utility Program.
Restore Optimized Defaults

To set this feature, select Restore Defaults from the Exit menu and press <Enter>. These are factory settings designed for maximum system stability, but not for maximum performance.

Save As User Defaults

To set this feature, select Save as User Defaults from the Exit menu and press <Enter>. This enables the user to save any changes to the BIOS setup for future use.

Restore User Defaults

To set this feature, select Restore User Defaults from the Exit menu and press <Enter>. Use this feature to retrieve user-defined settings that were saved previously.

Boot Override

Listed on this section are other boot options for the system (i.e., Built-in EFI shell). Select an option and press <Enter>. Your system will boot to the selected boot option.
Notes
Appendix A

BIOS Error Beep Codes

During the POST (Power-On Self-Test) routines, which are performed each time the system is powered on, errors may occur.

Non-fatal errors are those which, in most cases, allow the system to continue with bootup. The error messages normally appear on the screen.

Fatal errors will not allow the system to continue to bootup. If a fatal error occurs, you should consult with your system manufacturer for possible repairs.

These fatal errors are usually communicated through a series of audible beeps. The numbers on the fatal error list correspond to the number of beeps for the corresponding error.

A-1 BIOS Error Beep Codes

<table>
<thead>
<tr>
<th>Beep Code/LED</th>
<th>Error Message</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 beep</td>
<td>Refresh</td>
<td>Circuits have been reset. (Ready to power up)</td>
</tr>
<tr>
<td>5 short beeps + 1 long beep</td>
<td>Memory error</td>
<td>No memory detected in the system</td>
</tr>
<tr>
<td>8 beeps</td>
<td>Display memory read/write error</td>
<td>Video adapter missing or with faulty memory</td>
</tr>
<tr>
<td>OH LED On</td>
<td>System OH</td>
<td>System Overheat</td>
</tr>
</tbody>
</table>
Appendix B

Software Installation Instructions

B-1 Installing Software Programs

The Supermicro ftp site contains drivers and utilities for your system at ftp://ftp.supermicro.com. Some of these must be installed, such as the chipset driver.

After accessing the ftp site, go into the CDR_Images directory and locate the ISO file for your motherboard. Download this file to create a CD/DVD of the drivers and utilities it contains. (You may also use a utility to extract the ISO file if preferred.)

Another option is to go to the Supermicro Website at http://www.supermicro.com/products/. Find the product page for your motherboard here, where you may download individual drivers and utilities. After creating a CD/DVD with the ISO files, insert the disk into the CD/DVD drive on your system and the display shown below should appear.

Driver/Tool Installation Display Screen

Note 1: Click the icons showing a hand writing on paper to view the readme files for each item. Click the computer icons to the right of these items to install each item (from top to the bottom) one at a time. **After installing each item, you must re-boot the system before moving on to the next item on the list.** The bottom icon with a CD on it allows you to view the entire contents.

Note 2: When making a storage driver diskette by booting into a Driver CD, please set the SATA Configuration to "Compatible Mode" and configure SATA as IDE in the BIOS Setup. After making the driver diskette, be sure to change the SATA settings back to your original settings.
B-2 Configuring SuperDoctor III

The SuperDoctor® III program is a web-based management tool that supports remote management capability. It includes Remote and Local Management tools. The local management is called SD III Client. The SuperDoctor III program allows you to monitor the environment and operations of your system. SuperDoctor III displays crucial system information such as CPU temperature, system voltages and fan status. See the figures below for examples of the SuperDoctor III interface.

Note 1: The default User Name and Password for SuperDoctor III is ADMIN/ADMIN.

Note 2: When SuperDoctor III is first installed, it adopts the temperature threshold settings that have been set in BIOS. Any subsequent changes to these thresholds must be made within SuperDoctor III, as the SuperDoctor III settings override the BIOS settings. To set the BIOS temperature threshold settings again, you would first need to uninstall SuperDoctor III.
Appendix B: Software Installation Instructions

SuperDoctor® III Interface Display Screen (Remote Control)

Note: The SuperDoctor III program and User’s Manual can be downloaded from the Supermicro web site at http://www.supermicro.com/products/accessories/software/SuperDoctorIII.cfm. For Linux, we recommend that you use the SuperDoctor II application instead.
Appendix C

UEFI BIOS Recovery Instructions

Warning: Do not upgrade the BIOS unless your system has a BIOS-related issue. Flashing the wrong BIOS can cause irreparable damage to the system. In no event shall Supermicro be liable for direct, indirect, special, incidental, or consequential damages arising from a BIOS update. If you need to update the BIOS, do not shut down or reset the system while the BIOS is updating to avoid possible boot failure.

C-1 An Overview to the UEFI BIOS

The Unified Extensible Firmware Interface (UEFI) specification provides a software-based interface between the operating system and the platform firmware in the pre-boot environment. The UEFI specification supports an architecture-independent mechanism for add-on card initialization to allow the UEFI OS loader, which is stored in the add-on card, to boot up the system. UEFI offers a clean, hands-off control to a computer system at bootup.

C-2 How to Recover the UEFI BIOS Image

A UEF BIOS flash chip consists of a recovery BIOS block, comprised of two boot blocks and a main BIOS block (a main BIOS image). The boot block contains critical BIOS codes, including memory detection and recovery codes for the user to flash a new BIOS image if the original main BIOS image is corrupted. When the system power is on, the boot block codes execute first. Once that is completed, the main BIOS code will continue with system initialization and bootup.

Note: Follow the BIOS Recovery instructions below for BIOS recovery when the main BIOS boot crashes. However, when the BIOS boot block crashes, you will need to follow the procedures in Appendix D.

C-3 To Recover the Main BIOS Block Using a USB-Attached Device

This feature allows the user to recover a BIOS image using a USB-attached device without additional utilities used. A USB flash device such as a USB Flash Drive, or a USB CD/DVD ROM/RW device can be used for this purpose. However, a USB Hard Disk drive cannot be used for BIOS recovery at this time.

To perform UEFI BIOS recovery using a USB-attached device, follow the instructions below.
1. Using a different machine, copy the "Super.ROM" binary image file into the disc Root "\" Directory of a USB device or a writeable CD/DVD.

 Note: If you cannot locate the "Super.ROM" file in your driver disk, visit our website at www.supermicro.com to download the BIOS image into a USB flash device and rename it "Super ROM" for BIOS recovery use.

2. Insert the USB device that contains the new BIOS image ("Super.ROM") into your USB drive and power on the system.

3. While powering on the system, keep pressing <Ctrl> and <Home> simultaneously on your keyboard until you hear two short beeps. This may take from a few seconds to one minute.

4. After locating the new BIOS binary image, the system will enter the BIOS Recovery menu as shown below.

 Note: At this point, you may decide if you want to start with BIOS Recovery. If you decide to proceed with BIOS Recovery, follow the procedures below.

5. When the screen as shown above displays, using the arrow key, select the item- "Proceed with flash update" and press the <Enter> key. You will see the progress of BIOS Recovery as shown in the screen below.

 Note: **Do not interrupt** the process of BIOS flashing until it is completed.
6. After the process of BIOS Recovery is complete, press any key to reboot the system.

7. Using a different system, extract the BIOS package into a bootable USB flash drive.

8. When a DOS prompt appears, enter AMI.BAT BIOSname.### at the prompt.

 Note: *Do not interrupt this process* until BIOS flashing is completed.
9. After seeing the message that BIOS update is completed, unplug the AC power cable from the power supply to clear CMOS, and then plug the AC power cable in the power supply again to power on the system.

10. Press continuously to enter the BIOS Setup utility.

11. Press <F3> to load default settings.

12. After loading default settings, press <F4> to save the settings and exit the BIOS Setup utility.
The products sold by Supermicro are not intended for and will not be used in life support systems, medical equipment, nuclear facilities or systems, aircraft, aircraft devices, aircraft/emergency communication devices or other critical systems whose failure to perform be reasonably expected to result in significant injury or loss of life or catastrophic property damage. Accordingly, Supermicro disclaims any and all liability, and should buyer use or sell such products for use in such ultra-hazardous applications, it does so entirely at its own risk. Furthermore, buyer agrees to fully indemnify, defend and hold Supermicro harmless for and against any and all claims, demands, actions, litigation, and proceedings of any kind arising out of or related to such ultra-hazardous use or sale.