The information in this User’s Manual has been carefully reviewed and is believed to be accurate. The vendor assumes no responsibility for any inaccuracies that may be contained in this document, and makes no commitment to update or to keep current the information in this manual, or to notify any person or organization of the updates. Please Note: For the most up-to-date version of this manual, please see our website at www.supermicro.com.

Super Micro Computer, Inc. ("Supermicro") reserves the right to make changes to the product described in this manual at any time and without notice. This product, including software and documentation, is the property of Supermicro and/or its licensors, and is supplied only under a license. Any use or reproduction of this product is not allowed, except as expressly permitted by the terms of said license.

IN NO EVENT WILL Super Micro Computer, Inc. BE LIABLE FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, SPECULATIVE OR CONSEQUENTIAL DAMAGES ARISING FROM THE USE OR INABILITY TO USE THIS PRODUCT OR DOCUMENTATION, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. IN PARTICULAR, SUPER MICRO COMPUTER, INC. SHALL NOT HAVE LIABILITY FOR ANY HARDWARE, SOFTWARE, OR DATA STORED OR USED WITH THE PRODUCT, INCLUDING THE COSTS OF REPAIRING, REPLACING, INTEGRATING, INSTALLING OR RECOVERING SUCH HARDWARE, SOFTWARE, OR DATA.

Any disputes arising between manufacturer and customer shall be governed by the laws of Santa Clara County in the State of California, USA. The State of California, County of Santa Clara shall be the exclusive venue for the resolution of any such disputes. Supermicro's total liability for all claims will not exceed the price paid for the hardware product.

FCC Statement: This equipment has been tested and found to comply with the limits for a Class B digital device pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the manufacturer’s instruction manual, may cause harmful interference with radio communications. Operation of this equipment in a residential area is likely to cause harmful interference, in which case you will be required to correct the interference at your own expense.

California Best Management Practices Regulations for Perchlorate Materials: This Perchlorate warning applies only to products containing CR (Manganese Dioxide) Lithium coin cells. “Perchlorate Material-special handling may apply. See www.dtsc.ca.gov/hazardouswaste/perchlorate”.

WARNING: This product can expose you to chemicals including lead, known to the State of California to cause cancer and birth defects or other reproductive harm. For more information, go to www.P65Warnings.ca.gov.

The products sold by Supermicro are not intended for and will not be used in life support systems, medical equipment, nuclear facilities or systems, aircraft, aircraft devices, aircraft/emergency communication devices or other critical systems whose failure to perform be reasonably expected to result in significant injury or loss of life or catastrophic property damage. Accordingly, Supermicro disclaims any and all liability, and should buyer use or sell such products for use in such ultra-hazardous applications, it does so entirely at its own risk. Furthermore, buyer agrees to fully indemnify, defend and hold Supermicro harmless for and against any and all claims, demands, actions, litigation, and proceedings of any kind arising out of or related to such ultra-hazardous use or sale.

Manual Revision 1.1

Release Date: July 30, 2018

Unless you request and receive written permission from Super Micro Computer, Inc., you may not copy any part of this document. Information in this document is subject to change without notice. Other products and companies referred to herein are trademarks or registered trademarks of their respective companies or mark holders.

Copyright © 2018 by Super Micro Computer, Inc.
All rights reserved.
Printed in the United States of America
Preface

About This Manual

This manual is written for system integrators, IT technicians and knowledgeable end users. It provides information for the installation and use of the X11SSH-F/-LN4F motherboard.

About This Motherboard

The Super X11SSH-F/-LN4F motherboard supports an Intel Xeon E3-1200 v6/v5, 7th/6th Gen Core i3, Pentium, or Celeron processor in an LGA 1151 (H4) socket. With support of the Intel C236 chipset, DDR4 2400MHz memory, SATA 3.0, M.2 NGFF, and Trusted Platform Module (TPM), this motherboard offers a cost-effective long-life-cycle solution, optimized for embedded storage and cloud-computing platforms. Please note that this motherboard is intended to be installed and serviced by professional technicians only. For processor/memory updates, please refer to our website at http://www.supermicro.com/products/.

Conventions Used in the Manual

Special attention should be given to the following symbols for proper installation and to prevent damage done to the components or injury to yourself:

![Warning!](images/warning.png) Indicates important information given to prevent equipment/property damage or personal injury.

![Warning!](images/high_voltage.png) Indicates high voltage may be encountered when performing a procedure.

![Important:](images/important.png) Important information given to ensure proper system installation or to relay safety precautions.

![Note:](images/note.png) Additional Information given to differentiate various models or provides information for correct system setup.
Contacting Supermicro

Headquarters
Address: Super Micro Computer, Inc.
980 Rock Ave.
San Jose, CA 95131 U.S.A.
Tel: +1 (408) 503-8000
Fax: +1 (408) 503-8008
Email: marketing@supermicro.com (General Information)
support@supermicro.com (Technical Support)
Website: www.supermicro.com

Europe
Address: Super Micro Computer B.V.
Het Sterrenbeeld 28, 5215 ML
's-Hertogenbosch, The Netherlands
Tel: +31 (0) 73-6400390
Fax: +31 (0) 73-6416525
Email: sales@supermicro.nl (General Information)
support@supermicro.nl (Technical Support)
rma@supermicro.nl (Customer Support)
Website: www.supermicro.nl

Asia-Pacific
Address: Super Micro Computer, Inc.
3F, No. 150, Jian 1st Rd.
Zhonghe Dist., New Taipei City 235
Taiwan (R.O.C)
Tel: +886-(2) 8226-3990
Fax: +886-(2) 8226-3992
Email: support@supermicro.com.tw
Website: www.supermicro.com.tw
Table of Contents

Chapter 1 Introduction

1.1 Checklist ...8
 Quick Reference ..12
 Quick Reference Table ..13
 Motherboard Features ..15
1.2 Processor and Chipset Overview ..19
1.3 Special Features ..19
 Recovery from AC Power Loss ..19
1.4 System Health Monitoring ...20
 Onboard Voltage Monitors ...20
 Fan Status Monitor with Firmware Control ...20
 Environmental Temperature Control ..20
 System Resource Alert ..20
1.5 ACPI Features ..20
1.6 Power Supply ...21
1.7 Serial Port ..21

Chapter 2 Installation

2.1 Static-Sensitive Devices ..22
 Precautions ..22
 Unpacking ...22
2.2 Motherboard Installation ..23
 Tools Needed ...23
 Location of Mounting Holes ...23
 Installing the Motherboard ..24
2.3 Processor and Heatsink Installation ..25
 Installing the LGA1151 Processor ..25
 Installing an Active CPU Heatsink with Fan ...28
 Removing the Active Heatsink ..30
 Installing a Passive CPU Heatsink ...31
 Removing the Passive Heatsink ..32
2.4 Memory Support and Installation ... 33
 Memory Support ... 33
 DIMM Module Population Configuration .. 33
 DIMM Module Population Sequence .. 34
 DIMM Installation ... 35
 DIMM Removal ... 35
2.5 Rear I/O Ports ... 36
2.6 Front Control Panel ... 41
2.7 Connectors ... 46
 Power Connections ... 46
 Headers .. 48
2.8 Jumper Settings ... 58
 How Jumpers Work .. 58
2.9 LED Indicators ... 63

Chapter 3 Troubleshooting

3.1 Troubleshooting Procedures ... 67
 Before Power On .. 67
 No Power .. 67
 No Video ... 68
 System Boot Failure .. 68
 Memory Errors .. 68
 Losing the System’s Setup Configuration .. 69
 When the System Becomes Unstable .. 69
3.2 Technical Support Procedures ... 71
3.3 Frequently Asked Questions .. 72
3.4 Battery Removal and Installation .. 73
 Battery Removal ... 73
 Proper Battery Disposal ... 73
 Battery Installation .. 73
3.5 Returning Merchandise for Service .. 74

Chapter 4 BIOS

4.1 Introduction ... 75
 Starting the Setup Utility .. 75
4.2 Main Setup .. 76
 How To Change the Configuration Data ... 76
4.3 Advanced Setup Configurations .. 78
4.4 Event Logs .. 100
4.5 IPMI .. 101
4.6 Security ... 104
4.7 Boot Settings .. 106
4.8 Save & Exit ... 108

Appendix A BIOS Codes

Appendix B Software Installation
 B.1 Installing Software Programs ... 111
 B.2 SuperDoctor® 5 ... 112

Appendix C Standardized Warning Statements
 Battery Handling .. 113
 Product Disposal .. 115

Appendix D UEFI BIOS Recovery

Appendix E Dual Boot Block
 BIOS Boot Block ... 120
 BIOS Boot Block Corruption Occurrence .. 120
Chapter 1

Introduction

Congratulations on purchasing your computer motherboard from an industry leader. Supermicro boards are designed to provide you with the highest standards in quality and performance. Several important parts that are included with the motherboard are listed below. If anything listed is damaged or missing, please contact your retailer.

1.1 Checklist

<table>
<thead>
<tr>
<th>Description</th>
<th>Part Number</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supermicro Motherboard</td>
<td>X11SSH-F/-LN4F</td>
<td>1</td>
</tr>
<tr>
<td>SATA Cables</td>
<td>CBL-0044L</td>
<td>6</td>
</tr>
<tr>
<td>I/O Shield</td>
<td>MCP-260-00042-0N</td>
<td>1</td>
</tr>
<tr>
<td>Quick Reference Guide</td>
<td>MNL-1778-QRG</td>
<td>1</td>
</tr>
</tbody>
</table>

Important Links

For your system to work properly, please follow the links below to download all necessary drivers/utilities and the user's manual for your server.

- Product safety info: http://www.supermicro.com/about/policies/safety_information.cfm
- If you have any questions, please contact our support team at: support@supermicro.com

This manual may be periodically updated without notice. Please check the Supermicro website for possible updates to the manual revision level.
Note: All graphics shown in this manual were based upon the latest PCB revision available at the time of publication of the manual. The motherboard you received may or may not look exactly the same as the graphics shown in this manual.
Figure 1-2. X11SSH-LN4F Motherboard Image
Figure 1-3. X11SSH-F/-LN4F Motherboard Layout
(not drawn to scale)

Differences between X11SSH-F/-LN4F

<table>
<thead>
<tr>
<th></th>
<th>X11SSH-F</th>
<th>X11SSH-LN4F</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAN3/LAN4</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>LAN3/LAN4 LINK ACK</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>JPL3/JPL4</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Note: Components not documented are for internal testing only.
Quick Reference

Notes:

- See Chapter 2 for detailed information on jumpers, I/O ports, and JF1 front panel connections.

- "■" indicates the location of Pin 1.

- Jumpers/components not indicated are for testing only.

- When LEDPWR (Onboard Power LED indicator) is on, system power is on. Unplug the power cable before installing or removing any components.
Quick Reference Table

<table>
<thead>
<tr>
<th>Jumper</th>
<th>Description</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>J7</td>
<td>LAN4 LINK ACK (-LN4F only)</td>
<td>Off (Disabled)</td>
</tr>
<tr>
<td>J8</td>
<td>LAN3 LINK ACK (-LN4F only)</td>
<td>Off (Disabled)</td>
</tr>
<tr>
<td>JBR1</td>
<td>BIOS Recovery</td>
<td>Pins 1-2 (Normal)</td>
</tr>
<tr>
<td>JBT1</td>
<td>Clear CMOS</td>
<td>See Chapter 2</td>
</tr>
<tr>
<td>JF/C1/JF/C2</td>
<td>SMB to PCI Slots</td>
<td>Pins 2-3 (Disabled)</td>
</tr>
<tr>
<td>JPB1</td>
<td>BMC Enable/Disable</td>
<td>Pins 1-2 (Enabled)</td>
</tr>
<tr>
<td>JPG1</td>
<td>VGA Enable</td>
<td>Pins 1-2 (Enabled)</td>
</tr>
<tr>
<td>JPL1-JPL4</td>
<td>LAN1-LAN4 Enable (LAN3/LAN4: for -LN4F only)</td>
<td>Pins 1-2 (Enabled)</td>
</tr>
<tr>
<td>JPME2</td>
<td>Manufacturing Mode Select</td>
<td>Pins 1-2 (Normal)</td>
</tr>
<tr>
<td>JWD1</td>
<td>Watch Dog Enable</td>
<td>Pins 1-2 (Reset)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LED</th>
<th>Description</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>LE1</td>
<td>Rear UID LED</td>
<td>Blue: On; Unit identified</td>
</tr>
<tr>
<td>LE3</td>
<td>PCI-E 3.0 M.2 LED</td>
<td>Green: Blinking; Active</td>
</tr>
<tr>
<td>LEDBMC</td>
<td>BMC Heartbeat LED</td>
<td>Green: Blinking; BMC normal</td>
</tr>
<tr>
<td>LEDPWR</td>
<td>Onboard Power LED</td>
<td>Green: Solid on; Power on</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Connector</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BT1</td>
<td>Onboard Battery</td>
</tr>
<tr>
<td>COM1/COM2</td>
<td>COM1/COM2 Port Headers</td>
</tr>
<tr>
<td>FAN1-FAN4, FANA</td>
<td>System/CPU Fan Headers</td>
</tr>
<tr>
<td>I-SATA0-I-SATA7</td>
<td>SATA 3.0 Connectors via Intel PCH (6Gb/s)</td>
</tr>
<tr>
<td>I-SGPIO 1/2</td>
<td>Serial Link General Purpose I/O Connection Headers 1/2</td>
</tr>
<tr>
<td>IPMI_LAN</td>
<td>Dedicated IPMI Gigabit (RJ45) Port</td>
</tr>
<tr>
<td>J23</td>
<td>M.2 Socket</td>
</tr>
<tr>
<td>JD1</td>
<td>Speaker/Power LED Indicator</td>
</tr>
<tr>
<td>JF1</td>
<td>Front Control Panel Header</td>
</tr>
<tr>
<td>JIPMB1</td>
<td>4-pin External BMC I²C Header (for an IPMI Card)</td>
</tr>
<tr>
<td>JL1</td>
<td>Chassis Intrusion Header</td>
</tr>
<tr>
<td>JOH1</td>
<td>Overheat LED Indicator</td>
</tr>
<tr>
<td>JPFC1</td>
<td>Power I²C System Management Bus (Power SMB) Header</td>
</tr>
<tr>
<td>JPWR1</td>
<td>24-pin ATX Main Power Connector (Required)</td>
</tr>
<tr>
<td>JPWR2</td>
<td>+12V 8-pin CPU power Connector (Required)</td>
</tr>
<tr>
<td>JSD1/JSD2</td>
<td>SATA Disk-On-Module (DOM) Power Connectors</td>
</tr>
<tr>
<td>JSTBY1</td>
<td>Wake-On-LAN Enable Header</td>
</tr>
<tr>
<td>JTPM1</td>
<td>Trusted Platform Module/Port 80 Connector</td>
</tr>
<tr>
<td>JUIDB1</td>
<td>UID (Unit Identifier) Switch</td>
</tr>
</tbody>
</table>

Note: Table is continued on the next page.
<table>
<thead>
<tr>
<th>Connector</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAN1-LAN4</td>
<td>Gigabit (RJ45) LAN Ports (LAN3/LAN4: for -LN4F only)</td>
</tr>
<tr>
<td>PCI-E (PCH) Slot 4</td>
<td>PCI-Express 3.0 x4in x8 Slot</td>
</tr>
<tr>
<td>PCI-E (CPU) Slot 5</td>
<td>PCI-Express 3.0 x8 Slot</td>
</tr>
<tr>
<td>PCI-E (CPU) Slot 6</td>
<td>PCI-Express 3.0 x8in x16 Slot</td>
</tr>
<tr>
<td>SP1</td>
<td>Internal Speaker/Buzzer</td>
</tr>
<tr>
<td>USB 0/1</td>
<td>Back Panel USB 2.0 Ports</td>
</tr>
<tr>
<td>USB 2/3, USB 4/5</td>
<td>Front Accessible USB 2.0 Headers</td>
</tr>
<tr>
<td>USB 6/7</td>
<td>Back Panel USB 3.0 Ports</td>
</tr>
<tr>
<td>USB 8/9</td>
<td>Front Accessible USB 3.0 Header</td>
</tr>
<tr>
<td>USB 10</td>
<td>USB 3.0 Type-A Header</td>
</tr>
<tr>
<td>VGA</td>
<td>Back Panel VGA Port</td>
</tr>
</tbody>
</table>
Motherboard Features

<table>
<thead>
<tr>
<th>Motherboard Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU</td>
</tr>
<tr>
<td>• Intel® Xeon® E3-1200 v6/v5 and 7th/6th Gen Core™ i3, Pentium and Celeron processors in an LGA 1151 (H4) socket. 80W max TDP.</td>
</tr>
<tr>
<td>Memory</td>
</tr>
<tr>
<td>• Four (4) 288-pin DIMM slots support up to 64 GB of SDRAM 72-bit DDR4 unbuffered ECC 2400/2133/1866/1600/1333MHz memory.</td>
</tr>
<tr>
<td>DIMM Size</td>
</tr>
<tr>
<td>• 16GB, 8GB, and 4GB, up to 64GB at 1.2V</td>
</tr>
<tr>
<td>Note 1: Memory speed support depends on the processors used in the system.</td>
</tr>
<tr>
<td>Note 2: For the latest CPU/memory updates, please refer to our website at http://www.supermicro.com/products/motherboard.</td>
</tr>
<tr>
<td>Chipset</td>
</tr>
<tr>
<td>• Intel® PCH C236</td>
</tr>
<tr>
<td>Expansion Slots</td>
</tr>
<tr>
<td>• One (1) PCI Express 3.0 x4 in x8 slot (PCH Slot 4)</td>
</tr>
<tr>
<td>• One (1) PCI Express 3.0 x8 slot (CPU Slot 5)</td>
</tr>
<tr>
<td>• One (1) PCI Express 3.0 x8 in x16 slot (CPU Slot 6)</td>
</tr>
<tr>
<td>• One (1) M.2 Mini PCI Express 3.0 x2 connector</td>
</tr>
<tr>
<td>Network</td>
</tr>
<tr>
<td>• Dual Gbe LAN ports (2x i210) for LAN1/LAN2</td>
</tr>
<tr>
<td>• Quad Gbe LAN ports (4x i210) for LAN1-LAN4 (X11SSH-LN4F)</td>
</tr>
<tr>
<td>• One (1) Dedicated IPMI LAN located on the rear I/O panel</td>
</tr>
<tr>
<td>Baseboard Management Controller (BMC)</td>
</tr>
<tr>
<td>• ASpeed 2400 Baseboard Controller (BMC) supports IPMI 2.0</td>
</tr>
<tr>
<td>Graphics</td>
</tr>
<tr>
<td>• Graphics controller via ASpeed AST2400 BMC</td>
</tr>
<tr>
<td>I/O Devices</td>
</tr>
<tr>
<td>• Serial (COM) Port</td>
</tr>
<tr>
<td>• One (1) front accessible serial port header (COM2)</td>
</tr>
<tr>
<td>• One (1) serial port on the rear I/O panel (COM1)</td>
</tr>
<tr>
<td>• SATA 3.0</td>
</tr>
<tr>
<td>• Eight (8) SATA 3.0 ports supported by Intel PCH (I-SATA0-ISATA7)</td>
</tr>
<tr>
<td>• Two (2) SuperDOM connectors (I-SATA0 & I-SATA1)</td>
</tr>
<tr>
<td>• RAID (PCH)</td>
</tr>
<tr>
<td>• RAID 0, 1, 5, and 10</td>
</tr>
<tr>
<td>• Video (VGA) Port</td>
</tr>
<tr>
<td>• One (1) VGA connection on the rear I/O panel</td>
</tr>
</tbody>
</table>

Note: The table above is continued on the next page.
Motherboard Features

Peripheral Devices
- Two (2) USB 2.0 ports on the rear I/O panel (USB 0/1)
- Two (2) front accessible USB 2.0 headers (USB 2/3, USB 4/5)
- Two (2) USB 3.0 ports on the rear I/O panel (USB 6/7)
- One (1) front accessible USB 3.0 header (USB 8/9)
- One (1) Type-A USB 3.0 header (USB 10)

BIOS
- 128Mb AMI BIOS® SPI Flash BIOS
- ACPI 4.0, SPI dual/quad speed support, riser-card auto detection support, Dual Boot_Block support, BIOS rescue hot-key, DMI 3.0, and SMBIOS 2.7 or later

Power Management
- Main switch override mechanism
- Power-on mode for AC power recovery
- ACPI power management
- Keyboard Wakeup from Soft-Off
- CPU Fan auto-off in sleep mode
- Wake-On-LAN (WOL)
- Server Platform Service

System Health Monitoring
- Onboard voltage monitors for CPU core, +1.0V, +3.3V, +5V,-12V, +12V, +3.3V Stdby, +5V Stdby, VBAT, HT, Memory, PCH temperature, system temperature, and memory temperature
- CPU/system overheat LED and control
- CPU Thermal Trip support
- CPU 3-phase switching voltage regulator
- Thermal Monitor 2 (TM2) support

Fan Control
- Fan status monitoring with firmware 4-pin fan speed control via IPMI interface
- Fan speed control

System Management
- PECI (Platform Environment Control Interface) 2.0 support
- Intel® Node Manager
- IPMI View
- SuperDoctor® 5, Watch Dog, NMI
- Chassis intrusion header and detection
- Power supply monitoring

Note: The table above is continued on the next page.
Motherboard Features

LED Indicators
- Power/suspend-state indicator LED
- UID/Remote UID LED
- Fan failed LED
- HDD activity LED
- CPU/system overheat LED
- LAN activity LED

Other
- RoHS

Dimensions
- Micro ATX form factor (9.6" x 9.6") (243.84 mm x 243.84 mm)

Note 1: The CPU maximum thermal design power (TDP) is subject to chassis and heatsink cooling restrictions. For proper thermal management, please check the chassis and heatsink specifications for proper CPU TDP sizing.

Note 2: For IPMI configuration instructions, please refer to the Embedded IPMI Configuration User's Guide available at http://www.supermicro.com/support/manuals/.
Note: This is a general block diagram and may not exactly represent the features on your motherboard. See the previous pages for the actual specifications of your motherboard.
1.2 Processor and Chipset Overview

Built upon the functionality and capability of the Intel E3-1200 v6/v5 series processors (Socket LGA 1151) and the Intel C236 PCH, the X11SSH-F/-LN4F motherboard offers maximum I/O expandability, energy efficiency, and data reliability in a 14-nm process architecture, and is optimized for embedded storage solutions, networking applications, or cloud-computing platforms.

The Intel E3-1200 v6/v5 and PCH C236 platform supports the following features:

- ACPI Power Management Logic Support, Rev. 4.0a
- Intel® Turbo Boost Technology 2.0 Power Monitoring/Power Control, Turbo Time Parameter (TAU), and Platform Power Control
- Configurable TDP (cTDP) and Lower-Power Mode
- Adaptive Thermal Management/Monitoring
- PCI-E 3.0, SATA 3.0 w/transfer rates of up to 6 Gb/s, xHCI USB w/SuperSpeed 3.0
- System Management Bus (SMBus) Specification, Version 2.0
- Integrated Sensor Hub (ISH)
- Intel Trusted Execution Technology (Intel TXT)
- Intel Rapid Storage Technology
- Intel Virtualization Technology for Directed I/O (Intel VT-d)

1.3 Special Features

This section describes the health monitoring features of the X11SSH-F/-LN4F motherboard. The motherboard has an onboard System Hardware Monitor chip that supports system health monitoring.

Recovery from AC Power Loss

The Basic I/O System (BIOS) provides a setting that determines how the system will respond when AC power is lost and then restored to the system. You can choose for the system to remain powered off (in which case you must press the power switch to turn it back on), or for it to automatically return to the power-on state. See the Advanced BIOS Setup section for this setting. The default setting is **Last State**.
1.4 System Health Monitoring

This motherboard has an onboard Baseboard Management Controller (BMC) chip that supports system health monitoring.

Onboard Voltage Monitors

An onboard voltage monitor will scan the voltages of onboard chipset, memory, CPU, and battery continuously. Once a voltage becomes unstable, a warning is given, or an error message is sent to the screen. The user can adjust the voltage thresholds to define the sensitivity of the voltage monitor.

Fan Status Monitor with Firmware Control

The system health monitor chip can check the RPM status of a cooling fan. The CPU and chassis fans are controlled by BIOS Thermal Management through the back panel.

Environmental Temperature Control

System Health sensors monitor temperatures and voltage settings of onboard processors and the system in real time via the IPMI interface. Whenever the temperature of the CPU or the system exceeds a user-defined threshold, system/CPU cooling fans will be turned on to prevent the CPU or the system from overheating.

Note: To avoid possible system overheating, please be sure to provide adequate airflow to your system.

System Resource Alert

This feature is available when used with SuperDoctor 5® in the Windows OS or in the Linux environment. SuperDoctor is used to notify the user of certain system events. For example, you can configure SuperDoctor to provide you with warnings when the system temperature, CPU temperatures, voltages and fan speeds go beyond a predefined range.

1.5 ACPI Features

ACPI stands for Advanced Configuration and Power Interface. The ACPI specification defines a flexible and abstract hardware interface that provides a standard way to integrate power management features throughout a computer system, including its hardware, operating system and application software. This enables the system to automatically turn on and off peripherals such as CD-ROMs, network cards, hard disk drives and printers.
In addition to enabling operating system-directed power management, ACPI also provides a generic system event mechanism for Plug and Play, and an operating system-independent interface for configuration control. ACPI leverages the Plug and Play BIOS data structures, while providing a processor architecture-independent implementation that is compatible with Windows 7, Windows 8, and Windows 2012 Operating Systems.

1.6 Power Supply

As with all computer products, a stable power source is necessary for proper and reliable operation. It is even more important for processors that have high CPU clock rates.

The X11SSH-F/-LN4F motherboard accommodates 24-pin ATX power supplies. Although most power supplies generally meet the specifications required by the CPU, some are inadequate. In addition, One 12V 8-pin power connection is also required to ensure adequate power supply to the system.

Warning: To avoid damaging the power supply or the motherboard, be sure to use a power supply that contains a 24-pin and an 8-pin power connector. Be sure to connect the power supplies to the 24-pin power connector (JPWR1), and the 8-pin power connector (JPWR2) on the motherboard. Failure in doing so may void the manufacturer warranty on your power supply and motherboard.

It is strongly recommended that you use a high quality power supply that meets ATX power supply Specification 2.02 or above. It must also be SSI compliant. (For more information, please refer to the website at http://www.ssiforum.org/). Additionally, in areas where noisy power transmission is present, you may choose to install a line filter to shield the computer from noise. It is recommended that you also install a power surge protector to help avoid problems caused by power surges.

1.7 Serial Port

The X11SSH-F/-LN4F motherboard supports two serial communication connections. COM Ports 1 and 2 can be used for input/output. The UART provides legacy speeds with a baud rate of up to 115.2 Kbps as well as an advanced speed with baud rates of 250 K, 500 K, or 1 Mb/s, which support high-speed serial communication devices.115.2 Kbps as well as an advanced speed with baud rates of 250 K, 500 K, or 1 Mb/s, which support higher speed modems.
Chapter 2

Installation

2.1 Static-Sensitive Devices

Electrostatic Discharge (ESD) can damage electronic components. To prevent damage to your motherboard, it is important to handle it very carefully. The following measures are generally sufficient to protect your equipment from ESD.

Precautions

• Use a grounded wrist strap designed to prevent static discharge.

• Touch a grounded metal object before removing the board from the antistatic bag.

• Handle the board by its edges only; do not touch its components, peripheral chips, memory modules or gold contacts.

• When handling chips or modules, avoid touching their pins.

• Put the motherboard and peripherals back into their antistatic bags when not in use.

• For grounding purposes, make sure that your chassis provides excellent conductivity between the power supply, the case, the mounting fasteners and the motherboard.

• Use only the correct type of CMOS onboard battery as specified by the manufacturer. Do not install the CMOS battery upside down, which may result in a possible explosion.

Unpacking

The motherboard is shipped in antistatic packaging to avoid static damage. When unpacking the motherboard, make sure that the person handling it is static protected.
2.2 Motherboard Installation

All motherboards have standard mounting holes to fit different types of chassis. Make sure that the locations of all the mounting holes for both the motherboard and the chassis match. Although a chassis may have both plastic and metal mounting fasteners, metal ones are highly recommended because they ground the motherboard to the chassis. Make sure that the metal standoffs click in or are screwed in tightly.

Note: 1) To avoid damaging the motherboard and its components, please do not use a force greater than 8 lb/inch on each mounting screw during motherboard installation.

2) Some components are very close to the mounting holes. Please take precautionary measures to avoid damaging these components when installing the motherboard to the chassis.
Installing the Motherboard

1. Install the I/O shield into the back of the chassis.

2. Locate the mounting holes on the motherboard. See the previous page for the location.

3. Locate the matching mounting holes on the chassis. Align the mounting holes on the motherboard against the mounting holes on the chassis.

4. Install standoffs in the chassis as needed.

5. Install the motherboard into the chassis carefully to avoid damaging other motherboard components.

6. Using the Phillips screwdriver, insert a Phillips head #6 screw into a mounting hole on the motherboard and its matching mounting hole on the chassis.

7. Repeat Step 5 to insert #6 screws into all mounting holes.

8. Make sure that the motherboard is securely placed in the chassis.

Note: Images displayed are for illustration only. Your chassis or components might look different from those shown in this manual.
2.3 Processor and Heatsink Installation

Warning: When handling the processor package, avoid placing direct pressure on the label area of the fan.

Important:

- Always connect the power cord last, and always remove it before adding, removing or changing any hardware components. Make sure that you install the processor into the CPU socket before you install the CPU heatsink.

- If you buy a CPU separately, make sure that you use an Intel-certified multi-directional heatsink only.

- Make sure to install the motherboard into the chassis before you install the CPU heatsink.

- When receiving a motherboard without a processor pre-installed, make sure that the plastic CPU socket cap is in place and none of the socket pins are bent; otherwise, contact your retailer immediately.

- Refer to the Supermicro website for updates on CPU support.

Installing the LGA1151 Processor

1. Press the load lever to release the load plate, which covers the CPU socket, from its locking position.
2. Gently lift the load lever to open the load plate. Remove the plastic cap.

3. Use your thumb and your index finger to hold the CPU at the North center edge and the South center edge of the CPU.

4. Align the CPU key that is the semi-circle cutouts against the socket keys. Once it is aligned, carefully lower the CPU straight down into the socket. (Do not drop the CPU on the socket. Do not move the CPU horizontally or vertically).
5. Do not rub the CPU against the surface or against any pins of the socket to avoid damaging the CPU or the socket.

![Diagram of CPU properly installed]

6. With the CPU inside the socket, inspect the four corners of the CPU to make sure that the CPU is properly installed.

7. Use your thumb to gently push the load lever down to the lever lock.

![Diagram of load lever locked into place]

Note: You can only install the CPU inside the socket in one direction. Make sure that it is properly inserted into the CPU socket before closing the load plate. If it doesn't close properly, do not force it as it may damage your CPU. Instead, open the load plate again and double-check that the CPU is aligned properly.
Installing an Active CPU Heatsink with Fan

1. Locate the CPU fan power connector on the motherboard.

2. Position the heatsink so that the heatsink fan wires are closest to the CPU fan power connector and are not interfering with other components.

3. Inspect the CPU fan wires to make sure they are routed through the bottom of the heatsink.

4. Remove the thin layer of the protective film from the heatsink.

 Important: CPU overheating may occur if the protective film is not removed from the heatsink.

5. Apply the proper amount of thermal grease on the CPU.

 Note: If your heatsink came with a thermal pad, please ignore this step.

6. If necessary, rearrange the wires to make sure that the wires are not pinched between the heatsink and the CPU. Also, make sure to keep clearance between the fan wires and the fins of the heatsink.
7. Align the four heatsink fasteners with the mounting holes on the motherboard. Gently push the pairs of diagonal fasteners (#1 and #2, then #3 and #4) into the mounting holes until you hear a click. Also, make sure to orient each fastener so that the narrow end of the groove is pointing outward.

8. Repeat step 7 to insert all four heatsink fasteners into the mounting holes.

9. Once all four fasteners are securely inserted into the mounting holes, and the heatsink is properly installed on the motherboard, connect the heatsink fan wires to the CPU fan connector.
Removing the Active Heatsink

Note: We do not recommend that the CPU or the heatsink be removed. However, if you do need to remove the heatsink, please follow the instructions below to remove the heatsink and to prevent damage done to the CPU or other components.

1. Unplug the power cord from the power supply.

2. Disconnect the heatsink fan wires from the CPU fan header.

3. Use your finger tips to gently press on the fastener cap and turn it counterclockwise to make a 1/4 (90°) turn, and pull the fastener upward to loosen it.

4. Repeat step 3 to loosen all fasteners from the mounting holes.

5. With all fasteners loosened, remove the heatsink from the CPU.
Installing a Passive CPU Heatsink

1. Do not apply thermal grease to the heatsink or the CPU die; the required amount has already been applied.

2. Place the heatsink on top of the CPU so that the four mounting holes are aligned with those on the motherboard and the underlying heatsink bracket.

3. Screw in two diagonal screws (the #1 and #2 screws in the figure below) until just snug. To avoid possible damage to the CPU, do not over tighten the screws.

4. Finish the installation by fully tightening all four screws.

Recommended Supermicro heatsink:
SNK-P0046P passive heatsink
(1U chassis)
Removing the Passive Heatsink

Note: We do not recommend that the CPU or the heatsink be removed. However, if you do need to remove the heatsink, please follow the instructions below to remove the heatsink and to prevent damage done to the CPU or other components.

1. Unscrew the heatsink screws from the motherboard in the sequence as shown in the figure below.

2. Gently wriggle the heatsink to loosen it from the CPU. (Do not use excessive force)

3. Once the CPU is loosened, remove the CPU from the CPU socket.

4. Clean the surface of the CPU and the heatsink, removing any thermal grease. Reapply the proper amount of fresh thermal grease on the surface before reinstalling the CPU and the heatsink.
2.4 Memory Support and Installation

>Note: Check the Supermicro website for recommended memory modules.

>Important: Exercise extreme care when installing or removing DIMM modules to prevent any possible damage.

Memory Support

The X11SSH-F/-LN4F motherboard supports up to 64GB of unbuffered (UDIMM) DDR4 ECC 2400/2133/1866/1600/1333MHz memory in four memory slots. Populating these DIMM slots with memory modules of the same type and size will result in interleaved memory, which will improve memory performance.

DIMM Module Population Configuration

For optimal memory performance, follow the table below when populating memory.

<table>
<thead>
<tr>
<th>Processors and their Corresponding Memory Modules</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Memory Module Population for Optimal Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of DIMMs</td>
</tr>
<tr>
<td>2 DIMMs</td>
</tr>
<tr>
<td>4 DIMMs</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Memory Module Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIMM Slots per Channel</td>
</tr>
<tr>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Memory Module Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max Memory Possible</td>
</tr>
<tr>
<td>Single Rank UDIMM</td>
</tr>
<tr>
<td>Dual Rank UDIMMs</td>
</tr>
</tbody>
</table>
DIMM Module Population Sequence

When installing memory modules, the DIMM slots should be populated in the following order: DIMMB2, DIMMA2, DIMMB1, DIMMA1.

- Always use DDR4 DIMM modules of the same type, size and speed.

- Mixed DIMM speeds can be installed. However, all DIMMs will run at the speed of the slowest DIMM.

- The motherboard will support odd-numbered modules (1 or 3 modules installed). However, for best memory performance, install DIMM modules in pairs to activate memory interleaving.
DIMM Installation

1. Insert the desired number of DIMMs into the memory slots, starting with DIMMB2 (Channel B, Slot 2, blue slot). For best performance, please use the memory modules of the same type and speed in the same bank.

2. Push the release tabs outwards on both ends of the DIMM slot to unlock it.

3. Align the key of the DIMM module with the receptive point on the memory slot.

4. Align the notches on both ends of the module against the receptive points on the ends of the slot.

5. Use two thumbs together to press the notches on both ends of the module straight down into the slot until the module snaps into place.

6. Press the release tabs to the lock positions to secure the DIMM module into the slot.

DIMM Removal

Press both release tabs on the ends of the DIMM module to unlock it. Once the DIMM module is loosened, remove it from the memory slot.
2.5 Rear I/O Ports

See Figure 2-2 below for the locations and descriptions of the various I/O ports on the rear of the motherboard.

Figure 2-2. I/O Port Locations and Definitions

<table>
<thead>
<tr>
<th>#</th>
<th>Description</th>
<th>#</th>
<th>Description</th>
<th>#</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>COM1 Port</td>
<td>5.</td>
<td>USB7 (3.0)</td>
<td>9.</td>
<td>LAN3 (-LN4F only)</td>
</tr>
<tr>
<td>2.</td>
<td>IPMI LAN</td>
<td>6.</td>
<td>USB6 (3.0)</td>
<td>10.</td>
<td>LAN4 (-LN4F only)</td>
</tr>
<tr>
<td>3.</td>
<td>USB1</td>
<td>7.</td>
<td>LAN1</td>
<td>11.</td>
<td>VGA</td>
</tr>
<tr>
<td>4.</td>
<td>USB0</td>
<td>8.</td>
<td>LAN2</td>
<td>12.</td>
<td>UID Switch</td>
</tr>
</tbody>
</table>
VGA Port
A video (VGA) port is located next to LAN2 on the I/O back panel. Refer to the motherboard layout below for the location.

Serial Ports
Two COM connections (COM1 & COM2) are located on the motherboard. COM1 is located on the I/O back panel. COM2 is located next to COM1. See the table below for pin definitions.

<table>
<thead>
<tr>
<th>COM Port Pin Definitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin#</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
</tbody>
</table>

1. VGA Port
2. COM1
3. COM2
LAN Ports

Two Gigabit Ethernet ports (LAN1 and LAN2) are located on the I/O back panel on the motherboard. In addition, a dedicated IPMI LAN is located above USB 0/1 ports on the back panel. All of these ports accept RJ45 cables. Please refer to the LED Indicator section for LAN LED information.

Note: The -LN4F board contains two additional Gigabit Ethernet ports (LAN3 and LAN4) on top of LAN1 and LAN2, respectively.

<table>
<thead>
<tr>
<th>Pin#</th>
<th>Definition</th>
<th>Pin#</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TD0-</td>
<td>11</td>
<td>P3V3_Dual</td>
</tr>
<tr>
<td>2</td>
<td>TD0+</td>
<td>12</td>
<td>Act LED (Yellow)</td>
</tr>
<tr>
<td>3</td>
<td>TD1-</td>
<td>13</td>
<td>Link 1000 LED (Amber)</td>
</tr>
<tr>
<td>4</td>
<td>TD1+</td>
<td>14</td>
<td>Link 100 LED (Green)</td>
</tr>
<tr>
<td>5</td>
<td>TD2-</td>
<td>15</td>
<td>GND</td>
</tr>
<tr>
<td>6</td>
<td>TD2+</td>
<td>16</td>
<td>GND</td>
</tr>
<tr>
<td>7</td>
<td>TD3-</td>
<td>17</td>
<td>GND</td>
</tr>
<tr>
<td>8</td>
<td>TD3+</td>
<td>18</td>
<td>GND</td>
</tr>
<tr>
<td>9</td>
<td>COMMCT</td>
<td>19</td>
<td>GND</td>
</tr>
<tr>
<td>10</td>
<td>GND</td>
<td>20</td>
<td>Act LED (Yellow)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>21</td>
<td>Link 100 LED (Green)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>22</td>
<td>Link 1000 LED (Amber)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>23</td>
<td>SGND</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24</td>
<td>SGND</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25</td>
<td>SGND</td>
</tr>
<tr>
<td></td>
<td></td>
<td>26</td>
<td>SGND</td>
</tr>
<tr>
<td></td>
<td></td>
<td>27</td>
<td>GND</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pin#</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>GND</td>
</tr>
<tr>
<td>10</td>
<td>TD0+</td>
</tr>
<tr>
<td>11</td>
<td>TD0-</td>
</tr>
<tr>
<td>12</td>
<td>TD1+</td>
</tr>
<tr>
<td>13</td>
<td>TD1-</td>
</tr>
<tr>
<td>14</td>
<td>TD2+</td>
</tr>
<tr>
<td>15</td>
<td>TD2-</td>
</tr>
<tr>
<td>16</td>
<td>TD3+</td>
</tr>
<tr>
<td>17</td>
<td>TD3-</td>
</tr>
<tr>
<td>18</td>
<td>GND</td>
</tr>
</tbody>
</table>

1. LAN1
2. LAN2
3. IPMI_LAN
Universal Serial Bus (USB) Ports

There are two USB 2.0 ports (USB 0/1) and two USB 3.0 ports (USB 6/7) located on the I/O back panel. The motherboard also has two front access USB 2.0 headers (USB2/3 and USB4/5) and one front access USB 3.0 header (USB8/9). The USB10 header is USB Type A 3.0. The onboard headers can be used to provide front side USB access with a cable (not included).

Back Panel USB 0/1 (2.0)

<table>
<thead>
<tr>
<th>Pin#</th>
<th>Definition</th>
<th>Pin#</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+5V</td>
<td>5</td>
<td>+5V</td>
</tr>
<tr>
<td>2</td>
<td>USB_N</td>
<td>6</td>
<td>USB_N</td>
</tr>
<tr>
<td>3</td>
<td>USB_P</td>
<td>7</td>
<td>USB_P</td>
</tr>
<tr>
<td>4</td>
<td>Ground</td>
<td>8</td>
<td>Ground</td>
</tr>
</tbody>
</table>

Front Panel USB 2/3, 4/5 (2.0)

<table>
<thead>
<tr>
<th>Pin#</th>
<th>Definition</th>
<th>Pin#</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+5V</td>
<td>2</td>
<td>+5V</td>
</tr>
<tr>
<td>3</td>
<td>USB_N</td>
<td>4</td>
<td>USB_N</td>
</tr>
<tr>
<td>5</td>
<td>USB_P</td>
<td>6</td>
<td>USB_P</td>
</tr>
<tr>
<td>7</td>
<td>Ground</td>
<td>8</td>
<td>Ground</td>
</tr>
<tr>
<td>9</td>
<td>Key</td>
<td>10</td>
<td>NC</td>
</tr>
</tbody>
</table>

Back Panel USB 6/7 (3.0)

<table>
<thead>
<tr>
<th>Pin#</th>
<th>Definition</th>
<th>Pin#</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>VBUS</td>
<td>B1</td>
<td>Power</td>
</tr>
<tr>
<td>A2</td>
<td>D-</td>
<td>B2</td>
<td>USB_N</td>
</tr>
<tr>
<td>A3</td>
<td>D+</td>
<td>B3</td>
<td>USB_P</td>
</tr>
<tr>
<td>A4</td>
<td>GND</td>
<td>B4</td>
<td>GND</td>
</tr>
<tr>
<td>A5</td>
<td>Stda_SSRX-</td>
<td>B5</td>
<td>USB3_RN</td>
</tr>
<tr>
<td>A6</td>
<td>Stda_SSRX+</td>
<td>B6</td>
<td>USB3_RP</td>
</tr>
<tr>
<td>A7</td>
<td>GND</td>
<td>B7</td>
<td>GND</td>
</tr>
<tr>
<td>A8</td>
<td>Stda_SSTX-</td>
<td>B8</td>
<td>USB3_TN</td>
</tr>
<tr>
<td>A9</td>
<td>Stda_SSTX+</td>
<td>B9</td>
<td>USB3_TP</td>
</tr>
</tbody>
</table>
Front Panel USB 8/9 (3.0) Pin Definitions

<table>
<thead>
<tr>
<th>Pin#</th>
<th>Definition</th>
<th>Pin#</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VBUS</td>
<td>19</td>
<td>Power</td>
</tr>
<tr>
<td>2</td>
<td>StdA_SSRX-</td>
<td>18</td>
<td>USB3_RN</td>
</tr>
<tr>
<td>3</td>
<td>StdA_SSRX+</td>
<td>17</td>
<td>USB3_RP</td>
</tr>
<tr>
<td>4</td>
<td>GND</td>
<td>16</td>
<td>GND</td>
</tr>
<tr>
<td>5</td>
<td>StdA_SSTX-</td>
<td>15</td>
<td>USB3_TN</td>
</tr>
<tr>
<td>6</td>
<td>StdA_SSTX+</td>
<td>14</td>
<td>USB3_TP</td>
</tr>
<tr>
<td>7</td>
<td>GND</td>
<td>13</td>
<td>GND</td>
</tr>
<tr>
<td>8</td>
<td>D-</td>
<td>12</td>
<td>USB_N</td>
</tr>
<tr>
<td>9</td>
<td>D+</td>
<td>11</td>
<td>USB_P</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Type A USB 10 (3.0) Pin Definitions

<table>
<thead>
<tr>
<th>Pin#</th>
<th>Definition</th>
<th>Pin#</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VBUS</td>
<td>5</td>
<td>SSRX-</td>
</tr>
<tr>
<td>2</td>
<td>USB_N</td>
<td>6</td>
<td>SSRX+</td>
</tr>
<tr>
<td>3</td>
<td>USB_P</td>
<td>7</td>
<td>GND</td>
</tr>
<tr>
<td>4</td>
<td>Ground</td>
<td>8</td>
<td>SSTX-</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>9</td>
<td>SSTX+</td>
</tr>
</tbody>
</table>

1. USB0/1
2. USB2/3
3. USB4/5
4. USB6/7
5. USB8/9
6. USB10
2.6 Front Control Panel

JF1 contains header pins for various buttons and indicators that are normally located on a control panel at the front of the chassis. These connectors are designed specifically for use with Supermicro chassis. See the figure below for the descriptions of the front control panel buttons and LED indicators.

Figure 2-3. JF1 Header Pins

```
<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>PWR</td>
<td>Ground</td>
</tr>
<tr>
<td>Reset</td>
<td>Ground</td>
</tr>
<tr>
<td>3.3 V</td>
<td>Power Fail LED</td>
</tr>
<tr>
<td>Red+ (Blue LED Cathode)</td>
<td>Blue+ (OH/Fan Fail)</td>
</tr>
<tr>
<td>3.3V Stby</td>
<td>NIC2 Activity LED</td>
</tr>
<tr>
<td>3.3V Stby</td>
<td>NIC1 Activity LED</td>
</tr>
<tr>
<td>ID_UID_SW/3.3V Stby</td>
<td>HDD LED</td>
</tr>
<tr>
<td>3.3V</td>
<td>FP PWRLED</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>NMI</td>
<td>Ground</td>
</tr>
</tbody>
</table>
```
Power Button

The Power Button connection is located on pins 1 and 2 of JF1. Momentarily contacting both pins will power on/off the system. This button can also be configured to function as a suspend button (with a setting in the BIOS - see Chapter 4). To turn off the power when the system is in suspend mode, press the button for 4 seconds or longer. Refer to the table below for pin definitions.

<table>
<thead>
<tr>
<th>Pin#</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Signal</td>
</tr>
<tr>
<td>2</td>
<td>Ground</td>
</tr>
</tbody>
</table>

Reset Button

The Reset Button connection is located on pins 3 and 4 of JF1. Attach it to a hardware reset switch on the computer case. Refer to the table below for pin definitions.

<table>
<thead>
<tr>
<th>Pin#</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Reset</td>
</tr>
<tr>
<td>4</td>
<td>Ground</td>
</tr>
</tbody>
</table>

1. PWR Button
2. Reset Button
Power Fail LED
The Power Fail LED connection is located on pins 5 and 6 of JF1. Refer to the table below for pin definitions.

| Power Fail LED Pin Definitions (JF1) |
|---|---|
| Pin# | Definition |
| 5 | 3.3V |
| 6 | PWR Supply Fail |

Overheat (OH)/Fan Fail
Connect an LED cable to pins 7 and 8 of the Front Control Panel to use the Overheat/Fan Fail LED connections. The LED on pin 8 provides warnings of overheat or fan failure. Refer to the tables below for pin definitions.

| OH/Fan Fail Indicator Status |
|---|---|
| State | Definition |
| Off | Normal |
| On | Overheat |
| Flashing | Fan Fail |

| OH/Fan Fail LED Pin Definitions (JF1) |
|---|---|
| Pin# | Definition |
| 7 | Blue LED |
| 8 | OH/Fan Fail LED |
NIC1/NIC2 (LAN1/LAN2)

The NIC (Network Interface Controller) LED connection for LAN port 1 is located on pins 11 and 12 of JF1, and the LED connection for LAN port 2 is on pins 9 and 10. Attach the NIC LED cables here to display network activity. Refer to the table below for pin definitions.

| LAN1/LAN2 LED Pin Definitions (JF1) |
|-----------------|----------------|
| Pin# | Definition |
| 9 | 3.3V Stby |
| 10 | NIC 2 Activity LED |
| 11 | 3.3V Stby |
| 12 | NIC 1 Activity LED |

HDD LED/UID Switch

The HDD LED/UID Switch connection is located on pins 13 and 14 of JF1. Attach a cable to pin 14 to show hard drive activity status. Attach a cable to pin 13 to use UID switch. Refer to the table below for pin definitions.

| HDD LED Pin Definitions (JF1) |
|-----------------|----------------|
| Pin# | Definition |
| 13 | 3.3V Stdby/UID_SW |
| 14 | HDD Active |

1. NIC2 LED
2. NIC1 LED
3. HDD/UID
Power LED

The Power LED connection is located on pins 15 and 16 of JF1. Refer to the table below for pin definitions.

<table>
<thead>
<tr>
<th>Pin#</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>3.3V</td>
</tr>
<tr>
<td>16</td>
<td>PWR LED</td>
</tr>
</tbody>
</table>

NMI Button

The non-maskable interrupt button header is located on pins 19 and 20 of JF1. Refer to the table below for pin definitions.

<table>
<thead>
<tr>
<th>Pin#</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>Control</td>
</tr>
<tr>
<td>20</td>
<td>Ground</td>
</tr>
</tbody>
</table>

1. PWR LED
2. NMI Button
2.7 Connectors

Power Connections

Main ATX Power Supply Connector

The primary power supply connector (JPWR1) meets the ATX SSI EPS 12V specification. You must also connect the 8-pin (JPWR2) processor power connector to your power supply.

<table>
<thead>
<tr>
<th>ATX Power 24-pin Connector</th>
<th>Pin Definitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin#</td>
<td>Definition</td>
</tr>
<tr>
<td>13</td>
<td>+3.3V</td>
</tr>
<tr>
<td>14</td>
<td>-12V</td>
</tr>
<tr>
<td>15</td>
<td>Ground</td>
</tr>
<tr>
<td>16</td>
<td>PS_ON</td>
</tr>
<tr>
<td>17</td>
<td>Ground</td>
</tr>
<tr>
<td>18</td>
<td>Ground</td>
</tr>
<tr>
<td>19</td>
<td>Ground</td>
</tr>
<tr>
<td>20</td>
<td>Res (NC)</td>
</tr>
<tr>
<td>21</td>
<td>+5V</td>
</tr>
<tr>
<td>22</td>
<td>+5V</td>
</tr>
<tr>
<td>23</td>
<td>+5V</td>
</tr>
<tr>
<td>24</td>
<td>Ground</td>
</tr>
</tbody>
</table>

Required Connection

1. 24-Pin ATX Main PWR
Secondary Power Connector

JPWR2 must also be connected to the power supply. This connector is used to power the processor(s).

<table>
<thead>
<tr>
<th>+12V 8-pin Power Pin Definitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin#</td>
</tr>
<tr>
<td>1 - 4</td>
</tr>
<tr>
<td>5 - 8</td>
</tr>
</tbody>
</table>

Required Connection

Important: To provide adequate power supply to the motherboard, be sure to connect the 24-pin ATX PWR and the 8-pin PWR connectors to the power supply. Failure to do so may void the manufacturer warranty on your power supply and motherboard.
Headers

Fan Headers

The X11SSH-F/-LN4F has five fan headers (FAN1-FAN4, FANA). All these 4-pin fans headers are backward-compatible with the traditional 3-pin fans. However, fan speed control is available for 4-pin fans only by Thermal Management via the IPMI 2.0 interface. Refer to the table below for pin definitions.

<table>
<thead>
<tr>
<th>Fan Header Pin Definitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin#</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
</tbody>
</table>

1. FANA
2. FAN1
3. FAN2
4. FAN3
5. FAN4
Power LED/Speaker

Pins 1-3 of JD1 are used for power LED indication, and pins 4-7 are for the speaker. Please note that the speaker connector pins (4-7) are used with an external speaker. If you wish to use the onboard speaker, you should close pins 6-7 with a cap. Refer to the tables below for pin definitions.

<table>
<thead>
<tr>
<th>PWR LED Connector</th>
<th></th>
<th>Speaker Connector</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin Setting</td>
<td>Definition</td>
<td>Pin Setting</td>
<td>Definition</td>
</tr>
<tr>
<td>1</td>
<td>JD1_PIN1</td>
<td>4</td>
<td>P5V</td>
</tr>
<tr>
<td>2</td>
<td>FP_PWR_LED</td>
<td>5</td>
<td>Key</td>
</tr>
<tr>
<td>3</td>
<td>FP_PWR_LED</td>
<td>6</td>
<td>R_SPKPIN_N</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>R_SPKPIN</td>
</tr>
</tbody>
</table>

1. Speaker Header
SGPIO Headers

Two I-SGPIO (Serial Link General Purpose Input/Output) headers are located on the motherboard. They support onboard I-SATA 3.0 ports. Refer to the tables below for pin definitions.

<table>
<thead>
<tr>
<th>I-SGPIO 1/2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>I-SGPIO1</td>
<td>Ports 0-3</td>
</tr>
<tr>
<td>I-SGPIO2</td>
<td>Ports 4-7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SGPIO Header Pin Definitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin#</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>7</td>
</tr>
</tbody>
</table>

NC = No Connection

Disk-On-Module Power Connector

Two power connectors for SATA DOM (Disk-On-Module) devices are located at JSD1/JSD2. Connect appropriate cables here to provide power support for your Serial Link DOM devices.

<table>
<thead>
<tr>
<th>DOM Power Pin Definitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin#</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
</tbody>
</table>

1. I-SGPIO1
2. I-SGPIO2
3. JSD1
4. JSD2
TPM/Port 80 Header

A Trusted Platform Module (TPM)/Port 80 header is located at JTPM1 to provide TPM support and Port 80 connection. Use this header to enhance system performance and data security. Refer to the table below for pin definitions.

<table>
<thead>
<tr>
<th>Pin#</th>
<th>Definition</th>
<th>Pin#</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>LCLK</td>
<td>2</td>
<td>GND</td>
</tr>
<tr>
<td>3</td>
<td>LFRAME#</td>
<td>4</td>
<td><(KEY)></td>
</tr>
<tr>
<td>5</td>
<td>LRESET#</td>
<td>6</td>
<td>+5V</td>
</tr>
<tr>
<td>7</td>
<td>LAD3</td>
<td>8</td>
<td>LAD2</td>
</tr>
<tr>
<td>9</td>
<td>+3.3V</td>
<td>10</td>
<td>LAD1</td>
</tr>
<tr>
<td>11</td>
<td>LAD0</td>
<td>12</td>
<td>GND</td>
</tr>
<tr>
<td>13</td>
<td>SMB_CLK</td>
<td>14</td>
<td>SMB_DAT</td>
</tr>
<tr>
<td>15</td>
<td>+3V Stdby</td>
<td>16</td>
<td>SERIRQ</td>
</tr>
<tr>
<td>17</td>
<td>GND</td>
<td>18</td>
<td>CLKRUN#</td>
</tr>
<tr>
<td>19</td>
<td>LPCPD#</td>
<td>20</td>
<td>LDRQ#</td>
</tr>
</tbody>
</table>

1. TPM Header
Standby Power
The Wake-On-LAN (WOL) header is located at JSTBY1 on the motherboard. Refer to the table below for pin definitions.

<table>
<thead>
<tr>
<th>Pin#</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+5V Standby</td>
</tr>
<tr>
<td>2</td>
<td>Ground</td>
</tr>
<tr>
<td>3</td>
<td>Wake-up</td>
</tr>
</tbody>
</table>

Internal Speaker/Buzzer
The Internal Speaker (SP1) can be used to provide audible notifications using various beep codes. Refer to the table below for pin definitions. Refer to the layout below for the location of the internal buzzer.

<table>
<thead>
<tr>
<th>Pin#</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pos (+)</td>
</tr>
<tr>
<td>2</td>
<td>Neg (-)</td>
</tr>
</tbody>
</table>

1. Standby Power
2. Internal Speaker
Power SMB (I²C) Header

The Power System Management Bus (I²C) connector (JPIC1) monitors the power supply, fan, and system temperatures. Refer to the table below for pin definitions.

<table>
<thead>
<tr>
<th>Pin#</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Clock</td>
</tr>
<tr>
<td>2</td>
<td>Data</td>
</tr>
<tr>
<td>3</td>
<td>PMBUS_Alert</td>
</tr>
<tr>
<td>4</td>
<td>Ground</td>
</tr>
<tr>
<td>5</td>
<td>+3.3V</td>
</tr>
</tbody>
</table>

4-pin BMC External I²C Header

A System Management Bus header for IPMI 2.0 is located at JPMB1. Connect the appropriate cable here to use the IPMB I²C connection on your system. Refer to the table below for pin definitions.

<table>
<thead>
<tr>
<th>Pin#</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Data</td>
</tr>
<tr>
<td>2</td>
<td>GND</td>
</tr>
<tr>
<td>3</td>
<td>Clock</td>
</tr>
<tr>
<td>4</td>
<td>NC</td>
</tr>
</tbody>
</table>
Overheat/Fan Fail LED Header

The JOH1 header is used to connect an LED indicator to provide warnings of chassis overheating and fan failure. This LED will blink when a fan failure occurs. Refer to the tables below for pin definitions.

<table>
<thead>
<tr>
<th>State</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solid</td>
<td>Overheat</td>
</tr>
<tr>
<td>Blinking</td>
<td>Fan Fail</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pin#</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5vDC</td>
</tr>
<tr>
<td>2</td>
<td>OH Active</td>
</tr>
</tbody>
</table>

Chassis Intrusion

A Chassis Intrusion header is located at JL1 on the motherboard. Attach the appropriate cable from the chassis to inform you of a chassis intrusion when the chassis is opened. Refer to the table below for pin definitions.

<table>
<thead>
<tr>
<th>Pin#</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Intrusion Input</td>
</tr>
<tr>
<td>2</td>
<td>Ground</td>
</tr>
</tbody>
</table>

1. Overheat/Fan Fail LED Header
2. Chassis Intrusion
SATA Ports
Eight SATA 3.0 connectors are located on the X11SSH-F/-LN4F motherboard, supported by the Intel C236 PCH chip. These SATA ports support RAID 0, 1, 5, and 10. SATA ports provide serial-link signal connections, which are faster than the connections of Parallel ATA. Refer to the tables below for pin definitions.

Note 1: I-SATA0 and I-SATA1 are Supermicro SuperDOMs. These are yellow SATA-DOM connectors with power pins built in and do not require separate external power cables. These connectors are backward-compatible with non-Supermicro SATADOMs that require an external power supply.

Note 2: For more information on the SATA HostRAID configuration, please refer to the Intel SATA HostRAID user’s guide posted on our website at http://www.supermicro.com.

<table>
<thead>
<tr>
<th>X11SSH-F/-LN4F SATA 3.0 Connector Types</th>
<th>Port #</th>
<th>Connection Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-SATA0-1 (Two)</td>
<td>SATA 3.0/6 Gb/s</td>
<td>RAID 0, 1, 5, 10 SuperDOM connectors</td>
</tr>
<tr>
<td>I-SATA2-7 (Six)</td>
<td>SATA 3.0/6 Gb/s</td>
<td>RAID 0, 1, 5, 10</td>
</tr>
<tr>
<td>Supported by</td>
<td>Intel C236 PCH-Exp.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SATA 3.0 Port Pin Definitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin#</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
</tbody>
</table>

1. I-SATA0
2. I-SATA1
3. I-SATA2
4. I-SATA3
5. I-SATA4
6. I-SATA5
7. I-SATA6
8. I-SATA7
M.2 Slot

The X11SSH-F/-LN4F motherboard contains one M.2 socket at J23. M.2 was formerly Next Generation Form Factor (NGFF) and serves to replace mini PCI-E and mSATA. M.2 allows for a greater variety of card sizes, increased functionality, and spatial efficiency. The M.2 socket on the X11SSH-F/-LN4F motherboard supports PCI-E 3.0 x2 M.2 cards in the 22x80mm form factor.
Unit Identifier Switch/UID LED Indicator

A rear Unit Identifier (UID) switch and a rear UID LED (LED1) are located next to the VGA port on the motherboard. The front UID switch and the front UID LED are both located on the Front Panel Control (JF1) (with the front UID switch on pin 13, and the front LED on pin 7 of JF1). When you press the front or the rear UID switch, both front and rear UID LEDs will be turned on. Press the UID switch again to turn off the LED indicators. The UID Indicators provide easy identification of a system unit that may be in need of service.

Note: UID can also be triggered via IPMI on the motherboard. For more information on IPMI, please refer to the IPMI User's Guide posted on our website at http://www.supermicro.com.

<table>
<thead>
<tr>
<th>Pin#</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ground</td>
</tr>
<tr>
<td>2</td>
<td>Ground</td>
</tr>
<tr>
<td>3</td>
<td>Button In</td>
</tr>
<tr>
<td>4</td>
<td>Ground</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Color</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blue: On</td>
<td>Unit Identified</td>
</tr>
</tbody>
</table>

1. UID Switch
2. UID LED
2.8 Jumper Settings

How Jumpers Work

To modify the operation of the motherboard, jumpers can be used to choose between optional settings. Jumpers create shorts between two pins to change the function of the connector. Pin 1 is identified with a square solder pad on the printed circuit board. See the diagram below for an example of jumping pins 1 and 2. Refer to the motherboard layout page for jumper locations.

Note: On two-pin jumpers, "Closed" means the jumper is on and "Open" means the jumper is off the pins.
Chapter 2: Installation

CMOS Clear

JBT1 is used to clear the CMOS. Instead of pins, this "jumper" consists of contact pads to prevent accidental clearing of the CMOS. To clear the CMOS, use a metal object such as a small screwdriver to touch both pads at the same time to short the connection.

Note: Be sure to completely shut down the system, and then short JBT1 to clear the CMOS.

VGA Enable/Disable

Jumper JPG1 allows the user to enable the onboard VGA connector. The default setting is pins 1-2 to enable the connection. Refer to the table below for jumper settings. The default setting is Enabled.

<table>
<thead>
<tr>
<th>Jumper Setting</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pins 1-2</td>
<td>Enabled</td>
</tr>
<tr>
<td>Pins 2-3</td>
<td>Disabled</td>
</tr>
</tbody>
</table>

1. CMOS Clear
2. VGA Enable/Disable
LAN Port Enable/Disable

Change the setting of jumper JPL1/JPL2 to enable or disable the LAN1/LAN2 LAN ports, respectively. The default setting is Enabled.

Note: X11SSH-LN4F has additional jumpers JPL3/JPL4 which enable or disable LAN ports 3/4 on the motherboard.

<table>
<thead>
<tr>
<th>Jumper Setting</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pins 1-2</td>
<td>Enabled</td>
</tr>
<tr>
<td>Pins 2-3</td>
<td>Disabled</td>
</tr>
</tbody>
</table>

Watch Dog

Watch Dog (JWD1) is a system monitor that can reboot the system when a software application hangs. Close pins 1-2 to reset the system if an application hangs. Close pins 2-3 to generate a non-maskable interrupt (NMI) signal for the application that hangs. Refer to the table below for jumper settings. The Watch Dog must also be enabled in the BIOS.

<table>
<thead>
<tr>
<th>Jumper Setting</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pins 1-2</td>
<td>Reset</td>
</tr>
<tr>
<td>Pins 2-3</td>
<td>NMI</td>
</tr>
<tr>
<td>Open</td>
<td>Disabled</td>
</tr>
</tbody>
</table>

1. LAN1 Port Enable/Disable
2. LAN2 Port Enable/Disable
3. LAN3 Port Enable/Disable (-LN4F only)
4. LAN4 Port Enable/Disable (-LN4F only)
5. Watch Dog
Chapter 2: Installation

BIOS Recovery

Use jumper JBR1 to recover the BIOS settings on the motherboard. Refer to the table below for jumper settings. The default setting is Normal.

<table>
<thead>
<tr>
<th>Jumper Setting</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pins 1-2</td>
<td>Normal</td>
</tr>
<tr>
<td>Pins 2-3</td>
<td>BIOS Recovery</td>
</tr>
</tbody>
</table>

SMBus to PCI Slots

Use jumpers JI²C1 and JI²C2 to connect the System Management Bus (I2C) to PCI-Express slots to improve PCI performance. These two jumpers should be set at the same time. Refer to the table below for jumper settings. The default setting is Disabled.

<table>
<thead>
<tr>
<th>Jumper Setting</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pins 1-2</td>
<td>Enabled</td>
</tr>
<tr>
<td>Pins 2-3</td>
<td>Disabled</td>
</tr>
</tbody>
</table>

1. BIOS Recovery
2. SMBus to PCI Slots
BMC Enabled

Jumper JPB1 allows you to enable the embedded ASpeed AST2400 Baseboard Management Controller (BMC) to provide IPMI 2.0/KVM support on the motherboard. Refer to the table below for jumper settings. The default setting is BMC Enable.

<table>
<thead>
<tr>
<th>Jumper Setting</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pins 1-2</td>
<td>BMC Enabled</td>
</tr>
<tr>
<td>Pins 2-3</td>
<td>Disabled</td>
</tr>
</tbody>
</table>

Manufacturer Mode Select

Close pin 2 and pin 3 of jumper JPME2 to bypass SPI flash security and force the system to operate in the manufacturer mode, which will allow the user to flash the system firmware from a host server for system setting modifications. Refer to the table below for jumper settings. The default setting is Normal.

<table>
<thead>
<tr>
<th>Jumper Setting</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pins 1-2</td>
<td>Normal</td>
</tr>
<tr>
<td>Pins 2-3</td>
<td>Manufacturer Mode</td>
</tr>
</tbody>
</table>
2.9 LED Indicators

LAN LEDs

Two LAN ports (LAN 1 and LAN 2) are located on the I/O back panel of the motherboard. Each Ethernet LAN port has two LEDs. The yellow LED indicates activity, while the other Link LED may be green, amber, or off to indicate the speed of the connection. Refer to the tables below for more information.

Note: X11SSH-LN4F has additional LAN ports LAN3 and LAN4 as well.

<table>
<thead>
<tr>
<th>LAN1-4 Activity LED (Right)</th>
<th>LED State</th>
<th>Color</th>
<th>Status</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>LED Color</td>
<td>Color</td>
<td>Yellow</td>
<td>Flashing</td>
<td>Active</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LAN1-4 Link LED (Left)</th>
<th>LED State</th>
<th>LED Color</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>Off</td>
<td>No Connection/10 Mbps</td>
<td></td>
</tr>
<tr>
<td>Amber</td>
<td>Amber</td>
<td>1 Gbps</td>
<td></td>
</tr>
<tr>
<td>Green</td>
<td>Green</td>
<td>100 Mbps</td>
<td></td>
</tr>
</tbody>
</table>

1. LAN1 LEDs
2. LAN2 LEDs
3. LAN3 LEDs (-LN4F only)
4. LAN4 LEDs (-LN4F only)
Dedicated IPMI LAN LEDs

In addition to LAN 1 and LAN 2, an IPMI LAN is also located on the I/O back panel. The amber LED on the right indicates activity, while the green LED on the left indicates the speed of the connection. Refer to the table below for more information.

<table>
<thead>
<tr>
<th>Color/State</th>
<th>Definition</th>
<th>100 Mbps</th>
<th>1Gbps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link (left)</td>
<td>Green: Solid</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Amber: Solid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Activity (Right)</td>
<td>Amber: Blinking</td>
<td></td>
<td>Active</td>
</tr>
</tbody>
</table>

LAN3/LAN4 Front Panel Activity LEDs (-LN4F only)

The front panel NIC (Network Interface Connection) activity LED indicators for LAN3/LAN4 on the X11SSH-LN4F are located at J7/J8. Refer to the layout below for the locations.

<table>
<thead>
<tr>
<th>NIC3/NIC4 Headers Pin Definitions (-LN4F only)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin#</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
</tbody>
</table>

1. IPMI LAN
2. LAN3 Activity LED jumper
3. LAN4 Activity LED jumper
BMC Heartbeat LED

A BMC Heartbeat LED is located at LEDBMC on the motherboard. When LEDBMC is blinking, the BMC is functioning normally. Refer to the table below for more information.

<table>
<thead>
<tr>
<th>LED Color</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green: Blinking</td>
<td>BMC: Normal</td>
</tr>
</tbody>
</table>

Onboard Power LED

The Onboard Power LED is located at LEDPWR on the motherboard. When this LED is on, the system is on. Be sure to turn off the system and unplug the power cord before removing or installing components. Refer to the table below for more information.

<table>
<thead>
<tr>
<th>LED Color</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>System Off (power cable not connected)</td>
</tr>
<tr>
<td>Green</td>
<td>System On</td>
</tr>
</tbody>
</table>

1. BMC Heartbeat LED
2. Onboard PWR LED
M.2 LED

An M.2 LED is located at LE3 on the motherboard. When LE3 is blinking, M.2 functions normally. Refer to the table below for more information.

<table>
<thead>
<tr>
<th>M.2 LED State</th>
<th>LED Color</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Green:</td>
<td>Device Working</td>
</tr>
<tr>
<td></td>
<td>Blinking</td>
<td></td>
</tr>
</tbody>
</table>

1. M.2 LED
Chapter 3

Troubleshooting

3.1 Troubleshooting Procedures

Use the following procedures to troubleshoot your system. If you have followed all of the procedures below and still need assistance, refer to the ‘Technical Support Procedures’ and/or ‘Returning Merchandise for Service’ section(s) in this chapter. **Always disconnect the AC power cord before adding, changing or installing any non hot-swap hardware components.**

Before Power On

1. Make sure that there are no short circuits between the motherboard and chassis.

2. Disconnect all ribbon/wire cables from the motherboard, including those for the keyboard and mouse.

3. Remove all add-on cards.

4. Install the CPU (making sure it is fully seated) and connect the front panel connectors to the motherboard.

No Power

1. Make sure that there are no short circuits between the motherboard and the chassis.

2. Make sure that the ATX power connectors are properly connected.

3. Check that the 115V/230V switch, if available, on the power supply is properly set.

4. Turn the power switch on and off to test the system, if applicable.

5. The battery on your motherboard may be old. Check to verify that it still supplies ~3VDC. If it does not, replace it with a new one.
No Video

1. If the power is on but you have no video, remove all add-on cards and cables.

2. Use the speaker to determine if any beep codes are present. Refer to Appendix A for details on beep codes.

3. Remove all memory modules and turn on the system (if the alarm is on, check the specs of memory modules, reset the memory or try a different one).

System Boot Failure

If the system does not display POST (Power-On-Self-Test) or does not respond after the power is turned on, check the following:

1. Check for any error beep from the motherboard speaker.

 • If there is no error beep, try to turn on the system without DIMM modules installed. If there is still no error beep, replace the motherboard.

 • If there are error beeps, clear the CMOS settings by unplugging the power cord and contacting both pads on the CMOS clear jumper (JBT1). (Refer to Section 2-8 in Chapter 2.)

2. Remove all components from the motherboard, especially the DIMM modules. Make sure that system power is on and that memory error beeps are activated.

3. Turn on the system with only one DIMM module installed. If the system boots, check for bad DIMM modules or slots by following the Memory Errors Troubleshooting procedure in this chapter.

Memory Errors

When a no-memory beep code is issued by the system, check the following:

1. Make sure that the memory modules are compatible with the system and that the DIMMs are properly and fully installed. (For memory compatibility, refer to the memory compatibility chart posted on our website at http://www.supermicro.com.)

2. Check if different speeds of DIMMs have been installed. It is strongly recommended that you use the same RAM type and speed for all DIMMs in the system.

3. Make sure that you are using the correct type of ECC DDR4 UDIMM modules recommended by the manufacturer.

4. Check for bad DIMM modules or slots by swapping a single module among all memory slots and check the results.
5. Make sure that all memory modules are fully seated in their slots. Follow the instructions given in Section 2-5 in Chapter 2.

6. Please follow the instructions given in the DIMM population tables listed in Section 2-5 to install your memory modules.

Losing the System's Setup Configuration

1. Make sure that you are using a high-quality power supply. A poor-quality power supply may cause the system to lose the CMOS setup information. Refer to Chapter 2 for details on recommended power supplies.

2. The battery on your motherboard may be old. Check to verify that it still supplies ~3VDC. If it does not, replace it with a new one.

3. If the above steps do not fix the setup configuration problem, contact your vendor for repairs.

When the System Becomes Unstable

A. If the system becomes unstable during or after OS installation, check the following:

1. CPU/BIOS support: Make sure that your CPU is supported and that you have the latest BIOS installed in your system.

2. Memory support: Make sure that the memory modules are supported by testing the modules using memtest86 or a similar utility.

 Note: Refer to the product page on our website at http://www.supermicro.com for memory and CPU support and updates.

3. HDD support: Make sure that all hard disk drives (HDDs) work properly. Replace the bad HDDs with good ones.

4. System cooling: Check the system cooling to make sure that all heatsink fans and CPU/system fans, etc., work properly. Check the hardware monitoring settings in the IPMI to make sure that the CPU and system temperatures are within the normal range. Also check the front panel Overheat LED and make sure that it is not on.

5. Adequate power supply: Make sure that the power supply provides adequate power to the system. Make sure that all power connectors are connected. Please refer to our website for more information on the minimum power requirements.

6. Proper software support: Make sure that the correct drivers are used.
B. If the system becomes unstable before or during OS installation, check the following:

1. Source of installation: Make sure that the devices used for installation are working properly, including boot devices such as CD/DVD and CD/DVD-ROM.

2. Cable connection: Check to make sure that all cables are connected and working properly.

3. Using the minimum configuration for troubleshooting: Remove all unnecessary components (starting with add-on cards first), and use the minimum configuration (but with the CPU and a memory module installed) to identify the trouble areas. Refer to the steps listed in Section A above for proper troubleshooting procedures.

4. Identifying bad components by isolating them: If necessary, remove a component in question from the chassis, and test it in isolation to make sure that it works properly. Replace a bad component with a good one.

5. Check and change one component at a time instead of changing several items at the same time. This will help isolate and identify the problem.

6. To find out if a component is good, swap this component with a new one to see if the system will work properly. If so, then the old component is bad. You can also install the component in question in another system. If the new system works, the component is good and the old system has problems.
3.2 Technical Support Procedures

Before contacting Technical Support, please take the following steps. Also, please note that as a motherboard manufacturer, Supermicro also sells motherboards through its channels, so it is best to first check with your distributor or reseller for troubleshooting services. They should know of any possible problems with the specific system configuration that was sold to you.

1. Please go through the Troubleshooting Procedures and Frequently Asked Questions (FAQ) sections in this chapter or see the FAQs on our website (http://www.supermicro.com) before contacting Technical Support.

2. BIOS upgrades can be downloaded from our website (http://www.supermicro.com).

3. If you still cannot resolve the problem, include the following information when contacting Supermicro for technical support:
 - Motherboard model and PCB revision number
 - BIOS release date/version (This can be seen on the initial display when your system first boots up.)
 - System configuration

4. An example of a Technical Support form is on our website at http://www.supermicro.com/RmaForm/.
 - Distributors: For immediate assistance, please have your account number ready when placing a call to our Technical Support department. We can be reached by email at support@supermicro.com.
3.3 Frequently Asked Questions

Question: What type of memory does my motherboard support?

Answer: The motherboard supports ECC DDR4 UDIMM modules. To enhance memory performance, do not mix memory modules of different speeds and sizes. Please follow all memory installation instructions given on Section 2-4 in Chapter 2.

Question: How do I update my BIOS?

Answer: It is recommended that you do not upgrade your BIOS if you are not experiencing any problems with your system. Updated BIOS files are located on our website at http://www.supermicro.com. Please check our BIOS warning message and the information on how to update your BIOS on our website. Select your motherboard model and download the BIOS file to your computer. Also, check the current BIOS revision to make sure that it is newer than your BIOS before downloading. You can choose from the zip file and the .exe file. If you choose the zip BIOS file, please unzip the BIOS file onto a bootable USB device. Run the batch file using the format FLASH.BAT filename.rom from your bootable USB device to flash the BIOS. Then, your system will automatically reboot.

Warning: Do not shut down or reset the system while updating the BIOS to prevent possible system boot failure!

Note: The SPI BIOS chip used on this motherboard cannot be removed. Send your motherboard back to our RMA Department at Supermicro for repair. For BIOS Recovery instructions, please refer to the AMI BIOS Recovery Instructions posted at http://www.supermicro.com.
3.4 Battery Removal and Installation

Battery Removal
To remove the onboard battery, follow the steps below:
1. Power off your system and unplug your power cable.
2. Locate the onboard battery as shown below.
3. Using a tool such as a pen or a small screwdriver, push the battery lock outwards to unlock it. Once unlocked, the battery will pop out from the holder.
4. Remove the battery.

Proper Battery Disposal
Warning: Please handle used batteries carefully. Do not damage the battery in any way; a damaged battery may release hazardous materials into the environment. Do not discard a used battery in the garbage or a public landfill. Please comply with the regulations set up by your local hazardous waste management agency to dispose of your used battery properly.

Battery Installation
1. To install an onboard battery, follow steps 1 & 2 above and continue below:
2. Identify the battery's polarity. The positive (+) side should be facing up.
3. Insert the battery into the battery holder and push it down until you hear a click to ensure that the battery is securely locked.

Warning: When replacing a battery, be sure to only replace it with the same type.
3.5 Returning Merchandise for Service

A receipt or copy of your invoice marked with the date of purchase is required before any warranty service will be rendered. You can obtain service by calling your vendor for a Returned Merchandise Authorization (RMA) number. When returning the motherboard to the manufacturer, the RMA number should be prominently displayed on the outside of the shipping carton, and the shipping package is mailed prepaid or hand-carried. Shipping and handling charges will be applied for all orders that must be mailed when service is complete. For faster service, you can also request a RMA authorization online (http://www.supermicro.com/RmaForm/).

This warranty only covers normal consumer use and does not cover damages incurred in shipping or from failure due to the alternation, misuse, abuse or improper maintenance of products.

During the warranty period, contact your distributor first for any product problems.
Chapter 4

BIOS

4.1 Introduction

This chapter describes the AMIBIOS™ setup utility for the X11SSH-F/X11SSH-LN4F motherboard. The BIOS is stored on a Flash EEPROM and can be easily upgraded using a flash program.

Note: Due to periodic changes to the BIOS, some settings may have been added or deleted and might not yet be recorded in this manual. Please refer to the Manual Download area of our website for any changes to BIOS that may not be reflected in this manual.

Starting the Setup Utility

To enter the BIOS setup utility, enter the <Delete> key while the system is booting up. (In most cases, the <Delete> key is used to invoke the BIOS setup screen. There are a few cases when other keys are used, such as <F1>, <F2>, etc.) Each main BIOS menu option is described in this manual.

The main BIOS screen has two main frames. The left frame displays all the options that can be configured. “Grayed-out” options cannot be configured. The right frame displays the key legend. Above the key legend is an area reserved for a text message. When an option is selected in the left frame, it is highlighted in white. Often a text message will accompany it. Note that BIOS has default text messages built in. We retain the option to include, omit, or change any of these text messages. Settings printed in **Bold** are the default values.

A "▲" indicates a submenu. Highlighting such an item and pressing the <Enter> key will open the list of settings within that submenu.

The BIOS setup utility uses a key-based navigation system called hot keys. Most of these hot keys (<F1>, <F4>, <Enter>, <ESC>, <Arrow> keys, etc.) can be used at any time during the setup navigation process.

Note 1: Options printed in **Bold** are default settings.

Note 2: <F3> is used to load optimal default settings. <F4> is used to save the settings and exit the setup utility.
How To Change the Configuration Data

The configuration data that determines the system parameters may be changed by entering the AMI BIOS setup utility. This setup utility can be accessed by pressing <Delete> at the appropriate time during system boot.

Note: For AMI UEFI BIOS Recovery, please refer to the UEFI BIOS Recovery User Guide posted at http://www.supermicro.com/support/manuals/.

4.2 Main Setup

When you first enter the AMI BIOS setup utility, you will enter the Main setup screen. You can always return to the Main setup screen by selecting the Main tab on the top of the screen. The Main BIOS setup screen is shown below. The following Main menu items will display:
System Date/System Time
Use this option to change the system date and time. Highlight System Date or System Time using the arrow keys. Enter new values using the keyboard. Press the <Tab> key or the arrow keys to move between fields. The date must be entered in Day MM/DD/YYYY format. The time is entered in HH:MM:SS format.

Note: The time is in the 24-hour format. For example, 5:30 P.M. appears as 17:30:00. The date's default value is 01/01/2014 after RTC reset.

Supermicro X11SSH-F

BIOS Version
This item displays the version of the BIOS ROM used in the system.

Build Date
This item displays the date when the version of the BIOS ROM used in the system was built.

Memory Information

Total Memory
This item displays the total size of memory available in the system.

Memory Speed
This item displays the speed of memory modules used in the system.
4.3 Advanced Setup Configurations

Use the arrow keys to select Boot Setup and press <Enter> to access the submenu items.

Warning: Take caution when changing the Advanced settings. An incorrect value, an inaccurate DRAM frequency, or a wrong DRAM timing setting may make the system unstable. When this occurs, revert the setting to the manufacture default settings.

▶ **Boot Feature**

Quiet Boot

Use this feature to select the screen display between the POST messages and the OEM logo upon bootup. Select Disabled to display the POST messages. Select Enabled to display the OEM logo instead of the normal POST messages. The options are **Enabled** and **Disabled**.

AddOn ROM Display Mode

Use this feature to set the display mode for the Option ROM. Select Keep Current to display the current AddOn ROM setting. Select Force BIOS to use the Option ROM display set by the system BIOS. The options are **Force BIOS** and Keep Current.

Bootup NumLock State

Use this feature to set the Power-on state for the <Numlock> key. The options are Off and **On**.

Wait For 'F1' If Error

Use this feature to force the system to wait until the 'F1' key is pressed if an error occurs. The options are Disabled and **Enabled**.

INT19 (Interrupt 19) Trap Response

Interrupt 19 is the software interrupt that handles the boot disk function. When this item is set to Immediate, the ROM BIOS of the host adaptors will "capture" Interrupt 19 at bootup.
immediately and allow the drives that are attached to these host adaptors to function as bootable disks. If this item is set to Postponed, the ROM BIOS of the host adaptors will not capture Interrupt 19 immediately and allow the drives attached to these adaptors to function as bootable devices at bootup. The options are **Immediate** and **Postponed**.

Re-try Boot
If this item is enabled, the BIOS will automatically reboot the system from a specified boot device after its initial boot failure. The options are **Disabled**, Legacy Boot, and EFI Boot.

Power Configuration

Watch Dog Function
If enabled, the Watch Dog Timer will allow the system to reset or generate NMI based on jumper settings when the system is inactive more than 5 minutes. The options are **Enabled** and **Disabled**.

Power Button Function
This feature controls how the system shuts down when the power button is pressed. Select 4_Seconds_Override for the user to power off the system after pressing and holding the power button for 4 seconds or longer. Select Instant Off to instantly power off the system as soon as the user presses the power button. The options are 4 Seconds Override and **Instant Off**.

Restore on AC Power Loss
Use this feature to set the power state after a power outage. Select Stay-Off for the system power to remain off after a power loss. Select Power-On for the system power to be turned on after a power loss. Select Last State to allow the system to resume its last power state before a power loss. The options are Power-On, Stay-Off and **Last State**.

CPU Configuration

The following CPU information will display:

CPU Signature
- Intel® Xeon® CPU E3-1280 v5 @3.70GHz
- CPU Signature
- Microcode Patch
- Max CPU Speed
- Min CPU Speed
• CPU Speed
• Processor Cores
• Hyper Threading Technology
• Intel VT-x Technology
• Intel SMX Technology
• 64-bit
• EIST Technology
• CPU C3 State
• CPU C6 State
• CPU C7 State
• L1 Data Cache
• L1 Code Cache
• L2 Cache
• L3 Cache
• L4 Cache

Hyper-threading (Available when supported by the CPU)
Select Enabled to support Intel Hyper-threading Technology to enhance CPU performance. The options are Enabled and Disabled.

Active Processor Cores
This feature determines how many CPU cores will be activated for each CPU. When all is selected, all cores in the CPU will be activated. (Please refer to Intel's web site for more information.) The options are All 1,2, and 3.

Intel® Virtualization Technology
Select Enable to use Intel Virtualization Technology so that I/O device assignments will be reported directly to the VMM (Virtual Memory Management) through the DMAR ACPI Tables. This feature offers fully-protected I/O resource-sharing across the Intel platforms, providing
the user with greater reliability, security and availability in networking and data-sharing. The settings are Enabled and Disabled.

Hardware Prefetcher (Available when supported by the CPU)
If set to Enabled, the hardware prefetcher will prefetch streams of data and instructions from the main memory to the L2 cache to improve CPU performance. The options are Disabled and Enabled.

Adjacent Cache Line Prefetch (Available when supported by the CPU)
Select Disabled for the CPU prefetcher to prefetch the cache line for 64 bytes. Select Enabled for the CPU prefetcher to prefetch both cache lines for 128 bytes as comprised. The options are Enabled and Disabled.

CPU AES
Select Enabled to enable Intel CPU Advanced Encryption Standard (AES) Instructions for CPU to enhance data integrity. The options are Enabled and Disabled.

Boot Performance Mode
This feature allows the user to select the performance state that the BIOS will set before the operating system handoff. The options are Power Saving, Max Non-Turbo Performance and Turbo Performance.

HardWare P-States (HWP)
Use this feature to enable or disable hardware P-States support. The options are Disabled and Enabled.

Intel® SpeedStep™
Intel SpeedStep Technology allows the system to automatically adjust processor voltage and core frequency to reduce power consumption and heat dissipation. The options are Disabled and Enabled.

Turbo Mode
Select Enabled for processor cores to run faster than the frequency specified by the manufacturer. The options are Disabled and Enabled.

Package Power Limit MSR Lock
Select Enabled to lock the package power limit for the model specific registers. The options are Disabled and Enabled.

Power Limit 1 Override
Select Enabled to support average power limit (PL1) override. The default setting is Disabled.
Power Limit 2 Override
Select Enabled to support rapid power limit (PL2) override. The default setting is Enabled.

Power Limit 2
Use this item to configure the value for Power Limit 2. The value is in milli watts and the step size is 125mW. Use the number keys on your keyboard to enter the value. Enter 0 to use the manufacture default setting. If the value is 0, the BIOS will set PL2 as 1.25*TDP. Enter 0 to use the manufacture default setting.

1-Core Ratio Limit Override
This increases (multiplies) 1 clock speed in the CPU core in relation to the bus speed when one CPU core is active. Press "+" or "-" on your keyboard to change the value. Enter 0 to use the manufacture default setting.

2-Core Ratio Limit Override
This increases (multiplies) 2 clock speeds in the CPU core in relation to the bus speed when two CPU cores are active. Press "+" or "-" on your keyboard to change the value. Enter 0 to use the manufacture default setting.

3-Core Ratio Limit Override
This increases (multiplies) 3 clock speeds in the CPU core in relation to the bus speed when three CPU cores are active. Press "+" or "-" on your keyboard to change the value. Enter 0 to use the manufacture default setting.

4-Core Ratio Limit Override
This increases (multiplies) 4 clock speeds in the CPU core in relation to the bus speed when three CPU cores are active. Press "+" or "-" on your keyboard to change the value. Enter 0 to use the manufacture default setting.

CPU C-States
Use this feature to enable the C-State of the CPU. The options are Disabled and Enabled.

Enhanced C-States
Use this feature to enable the enhanced C-State of the CPU. The options are Disabled and Enabled.

C-State Auto Demotion
Use this feature to prevent unnecessary excursions into the C-states to improve latency. The options are Disabled, C1, C3, and C1 and C3.

C-State Un-Demotion
This feature allows the user to enable or disable the un-demotion of C-State. The options are Disabled, C1, C3, and C1 and C3.
Package C-State Demotion
Use this feature to enable or disable the Package C-State demotion. The options are **Disabled** and **Enabled**.

Package C-State Un-Demotion
Use this feature to enable or disable the Package C-State un-demotion. The options are **Disabled** and **Enabled**.

C-State Pre-Wake
This feature allows the user to enable or disable the C-State Pre-Wake. The options are **Disabled** and **Enabled**.

Package C-State Limit
Use this feature to set the Package C-State limit. The options are C0/C1, C2, C3, C6, C7, C7s, C8, and **AUTO**.

CPU Thermal Configuration

CPU DTS
Select Enabled for the ACPI thermal management to use the DTS SMM mechanism to obtain CPU temperature values. Select Disabled for EC to report the CPU temperature values. The options are **Disabled** and **Enabled**.

ACPI 3.0 T-States
Select Enabled to support CPU throttling by the operating system to reduce power consumption. The options are **Enabled** and **Disabled**.

Chipset Configuration

Warning: Setting the wrong values in the following features may cause the system to malfunction.

System Agent (SA) Configuration

The following System Agent information will display:

- System Agent Bridge Name
- SA PCIe Code Version
- VT-d
VT-d
Select Enabled to enable Intel Virtualization Technology support for Direct I/O VT-d by reporting the I/O device assignments to VMM through the DMAR ACPI Tables. This feature offers fully-protected I/O resource-sharing across the Intel platforms, providing the user with greater reliability, security and availability in networking and data-sharing. The options are Enabled and Disabled.

Gaussian Mixture Model
This feature is to enable or disable the System Agent Gaussian Mixture Model device. The options are Enabled and Disabled.

►Graphics Configuration

The following graphics information will display:

- IGFX BIOS Version

Graphics Turbo IMON Current
Use this feature to set the limit on the current voltage regulator. Press "+" or "-" on your keyboard to change this value. The default setting is 31.

Primary Display
Use this feature to select the graphics device to be used as the primary display. The options are Auto, PEG, and PCIE.

Primary PEG (PCI-Express Graphics)
This feature allows the user to specify which graphics card to be used as the primary graphics card. The options are CPU SLOT6 PCI-E 3.0 X8 (INX16) and CPU SLOT5 PCI-E 3.0 X8.

Primary PCIE (PCI-Express Graphics)
This feature allows the user to specify which graphics card to be used as the primary graphics card. The options are Onboard and PCI-E 3.0 M.2.

►DMI/OPI Configuration

The following DMI information will display:

- DMI
DMI VC1 Control
Use this feature to enable or disable DMI Virtual Channel 1. The options are Enabled and Disabled.

DMI VCm Control
Use this feature to enable or disable the DMI Virtual Channel map. The options are Enabled and Disabled.

DMI Link ASPM Control
Use this feature to set the ASPM (Active State Power Management) state on the SA (System Agent) side of the DMI Link. The options are Disabled and L1.

DMI Extended Sync Control
Use this feature to enable or disable the DMI extended synchronization. The options are Disabled and Enabled.

DMI De-Emphasis Control
Use this feature to configure the De-emphasis control on DMI. The options are -6dB and -3.5dB.

PEG Port Configuration

CPU SLOT6 PCI-E 3.0 X8 (IN x16)

SLOT6 Max Link Speed
This feature allows the user to select PCI-E support for the device installed on SLOT6. The options are Auto, Gen 1, Gen 2, and Gen 3.

SLOT6 Max Payload Size
Use this feature to select the PEG0 maximum payload size. The options are Auto, 128 TLP, and 256 TLP.

SLOT6 Power Limit Value
Use this feature to set the upper limit on the power supplied by the PCIE slot. Press "+" or "-" on your keyboard to change this value. The default setting is 75.

SLOT6 Power Limit Scale
Use this feature to select the scale used for the slot power limit value. The options are 1.0x, 0.1x, 0.01x, and 0.001x.
Program PCIe ASPM After OPROM

PCIe ASPM, the Active State Power Management for PCI-Express slots, is a power management protocol used to manage power consumption of serial-link devices installed on PCI-Exp slots during a prolonged off-peak time. If this item is set to Enabled, PCI-E ASPM will be programmed after OPROM. If this item is set to Disabled, the PCI-E ASPM will be programmed before OPROM. The options are **Disabled** and **Enabled**.

Memory Configuration

The following memory information will display:

- Memory RC Version
- Memory Frequency
- Total Memory
- VDD
- DIMMA1
- DIMMA2
- DIMMB1
- DIMMB2
- Memory Timings (tCL-tRCD-tRP-tRAS)

Maximum Memory Frequency

Use this feature to set the maximum memory frequency for onboard memory modules. The options are **Auto**, 1067, 1200, 1333, 1400, 1600, 1800, 1867, 2000, 2133, 2200, and 2400.

Max TOLUD

This feature sets the maximum TOLUD value, which specifies the "Top of Low Usable DRAM" memory space to be used by internal graphics devices, GTT Stolen Memory, and TSEG, respectively, if these devices are enabled. The options are **Dynamic**, 1 GB, 1.25 GB, 1.5 GB, 1.75 GB, 2 GB, 2.25 GB, 2.5 GB, 2.75 GB, 3 GB, 3.25 GB, and 3.5 GB.

Energy Performance Gain

Use this feature to enable or disable the energy performance gain. The options are **Disabled** and **Enabled**.

Memory Scrambler

Select Enabled to enable memory scrambler support. The options are **Disabled** and **Enabled**.
Fast Boot
Use this feature to enable or disable fast path through the memory reference code. The options are Enabled and Disabled.

REFRESH_2X_MODE
Use this feature to select the refresh mode. The options are Disabled, 1-Enabled for WARM or HOT, and 2-Enabled HOT only.

Closed Loop Thermal Throttling Management
Select Enabled to support Closed-Loop Thermal Throttling which will improve reliability and reduces CPU power consumption via automatic voltage control while the CPU are in idle states. The options are Disabled and Enabled.

GT - Power Management Control
The following GT - Power Management Control information will display:
• GT Info

RC6 (Render Standby)
Select Enabled to enable render standby support. The options are Disabled and Enabled.

PCH-IO Configuration
The following PCH-IO information will display:
• Intel PCH RC Version
• Intel PCH SKU Name
• Intel PCH Rev ID

PCI Express Configuration

DMI Link ASPM Control
Use this feature to set the ASPM (Active State Power Management) state on the SA (System Agent) side of the DMI Link. The options are Disabled and Enabled.

Peer Memory Write Enable
Use this feature to enable or disable peer memory write. The options are Disabled or Enabled.
PCH SLOT4 PCI-E 3.0 X4 (IN X8)

SLOT4 ASPM
Use this item to set the Active State Power Management (ASPM) level for the PCI-E device installed on the slot specified. Select Auto for the system BIOS to automatically set the ASPM level based on the system configuration. Select Disabled to disable ASPM support. The options are Disabled, L0s, L1, L0s & L1, and Auto.

SLOT4 L1 Substates
Use this feature to configure the PCI Express L1 Substates. The options are Disabled, L1.1, L1.2, and L1.1 & L1.2

SLOT4 PCIe Speed
Use this feature to select the PCI Express port speed. The options are Auto, Gen1, Gen2, and Gen3.

SLOT4 Detect Non-Compliance
Select Enabled for the AMI BIOS to automatically detect a PCI-E device that is not compliant with the PCI-E standards. The options are Disabled and Enabled.

PCI Express Configuration

Port 61h bit-4 Emulation
Select Enabled to enable the emulation of Port 61h bit-4 toggling in SMM (System Management Mode). The options are Disabled and Enabled.

PCle PLL SSC
Select Enabled to enable Phase Locked Loop (PLL) support on the Spread Spectrum Clock (SSC) settings to help reduce Electromagnetic Interference caused by the components in the system. Select Disabled to enhance system stability. The options are Disabled and Enabled

SATA Configuration

When this submenu is selected, the AMI BIOS automatically detects the presence of the SATA devices that are supported by the Intel PCH chip and displays the following items:

SATA Controller(s)
This item enables or disables the onboard SATA controller supported by the Intel PCH chip. The options are Enabled and Disabled.
SATA Mode Selection
Use this item to select the mode for the installed SATA drives. The options are AHCI and RAID.

SATA Frozen
Use this item to enable the HDD Security Frozen Mode. The options are Enabled and Disabled.

*If the item above "Configure SATA as" is set to AHCI, the following items will display:

SATA Port 0~ Port 7
This item displays the information detected on the installed SATA drive on the particular SATA port.

Port 0~ Port 7
The status of a SATA port will be displayed as detected by the BIOS.

Port 0 ~ Port 7 Software Preserve
The status of software preserve of a SATA port will display as it is detected by the BIOS.

Port 0 ~ Port 7 Hot Plug
This feature designates the port specified for hot plugging. Set this item to Enabled for hot-plugging support, which will allow the user to replace a SATA disk drive without shutting down the system. The options are Enabled and Disabled.

Port 0 ~ Port 7 Spin Up Device
On an edge detect from 0 to 1, set this item to allow the PCH to initialize the device. The options are Enabled and Disabled.

Port 0 ~ Port 7 SATA Device Type
Use this item to specify if the SATA port specified by the user should be connected to a Solid State drive or a Hard Disk Drive. The options are Hard Disk Drive and Solid State Drive.

*If the item above "SATA Mode Selection" is set to RAID, the following items will display:

SATA RAID Option ROM/UEFI Driver
Select UEFI to load the EFI driver for system boot. Select Legacy to load a legacy driver for system boot. The options are Legacy ROM and UEFI Driver.

SATA Frozen
Use this item to enable the HDD Security Frozen Mode. The options are Enabled and Disabled.
SATA Port 0~ Port 7
This item displays the information detected on the installed SATA drive on the particular SATA port.

Port 0~ Port 7
The status of a SATA port will be displayed as detected by the BIOS.

Port 0 ~ Port 7 Software Preserve
The status of software preserve of a SATA port will display as it is detected by the BIOS.

Port 0 ~ Port 7 Hot Plug
This feature designates the port specified for hot plugging. Set this item to Enabled for hot-plugging support, which will allow the user to replace a SATA disk drive without shutting down the system. The options are Enabled and Disabled.

Port 0 ~ Port 7 Spin Up Device
On an edge detect from 0 to 1, set this item to allow the PCH to initialize the device. The options are Enabled and Disabled.

Port 0 ~ Port 7 SATA Device Type
Use this item to specify if the SATA port specified by the user should be connected to a Solid State drive or a Hard Disk Drive. The options are Hard Disk Drive and Solid State Drive.

PCIe/PCI/PnP Configuration

The following information will display:
PCI Bus Driver Version
PCI Devices Common Settings:

PCI Latency Timer
Use this feature to set the latency Timer of each PCI device installed on a PCI bus. Select 32 to set the PCI latency to 32 PCI clock cycles. The options are 32 PCI Bus Clocks, 64 PCI Bus Clocks, 96 PCI Bus Clocks, 128 PCI Bus Clocks, 160 PCI Bus Clocks, 192 PCI Bus Clocks, 224 PCI Bus Clocks, and 248 PCI Bus Clocks.

PCI PERR/SERR Support
Select Enabled to support PERR (PCI/PCI-E Parity Error)/SERR (System Error) runtime error reporting for a PCI/PCI-E slot. The options are Enabled and Disabled.

Above 4G Decoding (Available if the system supports 64-bit PCI decoding)
Select Enabled to decode a PCI device that supports 64-bit in the space above 4G Address. The options are Enabled and Disabled.
PCH SLOT 4 PCI-E 3.0 X4 (IN X8) OPROM
Use this feature to select which firmware type to be loaded for the add-on card in this slot for system boot. The options are Disabled, Legacy, and EFI.

PCH SLOT 5 PCI-E 3.0 X8 OPROM
Use this feature to select which firmware type to be loaded for the add-on card in this slot for system boot. The options are Disabled, Legacy, and EFI.

PCH SLOT 6 PCI-E 3.0 X8 (IN X16) OPROM
Use this feature to select which firmware type to be loaded for the add-on card in this slot for system boot. The options are Disabled, Legacy, and EFI.

Onboard LAN Option ROM Type
Select Enabled to enable Option ROM support to boot the computer using a network device specified by the user. The options are Legacy and EFI.

Onboard LAN1 Option ROM
Use this option to select the type of device installed in LAN Port1 used for system boot. The default setting for LAN1 Option ROM is PXE.

Onboard LAN2 Option ROM/Onboard LAN3 Option ROM/Onboard LAN4 Option ROM (LAN3 Option ROM/Onboard LAN4 Option ROM: Available on the X11SSH-LN4F only)
Use this option to select the type of device installed in a LAN port specified by user for system boot. The default setting for this item is Disabled.

Onboard Video Option ROM
Use this item to select the Onboard Video Option ROM type. The options are Disabled, Legacy, and EFI.

VGA Priority
Use this item to select the graphics device to be used as the primary video display for system boot. The options are Onboard and Offboard.

Network Stack
Select Enabled to enable PXE (Preboot Execution Environment) or UEFI (Unified Extensible Firmware Interface) for network stack support. The options are Enabled and Disabled.

IPv4 PXE Support
Select Enabled to enable IPv4 PXE boot support. The options are Enabled and Disabled.

IPv6 PXE Support
Select Enabled to enable IPv6 PXE boot support. The options are Enabled and Disabled.
PXE boot wait time
Use this option to specify the wait time to press the ESC key to abort the PXE boot. Press "+" or "+" on your keyboard to change the value. The default setting is 0.

Media detect count
Use this option to specify the number of times media will be checked. Press "+" or "-" on your keyboard to change the value. The default setting is 1.

Super IO Configuration
The following Super IO information will display:
• AMI SIO Driver Version

Super IO Chip Logical Device(s) Configuration

Serial Port 1
This submenu allows the user the configure settings of Serial Port 1.

Serial Port 1
Select Enabled to enable the selected onboard serial port. The options are Enabled and Disabled.

Logical Device Settings
This item displays the current status of a serial part specified by the user.

Serial Port 1 Change Settings
This feature specifies the base I/O port address and the Interrupt Request address of a serial port specified by the user. Select Auto to allow the BIOS to automatically assign the base I/O and IRQ address.
The options for Serial Port 1 are Use Automatic Settings, (IO=3F8h; IRQ=4; DMA), (IO=3F8h; IRQ=3, 4, 5, 7, 9, 10, 11, 12; DMA), (IO=2F8h; IRQ=3, 4, 5, 7, 9, 10, 11, 12; DMA), (IO=3E8h; IRQ=3, 4, 5, 7, 9, 10, 11, 12; DMA), and (IO=2E8h; IRQ=3, 4, 5, 7, 9, 10, 11, 12; DMA).

Serial Port 2

Serial Port 2 Configuration
This submenu allows the user the configure settings of Serial Port 2.

Serial Port 2
Select Enabled to enable the selected onboard serial port. The options are Enabled and Disabled.
Logical Device Settings
This item displays the current status of a serial part specified by the user.

Serial Port 2 Change Settings
This feature specifies the base I/O port address and the Interrupt Request address of a serial port specified by the user. Select Auto to allow the BIOS to automatically assign the base I/O and IRQ address.

The options for Serial Port 2 are Use Automatic Settings, (IO=2F8h; IRQ=3; DMA), (IO=3F8h; IRQ=3, 4, 5, 7, 9, 10, 11, 12; DMA), (IO=2F8h; IRQ=3, 4, 5, 7, 9, 10, 11, 12; DMA), (IO=3E8h; IRQ=3, 4, 5, 7, 9, 10, 11, 12; DMA), and (IO=2E8h; IRQ=3, 4, 5, 7, 9, 10, 11, 12; DMA).

Serial Port 2 Attribute
Select SOL to use COM Port 2 as a Serial_Over_LAN (SOL) port for console redirection. The options are COM and SOL.

The options for Serial Port 4 are Use Automatic Settings, (IO=248h; IRQ=7; DMA), (IO=240h; IRQ=3, 4, 5, 7, 9, 10, 11, 12; DMA), (IO=248h; IRQ=3, 4, 5, 7, 9, 10, 11, 12; DMA), (IO=250h; IRQ=3, 4, 5, 7, 9, 10, 11, 12; DMA), and (IO=258h; IRQ=3, 4, 5, 7, 9, 10, 11, 12; DMA).

Intel Server Platform Services

Intel Server Platform Services Configuration
The following items will display as detected by the BIOS:

- ME BIOS Interface Version
- SPS Version
- ME FW (Firmware) Status Value
- ME FW (Firmware) State
- ME FW (Firmware) Operation State
- ME FW (Firmware) Error Code
- ME NM FW (Firmware) Status Value
- BIOS Booting Mode
- Cores Disabled
- ME FW (Firmware) SKU Information
- End-of POST Status
Serial Port Console Redirection

COM1 Console Redirection

Console Redirection
Select Enabled to enable console redirection support for a serial port specified by the user. The options are Enabled and Disabled. If this feature is set to Enabled, the following items will become available:

COM1 Console Redirection Settings

This feature allows the user to specify how the host computer will exchange data with the client computer, which is the remote computer used by the user.

COM1 Terminal Type
This feature allows the user to select the target terminal emulation type for Console Redirection. Select VT100 to use the ASCII Character set. Select VT100+ to add color and function key support. Select ANSI to use the Extended ASCII Character Set. Select VT-UTF8 to use UTF8 encoding to map Unicode characters into one or more bytes. The options are ANSI, VT100, VT100+, and VT-UTF8.

COM1 Bits Per second
Use this feature to set the transmission speed for a serial port used in Console Redirection. Make sure that the same speed is used in the host computer and the client computer. A lower transmission speed may be required for long and busy lines. The options are 9600, 19200, 38400, 57600, and 115200 (bits per second).

COM1 Data Bits
Use this feature to set the data transmission size for Console Redirection. The options are 7 Bits and 8 Bits.

COM1 Parity
A parity bit can be sent along with regular data bits to detect data transmission errors. Select Even if the parity bit is set to 0, and the number of 1’s in data bits is even. Select Odd if the parity bit is set to 0, and the number of 1’s in data bits is odd. Select None if you do not want to send a parity bit with your data bits in transmission. Select Mark to add a mark as a parity bit to be sent along with the data bits. Select Space to add a Space as a parity bit to be sent with your data bits. The options are None, Even, Odd, Mark and Space.

COM1 Stop Bits
A stop bit indicates the end of a serial data packet. Select 1 Stop Bit for standard serial data communication. Select 2 Stop Bits if slower devices are used. The options are 1 and 2.
COM1 Flow Control
Use this feature to set the flow control for Console Redirection to prevent data loss caused by buffer overflow. Send a "Stop" signal to stop sending data when the receiving buffer is full. Send a "Start" signal to start sending data when the receiving buffer is empty. The options are None and Hardware RTS/CTS.

COM1 VT-UTF8 Combo Key Support
Select Enabled to enable VT-UTF8 Combination Key support for ANSI/VT100 terminals. The options are Enabled and Disabled.

COM1 Recorder Mode
Select Enabled to capture the data displayed on a terminal and send it as text messages to a remote server. The options are Disabled and Enabled.

COM1 Resolution 100x31
Select Enabled for extended-terminal resolution support. The options are Disabled and Enabled.

COM1 Legacy OS Redirection Resolution
Use this feature to select the number of rows and columns used in Console Redirection for legacy OS support. The options are 80x24 and 80x25.

COM1 Putty KeyPad
This feature selects the settings for Function Keys and KeyPad used for Putty, which is a terminal emulator designed for the Windows OS. The options are VT100, LINUX, XTERMR6, SC0, ESCN, and VT400.

COM1 Redirection After BIOS Post
Use this feature to enable or disable legacy console redirection after BIOS POST. When set to Bootloader, legacy console redirection is disabled before booting the OS. When set to Always Enable, legacy console redirection remains enabled when booting the OS. The options are Always Enable and Bootloader.

COM2 Console Redirection
Select Enabled to use the SOL port for Console Redirection. The options are Enabled and Disabled.

*If the item above set to Enabled, the following items will become available for user's configuration:
SOL/COM2 Console Redirection Settings

Use this feature to specify how the host computer will exchange data with the client computer, which is the remote computer used by the user.

COM2 Terminal Type

Use this feature to select the target terminal emulation type for Console Redirection. Select VT100 to use the ASCII Character set. Select VT100+ to add color and function key support. Select ANSI to use the Extended ASCII Character Set. Select VT-UTF8 to use UTF8 encoding to map Unicode characters into one or more bytes. The options are ANSI, VT100, VT100+, and VT-UTF8.

COM2 Bits Per second

Use this feature to set the transmission speed for a serial port used in Console Redirection. Make sure that the same speed is used in the host computer and the client computer. A lower transmission speed may be required for long and busy lines. The options are 9600, 19200, 38400, 57600 and 115200 (bits per second).

COM2 Data Bits

Use this feature to set the data transmission size for Console Redirection. The options are 7 (Bits) and 8 (Bits).

COM2 Parity

A parity bit can be sent along with regular data bits to detect data transmission errors. Select Even if the parity bit is set to 0, and the number of 1’s in data bits is even. Select Odd if the parity bit is set to 0, and the number of 1’s in data bits is odd. Select None if you do not want to send a parity bit with your data bits in transmission. Select Mark to add a mark as a parity bit to be sent along with the data bits. Select Space to add a Space as a parity bit to be sent with your data bits. The options are None, Even, Odd, Mark and Space.

COM2 Stop Bits

A stop bit indicates the end of a serial data packet. Select 1 Stop Bit for standard serial data communication. Select 2 Stop Bits if slower devices are used. The options are 1 and 2.

COM2 Flow Control

Use this feature to set the flow control for Console Redirection to prevent data loss caused by buffer overflow. Send a "Stop" signal to stop sending data when the receiving buffer is full. Send a "Start" signal to start sending data when the receiving buffer is empty. The options are None and Hardware RTS/CTS.

COM2 VT-UTF8 Combo Key Support

Select Enabled to enable VT-UTF8 Combination Key support for ANSI/VT100 terminals. The options are Enabled and Disabled.
COM2 Recorder Mode
Select Enabled to capture the data displayed on a terminal and send it as text messages to a remote server. The options are Disabled and Enabled.

COM2 Resolution 100x31
Select Enabled for extended-terminal resolution support. The options are Disabled and Enabled.

COM2 Legacy OS Redirection Resolution
Use this feature to select the number of rows and columns used in Console Redirection for legacy OS support. The options are 80x24 and 80x25.

COM2 Putty KeyPad
This feature selects Function Keys and KeyPad settings for Putty, which is a terminal emulator designed for the Windows OS. The options are VT100, LINUX, XTERMR6, SCO, ESCN, and VT400.

COM2 Redirection After BIOS Post
Use this feature to enable or disable legacy Console Redirection after BIOS POST. When set to Bootloader, legacy Console Redirection is disabled before booting the OS. When set to Always Enable, legacy Console Redirection remains enabled when booting the OS. The options are Always Enable and Bootloader.

EMS Console Redirection Settings
This feature allows the user to specify how the host computer will exchange data with the client computer, which is the remote computer used by the user.

Out-of-Band Management Port
The feature selects a serial port in a client server to be used by the Microsoft Windows Emergency Management Services (EMS) to communicate with a remote host server. The options are COM1, and SOL/COM2.

Terminal Type
Use this feature to select the target terminal emulation type for Console Redirection. Select VT100 to use the ASCII character set. Select VT100+ to add color and function key support. Select ANSI to use the extended ASCII character set. Select VT-UTF8 to use UTF8 encoding to map Unicode characters into one or more bytes. The options are ANSI, VT100, VT100+, and VT-UTF8.

Bits Per Second
This item sets the transmission speed for a serial port used in Console Redirection. Make sure that the same speed is used in the host computer and the client computer. A lower
transmission speed may be required for long and busy lines. The options are 9600, 19200, 57600, and **115200** (bits per second).

Flow Control

Use this item to set the flow control for Console Redirection to prevent data loss caused by buffer overflow. Send a "Stop" signal to stop sending data when the receiving buffer is full. Send a "Start" signal to start sending data when the receiving buffer is empty. The options are **None**, Hardware RTS/CTS, and Software Xon/Xoff.

Data Bits

Use this feature to set the data transmission size for Console Redirection. The options are **7** (Bits) and **8** (Bits).

Parity

A parity bit can be sent along with regular data bits to detect data transmission errors. Select **Even** if the parity bit is set to 0, and the number of 1's in data bits is even. Select **Odd** if the parity bit is set to 0, and the number of 1's in data bits is odd. Select **None** if you do not want to send a parity bit with your data bits in transmission. Select **Mark** to add a mark as a parity bit to be sent along with the data bits. Select **Space** to add a Space as a parity bit to be sent with your data bits. The options are **None**, **Even**, **Odd**, **Mark** and **Space**.

Stop Bits

A stop bit indicates the end of a serial data packet. Select **1** Stop Bit for standard serial data communication. Select **2** Stop Bits if slower devices are used. The options are **1** and **2**.

▶ **ACPI Settings**

High Precision Event Timer

Select **Enabled** to activate the High Performance Event Timer (HPET) that produces periodic interrupts at a much higher frequency than a Real-time Clock (RTC) does in synchronizing multimedia streams, providing smooth playback and reducing the dependency on other timestamp calculation devices, such as an x86 RDTSC Instruction embedded in the CPU. The High Performance Event Timer is used to replace the 8254 Programmable Interval Timer. The options are **Enabled** and **Disabled**.

WHEA Support

This feature Enables the Windows Hardware Error Architecture (WHEA) support for the Windows 2008 (or a later version) operating system. The options are **Enabled** and **Disabled**.
Trusted Computing Configuration (Available when a TPM device is installed and the onboard TPM jumper is enabled)

Security Device Support
If this feature and the TPM jumper on the motherboard are both set to Enabled, onboard security devices will be enabled for TPM (Trusted Platform Module) support to enhance data integrity and network security. Please reboot the system for a change on this setting to take effect. The options are Disabled and Enabled.

TPM State
This feature changes the TPM State. The options are Disabled and Enabled.

Note: Please reboot the system for the changes on the TPM State to take effect.

Pending TPM operation
Use this item to schedule a TPM-related operation to be performed by a security device for system data integrity. Your system will reboot to carry out a pending TPM operation. The options are None and TPM Clear.

Device Select
Use this feature to select the TPM version. TPM 1.2 will restrict support to TPM 1.2 devices. TPM 2.0 will restrict support for TPM 2.0 devices. Select Auto to enable support for both versions. The default setting is Auto.

The following are information will be displayed:
- TPM Enabled Status
- TPM Active Status
- TPM Owner Status

TXT Support
Intel TXT (Trusted Execution Technology) helps protect against software-based attacks and ensures protection, confidentiality and integrity of data stored or created on the system. Use this feature to enable or disable TXT Support. The options are Disabled and Enabled.

iSCSI Configuration

iSCSI Initiator Name
This feature allows the user to enter the unique name of the iSCSI Initiator in IQN format. Once the name of the iSCSI Initiator is entered into the system, configure the proper settings for the following items.
Add an Attempt

Delete Attempts

Change Attempt order

4.4 Event Logs

This submenu allows the user to configure Event Log settings.

Change SMBIOS Event Log Settings

This feature allows the user to configure SMBIOS Event settings.

Enabling/Disabling Options

SMBIOS Event Log
Select Enabled to enable SMBIOS (System Management BIOS) Event Logging during system boot. The options are Enabled and Disabled.

Erasing Settings

Erase Event Log
Select Yes to erase all error events in the SMBIOS (System Management BIOS) log before an event logging is initialized at bootup. The options are No, Yes, Next reset, and Yes, every reset.
When Log is Full
Select Erase Immediately to immediately erase all errors in the SMBIOS event log when the event log is full. Select Do Nothing for the system to do nothing when the SMBIOS event log is full. The options are **Do Nothing** and Erase Immediately.

SMBIOS Event Log Standard Settings

Log System Boot Event
Select Enabled to log system boot events. The options are **Disabled** and **Enabled**.

MECI (Multiple Event Count Increment)
Enter the increment value for the multiple event counter. Enter a number between 1 to 255. The default setting is **1**.

METW (Multiple Event Count Time Window)
This item is used to determine how long (in minutes) the multiple event counter should wait before generating a new event log. Enter a number between 0 to 99. The default setting is **60**.

Note: Please reboot the system for the changes to take effect.

View SMBIOS Event Log
This item allows the user to view the event in the SMBIOS event log. The following categories are displayed:

Date/Time/Error Code/Severity

4.5 IPMI
This submenu allows the user to configure Intelligent Platform Management Interface (IPMI) settings.
The following IPMI information will be displayed:
- IPMI Firmware Revision
- IPMI Status

▶ System Event Log

Enabling/Disabling Options

SEL Components
Select Enabled to enable all system event logging support at bootup. The options are Enabled and Disabled.

Erasing Settings

Erase SEL
Select Yes, On next reset to erase all system event logs upon next system reboot. Select Yes, On every reset to erase all system event logs upon each system reboot. Select No to keep all system event logs after each system reboot. The options are No, Yes, On next reset, and Yes, On every reset.

When SEL is Full
This feature allows the user to determine what the AMI BIOS should do when the system event log is full. Select Erase Immediately to erase all events in the log when the system event log is full. The options are Do Nothing and Erase Immediately.

Note: After making changes on a setting, be sure to reboot the system for the changes to take effect.

▶ BMC Network Configuration

The following items will be displayed:
- IPMI LAN Selection
- IPMI Network Link Status

Update IPMI LAN Configuration
Select Yes for the system BIOS to automatically reset the following IPMI settings upon next system boot. The options are Yes and No.
Configuration Address Source (Available when the item above - Update IPMI LAN Configuration is set to Yes)

Use this item to select the IP address source for this computer. If Static is selected, you will need to know the IP address of this computer and enter it to the system manually in the field. If DHCP is selected, AMI BIOS will search for a DHCP (Dynamic Host Configuration Protocol) server attached to the network and request the next available IP address for this computer. The options are DHCP and Static.

Station IP Address

This item displays the Station IP address for this computer. This should be in decimal and in dotted quad form (i.e., 192.168.10.253).

Subnet Mask

This item displays the sub-network that this computer belongs to. The value of each three-digit number is separated by dots and it should not exceed 255.

Station MAC Address

This item displays the Station MAC address for this computer. Mac addresses are 6 two-digit hexadecimal numbers.

Router IP Address

This item displays the Router IP address for this computer. This should be in decimal and in dotted quad form (i.e., 172.31.0.1).
4.6 Security

This menu allows the user to configure the following security settings for the system.

Password Check
Select Setup for the system to check for a password at Setup. Select Always for the system to check for a password at bootup or upon entering the BIOS Setup utility. The options are Setup and Always.

Administrator Password
Press Enter to create a new, or change an existing Administrator password.

Secure Boot Menu

This section displays the contents of the following secure boot features:

- System Mode
- Secure Boot
- Vendor Keys

Secure Boot
Use this item to enable secure boot. The options are Disabled and Enabled.

Secure Boot Mode
Use this item to select the secure boot mode. The options are Standard and Custom.

CSM Support
Select Enabled to support the EFI Compatibility Support Module (CSM), which provides compatibility support for traditional legacy BIOS for system boot. The options are Enabled and Disabled.
Key Management

This submenu allows the user to configure the following Key Management settings.

Provision Factory Default Keys (Available when the system is in Setup Mode)
Select Enabled to install factory default secure-boot keys. The options are Enabled and Disabled.

Enroll All Factory Default Keys

This feature allows the user to store security-related boot data in a file of the same named in the system root folder of your computer.

Save All Secure Boot Variables

This feature allows the user to save the secure boot settings specified by the user.

Secure Boot Variables: Size/Key#/Key Source

Platform Key (PK): Size/Key#/Key Source

Key Exchange Keys: Size/Key#/Key Source

Authorized Signatures: Size/Key#/Key Source

Forbidden Signatures: Size/Key#/Key Source

Authorized TimeStamps: Size/Key#/Key Source
4.7 Boot Settings

This submenu allows the user to configure Boot settings for this system:

Boot Configuration

Boot Mode Select

Use this item to select the type of device to be used for system boot. The options are Legacy, UEFI, and Dual.

Fixed Boot Order Priorities

This option prioritizes the order of bootable devices from which the system will boot. Press <Enter> on each entry from top to bottom to select devices.

- When the item above -“Boot Mode Select” is set to Dual (default), the following items will be displayed for configuration:

 Boot Option #1 - Boot Option #15

- When the item above -"Boot Mode Select" is set to Legacy, the following items will be display for configuration:

 Boot Option #1 - Boot Option #7

- When the item above -"Boot Mode Select" is set to UEFI, the following items will be display for configuration:

 Boot Option #1 - Boot Option #8
Delete Boot Option
Use this item to select a boot device to delete from the boot priority list.

Delete Boot Option
Select the target boot device to delete from the boot priority list.

Hard Disk Drive BBS Priorities
- Boot Option #1
- Boot Option #2

Network Drive BBS Priorities
- Boot Option #1

UEFI Application Boot Priorities
- UEFI Boot Option #1
4.8 Save & Exit

Select the Exit tab from the BIOS setup utility screen to enter the Exit BIOS Setup screen.

Discard Changes and Exit
Select this option to quit the BIOS Setup without making any permanent changes to the system configuration, and reboot the computer. Select Discard Changes and Exit from the Exit menu and press <Enter>.

Save Changes and Reset
When you have completed the system configuration changes, select this option to leave the BIOS setup utility and reboot the computer, so the new system configuration parameters can take effect. Select Save Changes and Exit from the Exit menu and press <Enter>.

Save Changes
After completing the system configuration changes, select this option to save the changes you have made. This will not reset (reboot) the system.

Discard Changes
Select this option and press <Enter> to discard all the changes and return to the AMI BIOS utility Program.

Default Options

Restore Optimized Defaults
To set this feature, select Restore Optimized Defaults from the Save & Exit menu and press <Enter>. These are factory settings designed for maximum system performance, but not for maximum security.
Save As User Defaults
To set this feature, select Save as User Defaults from the Exit menu and press <Enter>. This enables the user to save any changes to the BIOS setup for future use.

Restore User Defaults
To set this feature, select Restore User Defaults from the Exit menu and press <Enter>. Use this feature to retrieve user-defined settings that were saved previously.

Boot Override
Listed on this section are other boot options for the system (i.e., Built-in EFI shell). Select an option and press <Enter>. Your system will boot to the selected boot option.
Appendix A

BIOS Codes

BIOS Error POST (Beep) Codes

During the POST (Power-On Self-Test) routines, which are performed upon each system boot, errors may occur.

Non-fatal errors are those which, in most cases, allow the system to continue to boot. These error messages normally appear on the screen.

Fatal errors will not allow the system to continue with bootup. If a fatal error occurs, you should consult with your system manufacturer for possible repairs.

These fatal errors are usually communicated through a series of audible beeps. The numbers on the fatal error list correspond to the number of beeps for the corresponding error.

<table>
<thead>
<tr>
<th>BIOS Beep (POST) Codes</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Beep Code</td>
<td>Error Message</td>
</tr>
<tr>
<td>1 beep</td>
<td>Refresh</td>
</tr>
<tr>
<td>5 short, 1 long</td>
<td>Memory error</td>
</tr>
<tr>
<td>5 beeps</td>
<td>No con-in or con-out devices</td>
</tr>
<tr>
<td>1 beep per device</td>
<td>Refresh</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IPMI Error Codes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beep Code</td>
</tr>
<tr>
<td>1 continuous beep</td>
</tr>
</tbody>
</table>
Appendix B

Software Installation

B.1 Installing Software Programs

The Supermicro website contains drivers and utilities for your system at https://www.supermicro.com/wftp/driver. Some of these must be installed, such as the chipset driver.

After accessing the website, go into the CDR_Images (in the parent directory of the above link) and locate the ISO file for your motherboard. Download this file to create a DVD of the drivers and utilities it contains. (You may also use a utility to extract the ISO file if preferred.)

After creating a DVD with the ISO files, insert the disk into the DVD drive on your system and the display shown in Figure B-1 should appear.

Another option is to go to the Supermicro website at http://www.supermicro.com/products/. Find the product page for your motherboard here, where you may download individual drivers and utilities to your hard drive or a USB flash drive and install from there.

Note: To install the Windows OS, please refer to the instructions posted on our website at http://www.supermicro.com/support/manuals/.

Figure B-1. Driver/Tool Installation Display Screen
Click the icons showing a hand writing on paper to view the readme files for each item. Click the computer icons to the right of these items to install each item (from top to bottom) one at a time. **After installing each item, you must re-boot the system before moving on to the next item on the list.** The bottom icon with a CD on it allows you to view the entire contents.

B.2 SuperDoctor® 5

The Supermicro SuperDoctor 5 is a program that functions in a command-line or web-based interface for Windows and Linux operating systems. The program monitors such system health information as CPU temperature, system voltages, system power consumption, fan speed, and provides alerts via email or Simple Network Management Protocol (SNMP).

SuperDoctor 5 comes in local and remote management versions and can be used with Nagios to maximize your system monitoring needs. With SuperDoctor 5 Management Server (SSM Server), you can remotely control power on/off and reset chassis intrusion for multiple systems with SuperDoctor 5 or IPMI. SuperDoctor 5 Management Server monitors HTTP, FTP, and SMTP services to optimize the efficiency of your operation.

Note: The default User Name and Password for SuperDoctor 5 is admin / admin.

![SuperDoctor 5 Interface Display Screen (Health Information)](image)

Figure B-2. SuperDoctor 5 Interface Display Screen (Health Information)

Note: The SuperDoctor 5 program and user’s manual can be downloaded from the Supermicro website at http://www.supermicro.com/products/nfo/sms_sd5.cfm.
Appendix C

Standardized Warning Statements

The following statements are industry standard warnings, provided to warn the user of situations which have the potential for bodily injury. Should you have questions or experience difficulty, contact Supermicro's Technical Support department for assistance. Only certified technicians should attempt to install or configure components.

Read this section in its entirety before installing or configuring components.

These warnings may also be found on our website at http://www.supermicro.com/about/policies/safety_information.cfm.

Battery Handling

Warning! There is the danger of explosion if the battery is replaced incorrectly. Replace the battery only with the same or equivalent type recommended by the manufacturer. Dispose of used batteries according to the manufacturer's instructions.

電池の取り扱い

電池交換が正しく行われなかった場合、破裂の危険性があります。交換する電池はメーカーが推奨する型、または同等のものを使用下さい。使用済電池は製造元の指示に従って処分して下さい。

警告

电池更换不当会有爆炸危险。请只使用同类电池或制造商推荐的功能相当的电池更换原有电池。请按制造商的说明处理废旧电池。

警告

电池更換不當會有爆炸危險。請使用製造商建議之相同或功能相當的電池更換原有電池。請按照製造商的說明指示處理廢棄舊電池。

Warnung

Attention

Danger d'explosion si la pile n'est pas remplacée correctement. Ne la remplacer que par une pile de type semblable ou équivalent, recommandée par le fabricant. Jeter les piles usagées conformément aux instructions du fabricant.

¡Advertencia!

Existe peligro de explosión si la batería se reemplaza de manera incorrecta. Reemplazar la batería exclusivamente con el mismo tipo o el equivalente recomendado por el fabricante. Desechar las baterías gastadas según las instrucciones del fabricante.
Appendix C: Warning Statements

Product Disposal

Warning! Ultimate disposal of this product should be handled according to all national laws and regulations.

製品の廃棄
この製品を廃棄処分する場合、国の関係する全ての法律・条例に従い処理する必要があります。

警告
本产品的废弃处理应根据所有国家的法律和规章进行。

Warnung
Die Entsorgung dieses Produkts sollte gemäß allen Bestimmungen und Gesetzen des Landes erfolgen.

¡Advertencia!
Al deshacerse por completo de este producto debe seguir todas las leyes y reglamentos nacionales.

Attention
La mise au rebut ou le recyclage de ce produit sont généralement soumis à des lois et/ou directives de respect de l'environnement. Renseignez-vous auprès de l'organisme compétent.

סילוק白马
אזהרה! סילוק白马 של מוצר זה должен быть построен в соответствие с законами и правилами страны.

경고!
이 제품은 해당 국가의 관련 법률 및 규정에 따라 폐기되어야 합니다.

Waarschuwing
De uiteindelijke verwijdering van dit product dient te geschieden in overeenstemming met alle nationale wetten en reglementen.
Appendix D

UEFI BIOS Recovery

Warning: Do not upgrade the BIOS unless your system has a BIOS-related issue. Flashing the wrong BIOS can cause irreparable damage to the system. In no event shall Supermicro be liable for direct, indirect, special, incidental, or consequential damages arising from a BIOS update. If you need to update the BIOS, do not shut down or reset the system while the BIOS is updating to avoid possible boot failure.

D.1 Overview

The Unified Extensible Firmware Interface (UEFI) provides a software-based interface between the operating system and the platform firmware in the pre-boot environment. The UEFI specification supports an architecture-independent mechanism that will allow the UEFI OS loader stored in an add-on card to boot the system. The UEFI offers clean, hands-off management to a computer during system boot.

D.2 Recovering the UEFI BIOS Image

A UEFI BIOS flash chip consists of a recovery BIOS block and a main BIOS block (a main BIOS image). The recovery block contains critical BIOS codes, including memory detection and recovery codes for the user to flash a healthy BIOS image if the original main BIOS image is corrupted. When the system power is turned on, the recovery block codes execute first. Once this process is complete, the main BIOS code will continue with system initialization and the remaining POST (Power-On Self-Test) routines.

Note 1: Follow the BIOS recovery instructions below for BIOS recovery when the main BIOS block crashes.

Note 2: When the BIOS recovery block crashes, you will need to follow the procedures to make a Returned Merchandise Authorization (RMA) request. (For a RMA request, please see section 3.5 for more information). Also, you may use the Supermicro Update Manager (SUM) Out-of-Band (OOB) (https://www.supermicro.com.tw/products/info/SMS_SUM.cfm) to reflash the BIOS.

D.3 Recovering the Main BIOS Block with a USB Device

This feature allows the user to recover the main BIOS image using a USB-attached device without additional utilities used. A USB flash device such as a USB Flash Drive, or a USB CD/DVD ROM/RW device can be used for this purpose. However, a USB Hard Disk drive cannot be used for BIOS recovery at this time.
The file system supported by the recovery block is FAT (including FAT12, FAT16, and FAT32), which is installed on a bootable or non-bootable USB-attached device. However, the BIOS might need several minutes to locate the SUPER.ROM file if the media size becomes too large due to the huge volumes of folders and files stored in the device.

To perform UEFI BIOS recovery using a USB-attached device, follow the instructions below:

1. Using a different machine, copy the "Super.ROM" binary image file into the Root "\" directory of a USB device or a writable CD/DVD.

 Note 1: If you cannot locate the "Super.ROM" file in your drive disk, visit our website at www.supermicro.com to download the BIOS package. Extract the BIOS binary image into a USB flash device and rename it "Super.ROM" for BIOS recovery use.

 Note 2: Before recovering the main BIOS image, confirm that the "Super.ROM" binary image file you download is the same version or a close version meant for your motherboard.

2. Insert the USB device that contains the new BIOS image ("Super.ROM") into your USB drive and reset the system until the following screen appears:

 ![Screen 1](image1.png)

 Note: On the other hand, if the following screen displays, please load the "Super.ROM" file to the root folder and connect this folder to the system. (You can do so by inserting a USB device that contains the new "Super.ROM" image to your machine for BIOS recovery.)

 ![Screen 2](image2.png)
3. After locating the healthy BIOS binary image, the system will enter the BIOS Recovery menu as shown below:

![BIOS Recovery Menu](image1)

Note: At this point, you may decide if you want to start the BIOS recovery. If you decide to proceed with BIOS recovery, follow the procedures below.

4. When the screen as shown above displays, use the arrow keys to select the item "Proceed with flash update" and press the <Enter> key. You will see the BIOS recovery progress as shown in the screen below:

![BIOS Recovery Progress](image2)

Note: *Do not interrupt the BIOS flashing process until it has completed.*
5. After the BIOS recovery process is complete, press any key to reboot the system.

6. Using a different system, extract the BIOS package into a bootable USB flash drive.

7. When a DOS prompt appears, enter FLASH.BAT BIOSname.### at the prompt.

 Note: *Do not interrupt this process* until the BIOS flashing is complete.

8. After seeing the message indicating the BIOS update has completed, unplug the AC power cable from the power supply, clear CMOS, then plug the AC power cable in the power supply again to power on the system.

9. Press continuously to enter the BIOS Setup utility.

10. Press <F3> to load the default settings.

11. After loading the default settings, press <F4> to save the settings and exit the BIOS Setup utility.
Appendix E

Dual Boot Block

E.1 Introduction

This motherboard supports the Dual Boot Block feature, which is the last-ditch mechanism to recover the BIOS boot block. This section provides an introduction to the feature.

BIOS Boot Block

A BIOS boot block is the minimum BIOS loader required to enable necessary hardware components for the BIOS crisis recovery flash that will update the main BIOS block. An on-call BIOS boot-block corruption may occur due to a software tool issue (see image below) or an unexpected power outage during BIOS updates.

BIOS Boot Block Corruption Occurrence

When a BIOS boot block is corrupted due to an unexpected power outage or a software tool malfunctioning during BIOS updates, you can still reboot the system by closing pins 2 and 3 using a cap on jumper JBR1. When JBR1 is set to pins 2 and 3, the system will boot from a backup boot block pre-loaded in the BIOS by the manufacturer.
E.2 Steps to Reboot the System by Using Jumper JBR1

1. Power down the system.

2. Close pins 2-3 on jumper JBR1, and power on the system.

3. Follow the BIOS recovery SOP listed in the previous chapter (Appendix D).

4. After completing the steps above, power down the system.

5. Close pins 1-2 on jumper JBR1, and power on the system.