Preface

This manual is written for system integrators, IT Professionals, and knowledgeable PC users. It provides information for the installation and use of the X10DRL-CT/-iT/-C motherboard.

About This Motherboard

The Super X10DRL-CT/-iT/-C motherboard supports dual Intel E5-2600v3/v4 Series Processors (Socket R3) that offer new Intel Microarchitecture 22nm (E5-2600v3)/14nm (E5-2600v4) Process Technology, delivering the best balanced solution of performance, power efficiency, and features to address the diverse needs of next-generation data centers. With the PCH C612 built in, the X10DRL-CT/-iT/-C motherboard supports Intel® Management Engine, MCTP Protocol, and Node Manager 3.0. This motherboard is ideal for cost-optimized and general-purpose server platforms. Please refer to our website (http://www.supermicro.com) for CPU and memory support updates.

Manual Organization

Chapter 1 describes the features, specifications and performance of the motherboard. It also provides detailed information about the Intel PCH C612 chipset.

Chapter 2 provides hardware installation instructions. Read this chapter when installing the processor, memory modules and other hardware components into the system. If you encounter any problems, see Chapter 3, which describes troubleshooting procedures for video, memory, and system setup stored in CMOS.

Chapter 4 includes an introduction to BIOS, and provides detailed information on running the BIOS Setup utility.

Appendix A provides BIOS Error Beep Codes.

Appendix B lists Software Installation Instructions.

Appendix C contains UEFI BIOS Recovery instructions.
Conventions Used in the Manual

Pay special attention to the following symbols for proper system installation:

Warning: Important information given to ensure proper system installation or to prevent damage to the components or injury to yourself;

Note: Additional information given to ensure proper system configuration and setup.
Contacting Supermicro

Headquarters

Address: Super Micro Computer, Inc.
980 Rock Ave.
San Jose, CA 95131 U.S.A.
Tel: +1 (408) 503-8000
Fax: +1 (408) 503-8008
Email: marketing@supermicro.com (General Information)
support@supermicro.com (Technical Support)
Website: www.supermicro.com

Europe

Address: Super Micro Computer B.V.
Het Sterrenbeeld 28, 5215 ML
's-Hertogenbosch, The Netherlands
Tel: +31 (0) 73-6400390
Fax: +31 (0) 73-6416525
Email: sales@supermicro.nl (General Information)
support@supermicro.nl (Technical Support)
rma@supermicro.nl (Customer Support)
Website: www.supermicro.nl

Asia-Pacific

Address: Super Micro Computer, Inc.
3F, No. 150, Jian 1st Rd.
Zhonghe Dist., New Taipei City 235
Taiwan (R.O.C)
Tel: +886-(2) 8226-3990
Fax: +886-(2) 8226-3992
Email: support@supermicro.com.tw
Website: www.supermicro.com.tw
Table of Contents

Preface

Chapter 1 Overview

1-1 Overview .. 1-1
1-2 Processor and Chipset Overview .. 1-11
1-3 Special Features .. 1-12
1-4 PC Health Monitoring .. 1-12
1-5 ACPI Features ... 1-13
1-6 Power Supply .. 1-13
1-7 Advanced Power Management ... 1-14

Chapter 2 Installation

2-1 Standardized Warning Statements .. 2-1
2-2 Static-Sensitive Devices ... 2-4
2-3 Processor and Heatsink Installation .. 2-5
2-4 Installing the Processor .. 2-5
2-5 Installing a Passive CPU Heatsink ... 2-9
2-6 Removing the Heatsink ... 2-10
2-7 Installing and Removing the Memory Modules .. 2-11
2-8 Installing & Removing DIMMs .. 2-11
2-9 DIMM Module Removal ... 2-12
2-10 Motherboard Installation .. 2-14
2-11 Tools Needed ... 2-14
2-12 Location of Mounting Holes ... 2-14
2-13 Installing the Motherboard .. 2-15
2-14 Control Panel Connectors and I/O Ports .. 2-16
2-15 Back Panel Connectors and I/O Ports ... 2-16
2-16 Back Panel I/O Port Locations and Definitions .. 2-16
2-17 Serial Ports ... 2-17
2-18 Video Connection ... 2-17
2-19 Universal Serial Bus (USB) .. 2-18
2-20 Ethernet Ports .. 2-19
2-21 Unit Identifier Switch/UID LED Indicator ... 2-20
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front Control Panel</td>
<td>2-21</td>
</tr>
<tr>
<td>Front Control Panel Pin Definitions</td>
<td>2-22</td>
</tr>
<tr>
<td>NMI Button</td>
<td>2-22</td>
</tr>
<tr>
<td>Power LED</td>
<td>2-22</td>
</tr>
<tr>
<td>HDD LED/UID Switch</td>
<td>2-23</td>
</tr>
<tr>
<td>NIC1/NIC2 LED Indicators</td>
<td>2-23</td>
</tr>
<tr>
<td>Overheat (OH)/Fan Fail/PWR Fail/UID LED</td>
<td>2-24</td>
</tr>
<tr>
<td>Power Fail LED</td>
<td>2-24</td>
</tr>
<tr>
<td>Reset Button</td>
<td>2-25</td>
</tr>
<tr>
<td>Power Button</td>
<td>2-25</td>
</tr>
<tr>
<td>Connecting Cables</td>
<td>2-26</td>
</tr>
<tr>
<td>Power Connectors</td>
<td>2-26</td>
</tr>
<tr>
<td>Fan Headers</td>
<td>2-27</td>
</tr>
<tr>
<td>Chassis Intrusion</td>
<td>2-27</td>
</tr>
<tr>
<td>Internal Speaker</td>
<td>2-28</td>
</tr>
<tr>
<td>DOM Power Connector</td>
<td>2-28</td>
</tr>
<tr>
<td>TPM/Port 80 Header</td>
<td>2-29</td>
</tr>
<tr>
<td>LSI SAS 3108 TFM Connector</td>
<td>2-29</td>
</tr>
<tr>
<td>Power SMB (I^2C) Connector</td>
<td>2-30</td>
</tr>
<tr>
<td>IPMB</td>
<td>2-30</td>
</tr>
<tr>
<td>I-SGPIO1/2 Headers</td>
<td>2-31</td>
</tr>
<tr>
<td>Standby Power Header</td>
<td>2-31</td>
</tr>
<tr>
<td>Power LED/Speaker</td>
<td>2-32</td>
</tr>
<tr>
<td>PCI-E NVMe AOC I2C Header</td>
<td>2-32</td>
</tr>
<tr>
<td>Jumper Settings</td>
<td>2-33</td>
</tr>
<tr>
<td>Explanation of Jumpers</td>
<td>2-33</td>
</tr>
<tr>
<td>LAN Enable/Disable</td>
<td>2-33</td>
</tr>
<tr>
<td>Clear CMOS</td>
<td>2-34</td>
</tr>
<tr>
<td>Watch Dog Enable/Disable</td>
<td>2-34</td>
</tr>
<tr>
<td>VGA Enable</td>
<td>2-35</td>
</tr>
<tr>
<td>BMC Enable</td>
<td>2-35</td>
</tr>
<tr>
<td>LAN EEPROM Update</td>
<td>2-35</td>
</tr>
<tr>
<td>I^2C Bus to PCI-Exp. Slots</td>
<td>2-36</td>
</tr>
<tr>
<td>ME Manufacturing Mode Select</td>
<td>2-36</td>
</tr>
<tr>
<td>SAS Enable/Disable</td>
<td>2-37</td>
</tr>
<tr>
<td>10GB LAN Enable/Disable</td>
<td>2-37</td>
</tr>
</tbody>
</table>
Chapter 3 Troubleshooting

3-1 Troubleshooting Procedures .. 3-1
 Before Power On .. 3-1
 No Power ... 3-1
 No Video .. 3-2
 System Boot Failure ... 3-2
 Losing the System's Setup Configuration 3-2
 Memory Errors ... 3-3
 When the System Becomes Unstable 3-3

3-2 Technical Support Procedures .. 3-4

3-3 Battery Removal and Installation .. 3-6
 Battery Removal .. 3-6
 Proper Battery Disposal ... 3-6

3-4 Frequently Asked Questions ... 3-7

3-5 Returning Merchandise for Service .. 3-8

Chapter 4 BIOS

4-1 Introduction... 4-1

4-2 Main Setup ... 4-2

4-3 Advanced Setup Configurations.. 4-4

4-4 Event Logs ... 4-4

4-5 IPMI ... 4-29

4-6 Security Settings .. 4-33

4-7 Boot Settings .. 4-34

4-8 Save & Exit ... 4-37

Appendix A BIOS Error Beep Codes

A-1 BIOS Error Beep Codes ... A-1

Appendix B Software Installation Instructions

B-1 Installing Software Programs .. B-1

B-2 Installing SuperDoctor5 ... B-2
Appendix C UEFI BIOS Recovery Instructions

C-1 An Overview to the UEFI BIOS ...C-1
C-2 How to Recover the UEFI BIOS Image (-the Main BIOS Block).............C-1
C-3 To Recover the Main BIOS Block Using a USB-Attached Device...........C-1
Chapter 1

Overview

1-1 Overview

Checklist

Congratulations on purchasing your computer motherboard from an acknowledged leader in the industry. Supermicro boards are designed with the utmost attention to detail to provide you with the highest standards in quality and performance.

Please check that the following items have all been included with your motherboard. If anything listed here is damaged or missing, contact your retailer.

The following items are included in the retail box.

- One (1) Supermicro Mainboard
- X10DRL-CT/-C: Two (2) SATA & Two (2) SAS Cables
- X10DRL-iT: Six (6) SATA Cables
- One (1) I/O Shield
- One (1) Quick Reference Guide

Note 1: For your system to work properly, please follow the links below to download all necessary drivers/utilities and the user's manual for your motherboard.

- SMCI product manuals: http://www.supermicro.com/support/manuals/
- Product Drivers and utilities: http://www.supermicro.com/wftp

Note 2: For safety considerations, please refer to the complete list of safety warnings posted on the Supermicro website at http://www.supermicro.com/about/policies/safety_information.cfm.

If you have any questions, please contact our support team at support@supermicro.com.
Note: All graphics shown in this manual were based upon the latest PCB Revision available at the time of publishing of the manual. The motherboard you’ve received may or may not look exactly the same as the graphics shown in this manual.
Note: For the latest CPU/Memory updates, please refer to our website at http://www.supermicro.com/products/motherboard/ for details.
Notes:

• See Chapter 2 for detailed information on jumpers, I/O ports and JF1 front panel connections.

• "1" indicates the location of "Pin 1".

• Jumpers/LED Indicators not indicated are for internal testing only.

• Use only the correct type of onboard CMOS battery as specified by the manufacturer. Do not install the onboard battery upside down to avoid possible explosion.
X10DRL-CT/-iT/-C Jumpers

<table>
<thead>
<tr>
<th>Jumper</th>
<th>Description</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>JBT1</td>
<td>Clear CMOS/Reset BIOS Configuration</td>
<td>(See Chpt. 2)</td>
</tr>
<tr>
<td>J2C1/J2C2</td>
<td>SMB to PCI-E Slots</td>
<td>Pins 2-3 (Disabled)</td>
</tr>
<tr>
<td>JPB1</td>
<td>BMC Enable/Disable</td>
<td>Pins 1-2 (Enabled)</td>
</tr>
<tr>
<td>JPG1</td>
<td>Onboard VGA Enable</td>
<td>Pins 1-2 (Enabled)</td>
</tr>
<tr>
<td>JPL1, JPL2</td>
<td>LAN1, LAN2 Enable/Disable</td>
<td>Pins 1-2 (Enabled)</td>
</tr>
<tr>
<td>JPME2</td>
<td>Intel ME Recovery Mode</td>
<td>Pins 1-2 (Normal)</td>
</tr>
<tr>
<td>JPS1</td>
<td>SAS Enable</td>
<td>Pins 1-2 (Enabled)</td>
</tr>
<tr>
<td>JPTG1</td>
<td>10Gb LAN Support Enable/Disable</td>
<td>Pins 1-2 (Enabled)</td>
</tr>
<tr>
<td>JWD1</td>
<td>Watch Dog Timer Enable</td>
<td>Pins 1-2 (Reset)</td>
</tr>
</tbody>
</table>

X10DRL-CT/-iT/-C Connectors

<table>
<thead>
<tr>
<th>Connector</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>COM1</td>
<td>On board Serial port header for COM1</td>
</tr>
<tr>
<td>FAN1~6, FANA/B</td>
<td>CPU/System Fan Headers</td>
</tr>
<tr>
<td>I/O Back Panel</td>
<td>See Back Panel I/O Connectors, Section 2-6</td>
</tr>
<tr>
<td>I-SATA0~5</td>
<td>SATA Interface for SATA 0,1, 2, 3, 4, and 5</td>
</tr>
<tr>
<td>I-SGPIO1/I-SGPIO2</td>
<td>Serial General Purpose I/O Headers 1 and 2</td>
</tr>
<tr>
<td>J24</td>
<td>24-pin ATX Power Connector</td>
</tr>
<tr>
<td>JD1</td>
<td>External Speaker/Power LED</td>
</tr>
<tr>
<td>JF1</td>
<td>Front Panel Control/LED Header</td>
</tr>
<tr>
<td>JIPMB1</td>
<td>System Management Bus header</td>
</tr>
<tr>
<td>JL1</td>
<td>Chassis Intrusion Header</td>
</tr>
<tr>
<td>JNVI2C1</td>
<td>PCI-E NVMe AOC I2C Header</td>
</tr>
<tr>
<td>JPI2C1</td>
<td>Power Supply SMBus I2C Header</td>
</tr>
<tr>
<td>JPWR1, JPWR2</td>
<td>8-pin ATX Power Connectors</td>
</tr>
<tr>
<td>JS18</td>
<td>LSISAS3108 TFM connector</td>
</tr>
<tr>
<td>JSD1</td>
<td>Power Connector for DOM (Disk on Module) Device</td>
</tr>
<tr>
<td>JSTBY1</td>
<td>Standby Power Connector</td>
</tr>
<tr>
<td>JTPM1</td>
<td>TPM (Trusted Platform Module) / Port 80 Header</td>
</tr>
<tr>
<td>JUIDB1</td>
<td>UID (Unit ID) Switch</td>
</tr>
<tr>
<td>L-SAS03, L-SAS47</td>
<td>L-SAS Interface for SAS0~7</td>
</tr>
<tr>
<td>SP1</td>
<td>Internal Speaker/ Buzzer</td>
</tr>
<tr>
<td>USB 2/3</td>
<td>USB 2.0 Header for USB ports 2/3</td>
</tr>
<tr>
<td>USB4</td>
<td>USB 2.0 Type A port for USB 4</td>
</tr>
<tr>
<td>USB 8/9 (3.0)</td>
<td>USB 3.0 Header for USB ports 8/9</td>
</tr>
</tbody>
</table>
Warning!

To avoid damaging the power supply or the motherboard, be sure to use a power supply that contains a 24-pin and two 8-pin power connectors. Be sure to connect the power supply to the 24-pin power connector (J24), and two 8-pin power connectors (JPWR1, JPWR2) on the motherboard. Failure in doing so may void the manufacturer warranty on your power supply and motherboard.

X10DRL-CT/-iT/-C LED Indicators

<table>
<thead>
<tr>
<th>LED</th>
<th>Description</th>
<th>Color/State</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEDBMC</td>
<td>BMC Heartbeat LED</td>
<td>Green/Blinking</td>
<td>BMC Normal</td>
</tr>
<tr>
<td>LEDPWR</td>
<td>Onboard Power LED</td>
<td>Green/Solid</td>
<td>System Power On</td>
</tr>
<tr>
<td>UID</td>
<td>UID Switch Indicator</td>
<td>Blue/Steady</td>
<td>UID Switch is On</td>
</tr>
</tbody>
</table>

Motherboard Model Differences

<table>
<thead>
<tr>
<th>Model</th>
<th>10Gb LAN Support</th>
<th>SAS Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>X10DRL-CT</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>X10DRL-C</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>X10DRL-iT</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>
Motherboard Features

CPU
- Dual Intel® E5-2600v3/v4 Series Processors (Socket R3-LGA 2011); each processor supports dual full-width Intel QuickPath Interconnect (QPI) links (of up to 9.6 GT/s one direction per QPI)

Note: E5-2600v4 requires Revision 2.0 BIOS (or higher).

Memory
- Integrated memory controller supports: Up to 512 GB of DDR4 (288-pin) Registered (RDIMM)/Load Reduced (LRDIMM) ECC 2400/2133/1866/1600 MHz in 8 slots

Note 1: Memory speed support depends on the CPUs installed in the system.

Note 2: For the latest CPU/memory updates, please refer to our website at http://www.supermicro.com/products/motherboard.

DIMM sizes
- **DIMM** | 4GB, 8GB, 16GB, 32GB, 64GB, DR/RDIMM or QR/LRDIMM @ 1.2V

Chipset
- Intel® PCH C612

Expansion Slots
- One (1) PCI Express 3.0 x8 slot (CPU1 Slot6),
- One (1) PCI-Express 3.0 x16 slot (CPU1 Slot5),
- One (1) PCI-Express 3.0 x8 slot (CPU2 Slot4)

Graphics
- Graphics Controller via Aspeed 2400 BMC

Network
- Dual Intel i210 Gigabit (10/100/1000 Mb/s) single-port Ethernet controllers for LAN 1/LAN 2 ports
- Dual 10GBase-T LAN with Intel X540 Ethernet controllers for LAN 3/LAN 4 ports (X10DRL-CT/-iT only)
- Aspeed 2400 Base-board Controller (BMC) supports IPMI_LAN 2.0

I/O Devices

<table>
<thead>
<tr>
<th>SATA Connections</th>
</tr>
</thead>
<tbody>
<tr>
<td>SATA Ports</td>
</tr>
<tr>
<td>SAS Ports</td>
</tr>
</tbody>
</table>
IPMI 2.0
- IPMI 2.0 supported by Aspeed 2400

Serial (COM) Ports
- One (1) Serial Port Header (COM1)

### Peripheral Devices	USB Devices
- Two (2) USB 3.0 ports on the rear I/O panel (USB 12/13)
- One (1) internal USB 2.0 header for two (2) USB front panel support (USB 2/3)
- One (1) Type A USB 2.0 connector (USB 4)
- One (1) USB 3.0 header for two USB 3.0 connections (USB 8/9)

BIOS
- 16 MB SPI AMI BIOS® SM Flash UEFI BIOS
- APCI 2.3, ACPI 2.0/3.0/4.0, USB Keyboard, Plug & Play (PnP) and SMBIOS 2.3

Power Connectors
- One (1) 24-pin ATX main power connector (J24)
- Two (2) 8-pin 12V power connectors (JPWR1/2)

Power Management
- ACPI Power Management
- Main switch override mechanism
- Power-on mode for AC power recovery
- Intel® Intelligent Power Node Manager 3.0 (Available when the Supermicro Power Management (SPM) is installed and special power supply used. See the note on Page 1-14.)
- Management Engine (ME)

PC Health Monitoring
- Onboard voltage monitoring for +3.3V, 3.3V Standby, +5V, +5V Standby, +12V, CPU Core, Memory, Chipset, and Battery Voltages
- CPU/System overheat LED and control
- CPU Thermal Trip support
- Status Monitor for Speed Control
Chapter 1: Overview

- Status Monitor for On/Off Control
- CPU Thermal Design Power (TDP): support up to 145W (See Note 1 next page)

Fan Control
- Fan status monitoring via IPMI connections
- Dual Cooling Zone
- Multi-speed fan control via onboard BMC
- Pulse Width Modulation (PWM) fan control

System Management
- PECI (Platform Environment Configuration Interface) 2.0 support
- UID (Unit Identification)/Remote UID
- System resource alert via SuperDoctor® 5
- SuperDoctor® 5, Watch Dog, NMI
- IPMI 2.0 Support
- Chassis Intrusion Header and Detection

Dimensions
- 12.00" (L) x 10.00" (W) (304.80 mm x 254.00 mm)

Note 1: CPU Maximum Thermal Design Power (TDP) is subject to chassis and heatsink cooling restrictions. For proper thermal management, please check the chassis and heatsink specifications for proper CPU TDP sizing.

Note 2: For IPMI Configuration Instructions, please refer to the Embedded IPMI Configuration User's Guide available @ http://www.supermicro.com/support/manuals/.
X10DRL-CT/IT/C

System Block Diagram

Note: This is a general block diagram and may not exactly represent the features on your motherboard. See the Motherboard Features pages for the actual specifications of each motherboard.
1-2 Processor and Chipset Overview

Built upon the functionality and capability of the Intel E5-2600v3/v4 Series Processors (Socket R3) and the Intel C612 PCH, the X10DRL-CT/-iT/-C motherboard provides the best balanced solution of performance, power efficiency, and features to address the diverse needs of next-generation computer users.

With support of new Intel Microarchitecture 22nm (E5-2600v3)/14nm (E5-2600v4) Process Technology, the X10DRL-CT/-iT/-C dramatically increases system performance.

The PCH C612 chip provides Enterprise SMbus and MCTP support, including the following features:

- DDR4 288-pin memory support on Socket R3
- Support for MCTP Protocol and ME
- Support of SMBus speeds of up to 1 MHz for BMC connectivity
- Improved I/O capabilities to high-storage-capacity configuration
- SPI Enhancements
- Intel® Node Manager 3.0
- BMC supports remote management, virtualization, and the security package for enterprise platforms

Notes:

1. E5-2600v4 requires Revision 2.0 BIOS (or higher).

2. Intel Node Manager 3.0 support is dependent on the power supply used in the system.
1-3 Special Features

Recovery from AC Power Loss
The Basic I/O System (BIOS) provides a setting that determines how the system will respond when AC power is lost and then restored to the system. You can choose for the system to remain powered off (in which case you must press the power switch to turn it back on), or for it to automatically return to the power-on state. See the Advanced BIOS Setup section for this setting. The default setting is Last State.

1-4 PC Health Monitoring
This section describes the features of PC health monitoring of the motherboard. This motherboard has an onboard Baseboard-Management Controller (BMC) chip that supports system health monitoring. An onboard voltage monitor will scan the following onboard voltages continuously: +3.3V, 3.3V Standby, +5V, +5V Standby, +12V, CPU Core, Memory, Chipset, and Battery Voltages. Once a voltage becomes unstable, a warning is given, or an error message is sent to the screen. The user can adjust the voltage thresholds to define the sensitivity of the voltage monitor.

Fan Status Monitor with Firmware Control
System-health monitoring support provided by the BMC controller can check the RPM status of a cooling fan. The onboard CPU and chassis fans are controlled by IPMI Thermal Management.

Environmental Temperature Control
System-health sensors monitor temperatures and voltage settings of onboard processors and the system in real time via the IPMI interface. Whenever the temperature of the CPU or the system exceeds a user-defined threshold, system/CPU cooling fans will be turned on to prevent the CPU or the system from overheating.

Note: To avoid possible system overheating, please be sure to provide adequate airflow to your system.

System Resource Alert
This feature is available when used with SuperDoctor 5 in the Windows OS or Linux environment. SuperDoctor 5 is used to notify the user of certain system events. For example, you can configure SuperDoctor 5 to provide you with warnings when the system temperature, CPU temperatures, voltages, and fan speeds go beyond a predefined range.
1-5 ACPI Features

ACPI stands for Advanced Configuration and Power Interface. The ACPI specification defines a flexible and abstract hardware interface that provides a standard way to integrate power management features throughout a PC system, including its hardware, operating system and application software. This enables the system to automatically turn on and off peripherals such as CD-ROMs, network cards, hard disk drives and printers.

In addition to operating system-directed power management, ACPI also provides a generic system event mechanism for Plug and Play, and an operating system-independent interface for configuration control. ACPI leverages the Plug and Play BIOS data structures, while providing a processor architecture-independent implementation that is compatible with Windows 2008, Windows 2008R2, Windows 2012, and Windows 2012R2 operating systems.

1-6 Power Supply

As with all computer products, a stable power source is necessary for proper and reliable operation. It is even more important for processors that have high CPU clock rates.

The X10DRL-CT/iT/-C motherboard accommodates 24-pin ATX power supplies. Although most power supplies generally meet the specifications required by the CPU, some are inadequate. In addition, two 12V 8-pin power connections are also required to ensure adequate power supply to the system.

Warning! To avoid damaging the power supply or the motherboard, be sure to use a power supply that contains a 24-pin and two 8-pin power connectors. Be sure to connect the power supplies to the 24-pin power connector (J24), and the two 8-pin power connectors (JPWR1, JPWR2) on the motherboard. Failure in doing so may void the manufacturer warranty on your power supply and motherboard.

It is strongly recommended that you use a high quality power supply that meets ATX power supply Specification 2.02 or above. It must also be SSI compliant. (For more information, please refer to the website at http://www.ssiforum.org/). Additionally, in areas where noisy power transmission is present, you may choose to install a line filter to shield the computer from noise. It is recommended that you also install a power surge protector to help avoid problems caused by power surges.
1-7 Advanced Power Management

The following new advanced power management features are supported by this motherboard:

Intel® Intelligent Power Node Manager (NM) (Available when "Supermicro Power Management (SPM)" is Installed)

The Intel® Intelligent Power Node Manager 3.0 (IPNM) provides your system with real-time thermal control and power management for maximum energy efficiency. Although IPNM Specification Version 2.0/3.0 is supported by the BMC (Baseboard Management Controller), your system must also have IPNM-compatible Management Engine (ME) firmware installed to use this feature.

Note: IPNM support is dependent on the power supply used in the system.

Management Engine (ME)

The Management Engine, which is an ARC controller embedded in the PCH, provides Server Platform Services (SPS) to your system. The services provided by SPS are different from those provided by the ME on client platforms.
Chapter 2
Installation

2-1 Standardized Warning Statements

The following statements are industry-standard warnings, provided to warn the user of situations which have the potential for bodily injury. Should you have questions or experience difficulty, contact Supermicro's Technical Support department for assistance. Only certified technicians should attempt to install or configure components. Read this section in its entirety before installing or configuring components in the Supermicro chassis.

Battery Handling

Warning!

There is a danger of explosion if the battery is replaced incorrectly. Replace the battery only with the same or equivalent type recommended by the manufacturer. Dispose of used batteries according to the manufacturer's instructions.

電池の取り扱い

電池交換が正しく行われなかった場合、破裂の危険性があります。交換する電池はメーカーが推奨する型、または同等のものを使用下さい。使用済電池は製造元の指示に従って処分して下さい。

警告

电池更换不当会有爆炸危险。请只使用同类电池或制造商推荐的功能相当的电池更换原有电池。请按制造商的说明处理废旧电池。

警告

電池更換不當會有爆炸危険。請使用製造商建議之相同或功能相當的電池更換原有電池。請按照製造商的說明指示處理廢棄舊電池。

Warnung

Attention

Danger d'explosion si la pile n'est pas remplacée correctement. Ne la remplacer que par une pile de type semblable ou équivalent, recommandée par le fabricant.

Jeter les piles usagées conformément aux instructions du fabricant.

¡Advertencia!

Existe peligro de explosión si la batería se reemplaza de manera incorrecta. Reemplazar la batería exclusivamente con el mismo tipo o el equivalente recomendado por el fabricante. Desechar las baterías gastadas según las instrucciones del fabricante.

경고!

배터리가 올바르게 교체되지 않으면 폭발의 위험이 있습니다. 기존 배터리와 동일하거나 제조사에서 권장하는 동등한 종류의 배터리로만 교체해야 합니다. 제조사의 안내에 따라 사용된 배터리를 처리하여 주십시오.

Waarschuwing

Er is ontploffingsgevaar indien de batterij verkeerd vervangen wordt. Vervang de batterij slechts met hetzelfde of een equivalent type die door de fabrikant aanbevolen wordt. Gebruikte batterijen dienen overeenkomstig fabrieksvoorschriften afgevoerd te worden.
Product Disposal

Warning!
Ultimate disposal of this product should be handled according to all national laws and regulations.

製品の廃棄
この製品を廃棄処分する場合、国の関係する全ての法律・条例に従い処理する必要があります。

警告
本产品的废弃处理应根据所有国家的法律和规章进行。

警告
本产品的废棄處理應根據所有國家的法律和規章進行。

Warnung
Die Entsorgung dieses Produkts sollte gemäß allen Bestimmungen und Gesetzen des Landes erfolgen.

¡Advertencia!
Al deshacerse por completo de este producto debe seguir todas las leyes y reglamentos nacionales.

Attention
La mise au rebut ou le recyclage de ce produit sont généralement soumis à des lois et/ou directives de respect de l’environnement. Renseignez-vous auprès de l'organisme compétent.

סילוק הומר

הזהרה!
סילוק סופי של מוצר זה חויב להימשך בהחאש להניחיות והוקי המר針.
2-2 Static-Sensitive Devices

Electrostatic Discharge (ESD) can damage electronic components. To avoid damaging your system board, it is important to handle it very carefully. The following measures are generally sufficient to protect your equipment from ESD.

Precautions

- Use a grounded wrist strap designed to prevent static discharge.

- Touch a grounded metal object before removing the board from the antistatic bag.

- Handle the motherboard by its edges only; do not touch its components, peripheral chips, memory modules or gold contacts.

- When handling chips or modules, avoid touching their pins.

- Put the motherboard and peripherals back into their antistatic bags when not in use.

- For grounding purposes, make sure that your system chassis provides excellent conductivity between the power supply, the case, the mounting fasteners and the motherboard.

Unpacking

The motherboard is shipped in antistatic packaging to avoid static damage. When unpacking the motherboard, make sure that the person handling it is static protected.
2-3 Processor and Heatsink Installation

Warning: When handling the processor package, avoid placing direct pressure on the label area.

Notes:

Always connect the power cord last, and always remove it before adding, removing or changing any hardware components. Make sure that you install the processor into the CPU socket before you install the CPU heatsink.

If you buy a CPU separately, make sure that you use an Intel-certified multi-directional heatsink only.

Make sure to install the motherboard into the chassis before you install the CPU heatsink.

When receiving a motherboard without a processor pre-installed, make sure that the plastic CPU socket cap is in place and none of the socket pins are bent; otherwise, contact your retailer immediately.

Refer to the Supermicro website for updates on CPU support.

Installing the Processor

1. There are two load levers on the LGA2011-R3 socket. To open the socket cover, first press and release the load lever labeled 'Open 1st'.

Note: All graphics, drawings and pictures shown in this manual are for illustration only. The components that came with your machine may or may not look exactly the same as those shown in this manual.
2. Press the second load lever labeled 'Close 1st' to release the load plate that covers the CPU socket from its locking position.

3. With the lever labelled 'Close 1st' fully retracted, gently push down on the lever labelled 'Open 1st' to open the load plate. Lift the load plate to open it completely.

Note: All graphics, drawings and pictures shown in this manual are for illustration only. The components that came with your machine may or may not look exactly the same as those shown in this manual.
Chapter 2: Installation

4. Use your thumb and the index finger to loosen the lever and open the load plate.

5. Using your thumb and index finger, hold the CPU on its edges. Align the CPU keys, which are semi-circle cutouts, against the socket keys.

6. Once they are aligned, carefully lower the CPU straight down into the socket. (Do not drop the CPU on the socket. Do not move the CPU horizontally or vertically. Do not rub the CPU against the surface or against any pins of the socket to avoid damaging the CPU or the socket.)

Warning: You can only install the CPU inside the socket in one direction. Make sure that it is properly inserted into the CPU socket before closing the load plate. If it doesn't close properly, do not force it as it may damage your CPU. Instead, open the load plate again to make sure that the CPU is aligned properly.
7. With the CPU inside the socket, inspect the four corners of the CPU to make sure that the CPU is properly installed.

8. Close the load plate with the CPU inside the socket. Lock the lever labelled ‘Close 1st’ first, then lock the lever labelled ‘Open 1st’ second. Using your thumb gently push the load levers down to the lever locks.
Installing a Passive CPU Heatsink

1. Do not apply any thermal grease to the heatsink or the CPU die -- the required amount has already been applied.

2. Place the heatsink on top of the CPU so that the four mounting holes are aligned with those on the Motherboard and the Heatsink Bracket underneath.

3. Screw in two diagonal screws (i.e., the #1 and the #2 screws) until just snug (do not over-tighten the screws to avoid possible damage to the CPU.)

4. Finish the installation by fully tightening all four screws.

// Note: For optimized airflow, please follow your chassis airflow direction to install the correct CPU heatsink direction. Graphic drawings included in this manual are for reference only. They might look different from the components installed in your system.
Removing the Heatsink

Warning: We do not recommend that the CPU or the heatsink be removed. However, if you do need to uninstall the heatsink, please follow the instructions below to uninstall the heatsink to prevent damage done to the CPU or the CPU socket.

1. Unscrew the heatsink screws from the motherboard in the sequence as shown in the illustration below.

2. Gently wriggle the heatsink to loosen it from the CPU. (Do not use excessive force when wriggling the heatsink!)

3. Once the CPU is loosened from the socket, remove the CPU from the CPU socket.

4. Remove the used thermal grease and clean the surface of the CPU and the heatsink, Reapply the proper amount of thermal grease on the surface before reinstalling the CPU and the heatsink.

Note: For optimized airflow, please follow your chassis airflow direction to install the correct CPU heatsink direction. Graphic drawings included in this manual are for reference only. They might look different from the components installed in your system.
2-4 Installing and Removing the Memory Modules

Note: Check Supermicro's website for recommended memory modules.

CAUTION

Exercise extreme care when installing or removing DIMM modules to prevent any possible damage.

Installing & Removing DIMMs

1. Insert the desired number of DIMMs into the memory slots, starting with DIMM A1. (For best performance, please use the memory modules of the same type and speed in the same bank.)

2. Push the release tabs outwards on both ends of the DIMM slot to unlock it.

3. Align the key of the DIMM module with the receptive point on the memory slot.

4. Align the notches on both ends of the module against the receptive points on the ends of the slot.

5. Use two thumbs together to press the notches on both ends of the module straight down into the slot until the module snaps into place.

6. Press the release tabs to the locking positions to secure the DIMM module into the slot.

Press both notches straight down into the memory slot at the same time.
DIMM Module Removal

Press the release tabs on both ends of the DIMM socket to release the DIMM module from the socket as shown in the drawing on the right.

Warnings: 1. Please do not use excessive force when pressing the release tabs on the ends of the DIMM socket to avoid causing any damage to the DIMM module or the DIMM socket. 2. Please handle DIMM modules with care. Carefully follow all the instructions given on Page 1 of this chapter to prevent ESD-related damages to your memory modules or components.

Memory Support for the X10DRL-CT/-iT/-C Motherboard

The X10DRL-CT/-iT/-C Motherboard supports up to 512 GB of DDR4 Registered (RDIMM)/Load Reduced (LRDIMM) ECC 2400/2133/1866/1600 MHz memory modules in eight DIMM slots. Memory speed support is pending on the processors used in the system. For the latest memory updates, please refer to our website at http://www.supermicro.com/products/motherboard.

Processor & Memory Module Population Configuration

For memory to work properly, follow the tables below for memory installation.

<table>
<thead>
<tr>
<th>Processors and their Corresponding Memory Modules</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU#</td>
</tr>
<tr>
<td>CPU 1</td>
</tr>
<tr>
<td>CPU 2</td>
</tr>
</tbody>
</table>

Processor and Memory Module Population for Optimal Performance

<table>
<thead>
<tr>
<th>Number of CPUs+DIMMs</th>
<th>CPU and Memory Population Configuration Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>(For memory to work properly, please follow the instructions below.)</td>
<td></td>
</tr>
<tr>
<td>1 CPU & 2 DIMMs</td>
<td>CPU1, P1-DIMMA1/P1-DIMMB1</td>
</tr>
<tr>
<td>1 CPU & 4 DIMMs</td>
<td>CPU1, P1-DIMMA1/P1-DIMMB1, P1-DIMMC1/P1-DIMMD1</td>
</tr>
<tr>
<td>2 CPUs & 4 DIMMs</td>
<td>CPU1 + CPU2, P1-DIMMA1/P1-DIMMB1, P2-DIMME1/P2-DIMMF1</td>
</tr>
<tr>
<td>2 CPUs & 6 DIMMs</td>
<td>CPU1 + CPU2, P1-DIMMA1/P1-DIMMB1/P1-DIMMC1/P1-DIMMD1, P2-DIMME1/P2-DIMMF1</td>
</tr>
<tr>
<td>2 CPUs & 8 DIMMs</td>
<td>CPU1 + CPU2, P1-DIMMA1/P1-DIMMB1/P1-DIMMC1/P1-DIMMD1, P2-DIMME1/P2-DIMMF1/P2-DIMMG1/P2-DIMMH1</td>
</tr>
</tbody>
</table>
Populating RDIMM/LRDIMM DDR4 Memory Modules for the E5-2600v3-based Motherboard

<table>
<thead>
<tr>
<th>Type</th>
<th>Ranks Per DIMM and Data Width</th>
<th>DIMM Capacity (GB)</th>
<th>Speed (MT/s); Voltage (V); Slot Per Channel (SPC) and DIMM Per Channel (DPC)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 Slot Per Channel</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4Gb 8Gb</td>
<td>1DPC</td>
</tr>
<tr>
<td>RDIMM</td>
<td>SRx4</td>
<td>8GB 16GB</td>
<td>1.2V</td>
</tr>
<tr>
<td>RDIMM</td>
<td>SRx8</td>
<td>4GB 8GB</td>
<td>2133</td>
</tr>
<tr>
<td>RDIMM</td>
<td>DRx8</td>
<td>8GB 16GB</td>
<td>2133</td>
</tr>
<tr>
<td>RDIMM</td>
<td>DRx4</td>
<td>16GB 32GB</td>
<td>2133</td>
</tr>
<tr>
<td>LRDIMM</td>
<td>QRx4</td>
<td>32GB 64GB</td>
<td>2133</td>
</tr>
<tr>
<td>LRDIMM 3D†</td>
<td>8Rx4</td>
<td>64GB 128GB</td>
<td>2133</td>
</tr>
</tbody>
</table>

Populating RDIMM/LRDIMM DDR4 Memory Modules for the E5-2600v4-based Motherboard

<table>
<thead>
<tr>
<th>Type</th>
<th>Ranks Per DIMM and Data Width</th>
<th>DIMM Capacity (GB)</th>
<th>Speed (MT/s); Voltage (V); Slot Per Channel (SPC) and DIMM Per Channel (DPC)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 Slot Per Channel</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4Gb 8Gb</td>
<td>1DPC</td>
</tr>
<tr>
<td>RDIMM</td>
<td>SRx4</td>
<td>8GB 16GB</td>
<td>1.2V</td>
</tr>
<tr>
<td>RDIMM</td>
<td>SRx8</td>
<td>4GB 8GB</td>
<td>2400</td>
</tr>
<tr>
<td>RDIMM</td>
<td>DRx8</td>
<td>8GB 16GB</td>
<td>2400</td>
</tr>
<tr>
<td>RDIMM</td>
<td>DRx4</td>
<td>16GB 32GB</td>
<td>2400</td>
</tr>
<tr>
<td>LRDIMM</td>
<td>QRx4</td>
<td>32GB 64GB</td>
<td>2400</td>
</tr>
<tr>
<td>LRDIMM 3D†</td>
<td>8Rx4</td>
<td>64GB 128GB</td>
<td>2400</td>
</tr>
</tbody>
</table>
2-5 Motherboard Installation

All motherboards have standard mounting holes to fit different types of chassis. Make sure that the locations of all the mounting holes for both motherboard and chassis match. Although a chassis may have both plastic and metal mounting fasteners, metal ones are highly recommended because they ground the motherboard to the chassis. Make sure that the metal standoffs click in or are screwed in tightly. Then use a screwdriver to secure the motherboard onto the motherboard tray.

Tools Needed

- Phillips Screwdriver
- Pan head screws (8 pieces)
- Standoffs (8 pieces, if needed)

Location of Mounting Holes

There are eight (8) mounting holes on this motherboard indicated by the arrows.

Caution: 1) To avoid damaging the motherboard and its components, please do not use a force greater than 8 lb/inch on each mounting screw during motherboard installation. 2) Some components are very close to the mounting holes. Please take precautionary measures to avoid damaging these components when installing the motherboard to the chassis.
Installing the Motherboard

1. Install the I/O shield into the chassis.

2. Locate the mounting holes on the motherboard.

3. Locate the matching mounting holes on the chassis. Align the mounting holes on the motherboard against the mounting holes on the chassis.

4. Install standoffs in the chassis as needed.

5. Install the motherboard into the chassis carefully to avoid damaging motherboard components.

6. Using the Phillips screwdriver, insert a Pan head #6 screw into a mounting hole on the motherboard and its matching mounting hole on the chassis.

7. Repeat Step 5 to insert #6 screws into all mounting holes.

8. Make sure that the motherboard is securely placed in the chassis.

Note: Images displayed are for illustration only. Your chassis or components might look different from those shown in this manual.
Control Panel Connectors and I/O Ports

The I/O ports are color coded in conformance with the industry standards. See the picture below for the colors and locations of the various I/O ports.

Back Panel Connectors and I/O Ports

Back Panel I/O Port Locations and Definitions

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A. VGA Port</td>
<td>D. USB 3.0 Port 13</td>
<td>G. 10Gb LAN Port 3*</td>
</tr>
<tr>
<td>B. IPMI Port</td>
<td>E. 1Gb LAN Port 1</td>
<td>H. 10Gb LAN Port 4*</td>
</tr>
<tr>
<td>C. USB 3.0 Port 12</td>
<td>F. 1Gb LAN Port 2</td>
<td>I. UID Switch / UID LED</td>
</tr>
</tbody>
</table>

*X10DRL-CT/-iT only
Serial Ports

One serial port header (COM1) is located on the motherboard. COM1 is located on the rear corner of the motherboard. See the table on the right for pin definitions.

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Definition</th>
<th>Pin #</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DCD</td>
<td>6</td>
<td>DSR</td>
</tr>
<tr>
<td>2</td>
<td>RXD</td>
<td>7</td>
<td>RTS</td>
</tr>
<tr>
<td>3</td>
<td>TXD</td>
<td>8</td>
<td>CTS</td>
</tr>
<tr>
<td>4</td>
<td>DTR</td>
<td>9</td>
<td>RI</td>
</tr>
<tr>
<td>5</td>
<td>Ground</td>
<td>10</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Video Connection

A Video (VGA) port is located next to the IPMI LAN on the I/O back panel. Refer to the board layout below for the location.
Universal Serial Bus (USB)

Two USB 3.0 ports (USB 12/13) are located on the I/O back panel on motherboard. In addition, an internal USB header (USB 2/3) and a Type A USB connector (USB 4) provide a total of three USB 2.0 connections (USB 2/3, 4) for front panel support. A USB 3.0 header, located next JF1, provides two front USB 3.0 connections (USB 8/9). (Cables are not included). See the tables on the right and below for pin definitions.

Back Panel USB (3.0) 12/13 Pin Definitions

<table>
<thead>
<tr>
<th>Pin#</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Rear_Vcc</td>
</tr>
<tr>
<td>2</td>
<td>N12</td>
</tr>
<tr>
<td>3</td>
<td>P12</td>
</tr>
<tr>
<td>4</td>
<td>GND</td>
</tr>
<tr>
<td>5</td>
<td>Re_Rxn2</td>
</tr>
<tr>
<td>6</td>
<td>Re_Rxp2</td>
</tr>
<tr>
<td>7</td>
<td>Ground</td>
</tr>
<tr>
<td>8</td>
<td>Re_Txn2</td>
</tr>
<tr>
<td>9</td>
<td>Re_Txp2</td>
</tr>
</tbody>
</table>

Front Panel USB (2.0) 2/3 Pin Definitions

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+5V</td>
</tr>
<tr>
<td>2</td>
<td>+5V</td>
</tr>
<tr>
<td>3</td>
<td>USB_PN2</td>
</tr>
<tr>
<td>4</td>
<td>USB_PN3</td>
</tr>
<tr>
<td>5</td>
<td>USB_PP2</td>
</tr>
<tr>
<td>6</td>
<td>USB_PP3</td>
</tr>
<tr>
<td>7</td>
<td>Ground</td>
</tr>
<tr>
<td>8</td>
<td>Ground</td>
</tr>
<tr>
<td>9</td>
<td>Key</td>
</tr>
</tbody>
</table>

USB (2.0) USB 4 Pin Definitions

<table>
<thead>
<tr>
<th>Pin#</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+5V</td>
</tr>
<tr>
<td>2</td>
<td>USB_PN4</td>
</tr>
<tr>
<td>3</td>
<td>USB_PP4</td>
</tr>
<tr>
<td>4</td>
<td>Ground</td>
</tr>
</tbody>
</table>
Ethernet Ports

Two Gigabit Ethernet ports (LAN1, LAN2) are located on the I/O back panel on the motherboard. These ethernet ports support Gigabit LANs on the motherboard. In addition, an IPMI Dedicated LAN port is located above USB 12/13 ports on the back panel. All these ports accept RJ45 type cables. Please refer to the LED Indicator Section for LAN LED information.

Two additional 10Gb Ethernet ports are also supported on the X10DRL-CT/-iT motherboard, these are designated as LAN3 and LAN4.

LAN1 and LAN2 (1G) Pin Definition

<table>
<thead>
<tr>
<th>Pin#</th>
<th>Definition</th>
<th>Pin#</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>TDR0-</td>
<td>A10</td>
<td>GND</td>
</tr>
<tr>
<td>A2</td>
<td>TDR0+</td>
<td>A11</td>
<td>YEL+</td>
</tr>
<tr>
<td>A3</td>
<td>TDR1-</td>
<td>A12</td>
<td>YEL-</td>
</tr>
<tr>
<td>A4</td>
<td>TDR1+</td>
<td>A13</td>
<td>GRE+/ORG-</td>
</tr>
<tr>
<td>A5</td>
<td>TDR2-</td>
<td>A14</td>
<td>GRE-/ORG+</td>
</tr>
<tr>
<td>A6</td>
<td>TDR2+</td>
<td>A15</td>
<td></td>
</tr>
<tr>
<td>A7</td>
<td>TDR3-</td>
<td>A16</td>
<td></td>
</tr>
<tr>
<td>A8</td>
<td>TDR3+</td>
<td>A17</td>
<td></td>
</tr>
<tr>
<td>A9</td>
<td>COMMCT</td>
<td>A18</td>
<td></td>
</tr>
</tbody>
</table>

LAN3 and LAN4 (10G) Pin Definition

<table>
<thead>
<tr>
<th>Pin#</th>
<th>Definition</th>
<th>Pin#</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>TDR1+</td>
<td>A10</td>
<td>TDR4+</td>
</tr>
<tr>
<td>A2</td>
<td>TDR1-</td>
<td>A11</td>
<td>TDR4-</td>
</tr>
<tr>
<td>A3</td>
<td>TRCT1</td>
<td>A12</td>
<td>TRCT4</td>
</tr>
<tr>
<td>A4</td>
<td>TDR2+</td>
<td>A13</td>
<td>IET+</td>
</tr>
<tr>
<td>A5</td>
<td>TDR2-</td>
<td>A14</td>
<td>IET-</td>
</tr>
<tr>
<td>A6</td>
<td>TRCT2</td>
<td>A15</td>
<td>YEL+</td>
</tr>
<tr>
<td>A7</td>
<td>TDR3-</td>
<td>A16</td>
<td>YEL-</td>
</tr>
<tr>
<td>A8</td>
<td>TDR3+</td>
<td>A17</td>
<td>ORG-/GRE+</td>
</tr>
<tr>
<td>A9</td>
<td>TRCT3</td>
<td>A18</td>
<td>ORG+/GRE-</td>
</tr>
</tbody>
</table>
Unit Identifier Switch/UID LED Indicator

A Unit Identifier (UID) switch and an LED Indicator are located on the motherboard. The rear UID switch is located next to the LAN ports on the back panel. The front UID switch is located on Pin 13 on the Front Panel Control (JF1). The rear UID LED (UID) is located next to the UID switch and the front UID LED is located on Pins 7 on JF1. When you press the UID switch, the UID LED will turn on. Press the UID switch again to turn off the LED indicator. The UID Indicator provides easy identification of a system unit that may be in need of service.

Note: UID can also be triggered via IPMI on the motherboard. For more information on IPMI, please refer to the IPMI User’s Guide posted on our website @http://www.supermicro.com.

<table>
<thead>
<tr>
<th>Pin#</th>
<th>Definition</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ground</td>
<td>Blue: On</td>
</tr>
<tr>
<td>2</td>
<td>Ground</td>
<td>Unit Identified</td>
</tr>
<tr>
<td>3</td>
<td>Button In</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Button In</td>
<td></td>
</tr>
</tbody>
</table>

UID Switch

UID LED Status

<table>
<thead>
<tr>
<th>Color/State</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blue: On</td>
<td>Unit Identified</td>
</tr>
</tbody>
</table>
Front Control Panel

JF1 contains header pins for various buttons and indicators that are normally located on a control panel at the front of the chassis. These connectors are designed specifically for use with Supermicro’s server chassis. See the figure below for the descriptions of the various control panel buttons and LED indicators. Refer to the following section for descriptions and pin definitions.

JF1 Header Pins
Front Control Panel Pin Definitions

NMI Button
The non-maskable interrupt button header is located on pins 19 and 20 of JF1. Refer to the table on the right for pin definitions.

<table>
<thead>
<tr>
<th>Pin#</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>Control</td>
</tr>
<tr>
<td>20</td>
<td>Ground</td>
</tr>
</tbody>
</table>

Power LED
The Power LED connection is located on pins 15 and 16 of JF1. Refer to the table on the right for pin definitions.

<table>
<thead>
<tr>
<th>Pin#</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>3.3V</td>
</tr>
<tr>
<td>16</td>
<td>PWR LED</td>
</tr>
</tbody>
</table>

A. NMI
B. PWR LED
Chapter 2: Installation

HDD LED/UID Switch
The HDD LED/UID Switch connection is located on pins 13 and 14 of JF1. Attach a cable to Pin 14 to show HDD activity status. Attach a cable to Pin 13 to use UID switch. See the table on the right for pin definitions.

| HDD LED/UID Switch Pin Definitions (JF1) |
|---|---|
| Pin# | Definition |
| 13 | UID Switch |
| 14 | HD Active |

NIC1/NIC2 LED Indicators
The NIC (Network Interface Controller) LED connection for LAN port 1 is located on pins 11 and 12 of JF1, and the LED connection for LAN Port 2 is on Pins 9 and 10. Attach the NIC LED cables here to display network activity. Refer to the table on the right for pin definitions.

| GLAN1/2 LED Pin Definitions (JF1) |
|---|---|
| Pin# | Definition |
| 9 | NIC 2 Activity LED |
| 10 | NIC 2 Link LED |
| 11 | NIC 1 Activity LED |
| 12 | NIC 1 Link LED |

A. HDD LED/UID Switch
B. NIC1 LED
C. NIC2 LED
Overheat (OH)/Fan Fail/PWR Fail/UID LED

Connect an LED cable to pins 7 and 8 of Front Control Panel to use the Overheat/Fan Fail/Power Fail and UID LED connections. The Red LED on pin 8 provides warnings of overheat, fan failure or power failure. The Blue LED on pin 7 works as the front panel UID LED indicator. Refer to the table on the right for pin definitions.

Power Fail LED

The Power Fail LED connection is located on pins 5 and 6 of JF1. Refer to the table on the right for pin definitions.

OH/Fan Fail/PWR Fail LED Pin Definitions (JF1)

<table>
<thead>
<tr>
<th>Pin#</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Blue_UID LED</td>
</tr>
<tr>
<td>8</td>
<td>OH/Fan Fail/Power Fail</td>
</tr>
</tbody>
</table>

OH/Fan Fail/PWR Fail LED Status (Red LED)

<table>
<thead>
<tr>
<th>State</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>Normal</td>
</tr>
<tr>
<td>On</td>
<td>Overheat</td>
</tr>
<tr>
<td>Flashing</td>
<td>Fan Fail</td>
</tr>
</tbody>
</table>

PWR Fail LED Pin Definitions (JF1)

<table>
<thead>
<tr>
<th>Pin#</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>3.3V</td>
</tr>
<tr>
<td>6</td>
<td>PWR Supply Fail</td>
</tr>
</tbody>
</table>

A. OH/Fail/PWR Fail LED/UID LED

B. PWR Supply Fail
Reset Button
The Reset Button connection is located on pins 3 and 4 of JF1. Attach it to a hardware reset switch on the computer case. Refer to the table on the right for pin definitions.

Power Button
The Power Button connection is located on pins 1 and 2 of JF1. Momentarily contacting both pins will power on/off the system. This button can also be configured to function as a suspend button (with a setting in the BIOS - See Chapter 4). To turn off the power when the system is in suspend mode, press the button for 4 seconds or longer. Refer to the table on the right for pin definitions.
2-7 Connecting Cables

Power Connectors
A 24-pin main power supply connector (J24), and two 8-pin CPU power connectors (JPWR1/JPWR2) are located on the motherboard. These power connectors meet the SSI EPS 12V specification and must be connected to your power supply to provide adequate power to the system. See the tables on the right for pin definitions.

Warning: To provide adequate power supply to the motherboard, be sure to connect the 24-pin ATX PWR (J24), and the two 8-pin PWR connectors (JPWR1, JPWR2) to the power supply. Failure to do so may void the manufacturer warranty on your power supply and motherboard.

ATX Power 24-pin Connector Pin Definitions (J24)

<table>
<thead>
<tr>
<th>Pin#</th>
<th>Definition</th>
<th>Pin#</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>+3.3V</td>
<td>1</td>
<td>+3.3V</td>
</tr>
<tr>
<td>14</td>
<td>-12V (NC)</td>
<td>2</td>
<td>+3.3V</td>
</tr>
<tr>
<td>15</td>
<td>GND</td>
<td>3</td>
<td>GND</td>
</tr>
<tr>
<td>16</td>
<td>PS_ON</td>
<td>4</td>
<td>+5V</td>
</tr>
<tr>
<td>17</td>
<td>GND</td>
<td>5</td>
<td>GND</td>
</tr>
<tr>
<td>18</td>
<td>GND</td>
<td>6</td>
<td>+5V</td>
</tr>
<tr>
<td>19</td>
<td>GND</td>
<td>7</td>
<td>GND</td>
</tr>
<tr>
<td>20</td>
<td>Res (NC)</td>
<td>8</td>
<td>PWR_OK</td>
</tr>
<tr>
<td>21</td>
<td>+5V</td>
<td>9</td>
<td>5VSB</td>
</tr>
<tr>
<td>22</td>
<td>+5V</td>
<td>10</td>
<td>+12V</td>
</tr>
<tr>
<td>23</td>
<td>+5V</td>
<td>11</td>
<td>+12V</td>
</tr>
<tr>
<td>24</td>
<td>GND</td>
<td>12</td>
<td>+3.3V</td>
</tr>
</tbody>
</table>

12V 8-pin Power Connector Pin Definitions

<table>
<thead>
<tr>
<th>Pins</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 through 4</td>
<td>Ground</td>
</tr>
<tr>
<td>5 through 8</td>
<td>+12V</td>
</tr>
</tbody>
</table>

(Required)

A. J24: 24-pin ATX PWR (Req’d)
B. JPWR1: 8-pin Processor PWR (Req’d)
C. JPWR2: 8-pin Processor PWR (Req’d)
Fan Headers

This motherboard has eight system/CPU fan headers (Fan 1-Fan 6, Fan A, and Fan B) on the motherboard. All these 4-pin fans headers are backward compatible with the traditional 3-pin fans. However, fan speed control is available for 4-pin fans only. The fan speeds are controlled by the onboard IPMI 2.0 controller. See the table on the right for pin definitions.

Chassis Intrusion

A Chassis Intrusion header is located at JL1 on the motherboard. Attach an appropriate cable from the chassis to inform you of a chassis intrusion when the chassis is opened.

<table>
<thead>
<tr>
<th>Fan Header Pin Definitions</th>
<th>Fan Header Pin Definitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin#</td>
<td>Definition</td>
</tr>
<tr>
<td>1</td>
<td>Ground</td>
</tr>
<tr>
<td>2</td>
<td>+12V</td>
</tr>
<tr>
<td>3</td>
<td>Tachometer</td>
</tr>
<tr>
<td>4</td>
<td>PWR Modulation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chassis Intrusion Pin Definitions</th>
<th>Chassis Intrusion Pin Definitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin#</td>
<td>Definition</td>
</tr>
<tr>
<td>1</td>
<td>Intrusion Input</td>
</tr>
<tr>
<td>2</td>
<td>Ground</td>
</tr>
</tbody>
</table>

A. Fan 1
B. Fan 2
C. Fan 3
D. Fan 4
E. Fan 5
F. Fan 6
G. Fan A
H. Fan B
I. Chassis Intrusion
Internal Speaker

The Internal Speaker (SP1) can be used to provide audible indications for various beep codes. See the table on the right for pin definitions. Refer to the layout below for the location of the Internal Buzzer.

<table>
<thead>
<tr>
<th>Internal Buzzer Pin Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin#</td>
</tr>
<tr>
<td>Pin 1</td>
</tr>
<tr>
<td>Pin 2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Definitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speaker</td>
</tr>
</tbody>
</table>

DOM Power Connector

A power connector for SATA DOM (Disk On Module) devices is located at JSD1. Connect an appropriate cable here to provide external power for 3rd party SATA DOM devices.

Note: When using Supermicro SuperDOMs, no external power cabling is required, as they draw power directly from the yellow SATA connectors.

<table>
<thead>
<tr>
<th>DOM PWR Pin Definitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin#</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
</tbody>
</table>

A. Internal Speaker (Buzzer)
B. SATA DOM PWR (JSD1)
TPM/Port 80 Header

A Trusted Platform Module/Port 80 header is located at JTPM1 to provide TPM support and Port 80 connection. Use this header to enhance system performance and data security. See the table on the right for pin definitions.

LSI SAS 3108 TFM Connector

The TFM connector is used to attach a TFM module and SuperCap to the motherboard for LSI CacheVault technology support.

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Definition</th>
<th>Pin #</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>LCLK</td>
<td>2</td>
<td>GND</td>
</tr>
<tr>
<td>3</td>
<td>LFRAME#</td>
<td>4</td>
<td><(KEY)></td>
</tr>
<tr>
<td>5</td>
<td>LRESET#</td>
<td>6</td>
<td>+5V (X)</td>
</tr>
<tr>
<td>7</td>
<td>LAD 3</td>
<td>8</td>
<td>LAD 2</td>
</tr>
<tr>
<td>9</td>
<td>+3.3V</td>
<td>10</td>
<td>LAD1</td>
</tr>
<tr>
<td>11</td>
<td>LAD0</td>
<td>12</td>
<td>GND</td>
</tr>
<tr>
<td>13</td>
<td>SMB_CLK4</td>
<td>14</td>
<td>SMB_DAT4</td>
</tr>
<tr>
<td>15</td>
<td>+3.3V_STBY</td>
<td>16</td>
<td>SERIRQ</td>
</tr>
<tr>
<td>17</td>
<td>GND</td>
<td>18</td>
<td>CLKRUN# (X)</td>
</tr>
<tr>
<td>19</td>
<td>LPCPD#</td>
<td>20</td>
<td>LDRQ# (X)</td>
</tr>
</tbody>
</table>

A. TPM/Port 80 Header

B. TFM Connector
Power SMB (I²C) Connector

Power System Management Bus (I²C) Connector (JPI²C1) monitors power supply, fan and system temperatures. See the table on the right for pin definitions.

Power SMB (I²C) Connector

<table>
<thead>
<tr>
<th>Pin#</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Clock</td>
</tr>
<tr>
<td>2</td>
<td>Data</td>
</tr>
<tr>
<td>3</td>
<td>PMBUS_Alert</td>
</tr>
<tr>
<td>4</td>
<td>Ground</td>
</tr>
<tr>
<td>5</td>
<td>+3.3V</td>
</tr>
</tbody>
</table>

IPMB

A System Management Bus header for IPMI 2.0 is located at JIPMB1. Connect the appropriate cable here to use the IPMB I²C connection on your system.

IPMB

<table>
<thead>
<tr>
<th>Pin#</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Data</td>
</tr>
<tr>
<td>2</td>
<td>Ground</td>
</tr>
<tr>
<td>3</td>
<td>Clock</td>
</tr>
<tr>
<td>4</td>
<td>No Connection</td>
</tr>
</tbody>
</table>

A. JPI²C1

B. JIPMB1
I-SGPIO1/2 Headers

Two SGPIO (Serial Link General Purpose Input/Output) headers are located on the motherboard. I-SGPIO1/2 support onboard I-SATA0-5 connections. See the table on the right for pin definitions.

Standby Power Header

The +5V Standby Power header is located at JSTBY1 on the motherboard. See the table on the right for pin definitions. (You must also have a card with a Standby Power connector and a cable to use this feature.)

A. I-SGPIO1
B. I-SGPIO2
C. Standby PWR

I-SGPIO Headers Pin Definitions

<table>
<thead>
<tr>
<th>Pin#</th>
<th>Definition</th>
<th>Pin#</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NC</td>
<td>2</td>
<td>NC</td>
</tr>
<tr>
<td>3</td>
<td>Ground</td>
<td>4</td>
<td>Data</td>
</tr>
<tr>
<td>5</td>
<td>Load</td>
<td>6</td>
<td>Ground</td>
</tr>
<tr>
<td>7</td>
<td>Clock</td>
<td>8</td>
<td>NC</td>
</tr>
</tbody>
</table>

Note: NC = No Connection

I-SGPIO0/1 & S-SGPIO Support

<table>
<thead>
<tr>
<th>I-SGPIO01</th>
<th>I-SATA Ports 0/1/2/3 Supported</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-SGPIO2</td>
<td>I-SATA Ports 4/5 Supported</td>
</tr>
</tbody>
</table>

Standby PWR Pin Definitions

<table>
<thead>
<tr>
<th>Pin#</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+5V Standby</td>
</tr>
<tr>
<td>2</td>
<td>Ground</td>
</tr>
<tr>
<td>3</td>
<td>No Connection</td>
</tr>
</tbody>
</table>
Power LED/Speaker

Pins 1-3 of JD1 are used for power LED indication, and pins 4-7 are for the speaker. See the tables on the right for pin definitions. Please note that the speaker connector pins (4-7) are used with an external speaker. If you wish to use the onboard speaker, you should close pins 6-7 with a cap.

PCI-E NVMe AOC I2C Header

Connector JNVI2C1 is a management header for the Supermicro AOC NVme PCI-E peripheral cards. Please connect the I2C cable to this connector.
2-8 Jumper Settings

Explanation of Jumpers
To modify the operation of the motherboard, jumpers can be used to choose between optional settings. Jumpers create shorts between two pins to change the function of the connector. Pin 1 is identified with a square solder pad on the printed circuit board. See the motherboard layout pages for jumper locations.

Note: On two pin jumpers, "Closed" means the jumper is on and "Open" means the jumper is off the pins.

LAN Enable/Disable
Use JPL1 to enable or disable GLAN Port 1, and use JPL2 to enable or disable GLAN Port 2 on the motherboard. See the table on the right for jumper settings. The default setting is Enabled.
Clear CMOS

JBT1 is used to clear CMOS. Instead of pins, this "jumper" consists of contact pads to prevent accidental clearing of CMOS. To clear CMOS, use a metal object such as a small screwdriver to touch both pads at the same time to short the connection.

Note 1. Please shut down the system, and then short JBT1 to clear CMOS.

Note 2. Clearing CMOS will also clear all passwords.

Watch Dog Enable/Disable

Watch Dog (JWD1) is a system monitor that will reboot the system when a software application hangs. Close Pins 1-2 to reset the system if an application hangs. Close Pins 2-3 to generate a non-maskable interrupt signal for the application that hangs. See the table on the right for jumper settings. Watch Dog must also be enabled in the BIOS.

Watch Dog Jumper Settings

<table>
<thead>
<tr>
<th>Jumper Setting</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pins 1-2</td>
<td>Reset (default)</td>
</tr>
<tr>
<td>Pins 2-3</td>
<td>NMI</td>
</tr>
<tr>
<td>Open</td>
<td>Disabled</td>
</tr>
</tbody>
</table>

A. Clear CMOS

B. Watch Dog Enable
VGA Enable

Jumper JPG1 allows the user to enable or disable the onboard VGA connector. The default setting is 1-2 to enable the connection. See the table on the right for jumper settings.

<table>
<thead>
<tr>
<th>Jumper Setting</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2</td>
<td>Enabled (Default)</td>
</tr>
<tr>
<td>2-3</td>
<td>Disabled</td>
</tr>
</tbody>
</table>

BMC Enable

Jumper JPB1 allows you to enable or disable the embedded onboard BMC (Baseboard Management) controller to provide IPMI 2.0/KVM support on the motherboard. See the table on the right for jumper settings.

<table>
<thead>
<tr>
<th>Jumper Setting</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pins 1-2</td>
<td>BMC Enable (Default)</td>
</tr>
<tr>
<td>Pins 2-3</td>
<td>Disabled</td>
</tr>
</tbody>
</table>

LAN EEPROM Update

Jumper J21 allows the firmware of the built-in Intel i210 LAN controller to be updated. Follow the release notes accompanying the firmware file for instructions. See the table on the right for jumper settings.

<table>
<thead>
<tr>
<th>Jumper Setting</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open</td>
<td>Disabled (Default)</td>
</tr>
<tr>
<td>Pins 1-2</td>
<td>Enabled</td>
</tr>
</tbody>
</table>
I2C Bus to PCI-Exp. Slots

Use Jumpers Ji2C1 and Ji2C2 to connect the System Management Bus (I2C) to onboard PCI-Express slots to improve PCI performance. These two jumpers are to be set at the same time. The default setting is Disabled (Pins 2-3). See the table on the right for jumper settings.

ME Manufacturing Mode Select

Close Pin 2 and Pin 3 of Jumper JPME2 to bypass SPI flash security and force the system to operate in the Manufacturer mode, allowing the user to flash the system firmware from a host server for system setting modifications. See the table on the right for jumper settings.

<table>
<thead>
<tr>
<th>Jumper Setting</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pins 1-2</td>
<td>Enabled</td>
</tr>
<tr>
<td>Pins 2-3</td>
<td>Disabled (Default)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Jumper Setting</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2</td>
<td>Normal (Default)</td>
</tr>
<tr>
<td>2-3</td>
<td>Manufacture Mode</td>
</tr>
</tbody>
</table>

A. Ji2C1
B. Ji2C2
C. ME Select
SAS Enable/Disable

Jumper JPS1 allows the user to enable or disable the onboard SAS ports. The default setting is 1-2 to enable the connection. See the table on the right for jumper settings. This feature is available only on the X10DRL-CT and X10DRL-C.

<table>
<thead>
<tr>
<th>Jumper Setting</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2</td>
<td>Enabled (Default)</td>
</tr>
<tr>
<td>2-3</td>
<td>Disabled</td>
</tr>
</tbody>
</table>

10Gb LAN Enable/Disable

Jumper JPTG1 allows the user to enable or disable 10Gb capability on LAN3 and LAN4. See the table on the right for jumper settings. This feature is available only on the X10DRL-CT and X10DRL-iT.

<table>
<thead>
<tr>
<th>Jumper Setting</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2</td>
<td>Enabled (Default)</td>
</tr>
<tr>
<td>2-3</td>
<td>Disabled</td>
</tr>
</tbody>
</table>

A. JPS1

B. JPTG1
2-9 Onboard LED Indicators

LAN1/2/3/4, IPMI LAN LEDs

Four LAN ports (LAN1, LAN2, LAN3*, LAN4*), and IPMI Dedicated LAN are located on the I/O back panel of the motherboard. The LAN ports are supported by the onboard Intel LAN controller, and IPMI LAN is supported by the BMC. Each Ethernet LAN port has two LEDs. The Amber LED indicates activity, while the other Link LED may be green, amber or off to indicate the speed of the connections. See the tables at right for more information.

Note: LAN3 and LAN4 are supported on the X10DRL-CT/-iT only.

<table>
<thead>
<tr>
<th>LED Color</th>
<th>Definition</th>
<th>LED Color</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>10 Mbps, or No Connection</td>
<td>Off</td>
<td>10 or 100 Mbps, or No Connection</td>
</tr>
<tr>
<td>Green</td>
<td>100 Mbps</td>
<td>Green</td>
<td>10 Gbps</td>
</tr>
<tr>
<td>Amber</td>
<td>1 Gbps</td>
<td>Amber</td>
<td>1 Gbps</td>
</tr>
</tbody>
</table>

LAN Link LED Status

<table>
<thead>
<tr>
<th>LED Color</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>10 Gbps</td>
</tr>
<tr>
<td>Green</td>
<td>100 Mbps</td>
</tr>
<tr>
<td>Amber</td>
<td>1 Gbps</td>
</tr>
</tbody>
</table>

10G-LAN Link LED Status (X10DRL-CT/iT)

<table>
<thead>
<tr>
<th>Color</th>
<th>Status</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link (Left)</td>
<td>Green: Solid</td>
<td>100 Mbps</td>
</tr>
<tr>
<td></td>
<td>Amber: Solid</td>
<td>1 Gbps</td>
</tr>
</tbody>
</table>

Activity LED (Right)

<table>
<thead>
<tr>
<th>Color</th>
<th>Status</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activity</td>
<td>Blinking</td>
<td>Active</td>
</tr>
</tbody>
</table>

Rear View (when facing the rear of the chassis.)
Onboard Power LED
An Onboard Power LED is located at LEDPWR on the motherboard. When this LED is on, the system is on. Be sure to turn off the system and unplug the power cord before removing or installing components. See the tables at right for more information.

BMC Heartbeat LED
A BMC Heartbeat LED is located at LEDBMC on the motherboard. When it is blinking, BMC functions normally. See the table at right for more information.

Note: Refer to Page 2-19 for information on the rear UID LED (LE1).

Onboard PWR LED Indicator

<table>
<thead>
<tr>
<th>LED Color</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>System Off (PWR cable not connected)</td>
</tr>
<tr>
<td>Green</td>
<td>System On</td>
</tr>
<tr>
<td>Green:</td>
<td>ACPI S1 State</td>
</tr>
<tr>
<td>Flashing</td>
<td></td>
</tr>
<tr>
<td>Quickly</td>
<td></td>
</tr>
</tbody>
</table>

BMC Heartbeat LED

<table>
<thead>
<tr>
<th>Color/State</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green:</td>
<td>BMC: Normal</td>
</tr>
<tr>
<td>Blinking</td>
<td></td>
</tr>
</tbody>
</table>

Note: Refer to Page 2-19 for information on the rear UID LED (LE1).

A. PWR LED
B. BMC LED
2-10 SATA and SAS Connections

SATA 3.0 and SAS Ports

Six SATA ports are located on the motherboard. These SATA 3.0 ports (I-SATA 0-5) are supported by the Intel PCH C612. There are also Eight (8) SAS ports that are supported by the LSI 3108 controller. See the table on the right for SATA pin definitions. I-SATA 4 and I-SATA 5 also support SATA DOM (Device-on-Module) devices with latch power. SAS is supported on the X10DRL-CT/-C motherboard only.

Note: For more information on SATA HostRAID configuration, please refer to the Intel SATA HostRAID User's Guide posted on our website @ http://www.supermicro.com..

SATA Connectors

<table>
<thead>
<tr>
<th>Pin#</th>
<th>Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ground</td>
</tr>
<tr>
<td>2</td>
<td>SATA_TXP</td>
</tr>
<tr>
<td>3</td>
<td>SATA_TXN</td>
</tr>
<tr>
<td>4</td>
<td>Ground</td>
</tr>
<tr>
<td>5</td>
<td>SATA_RXN</td>
</tr>
<tr>
<td>6</td>
<td>SATA_RXP</td>
</tr>
<tr>
<td>7</td>
<td>Ground</td>
</tr>
</tbody>
</table>

A. I-SATA0
B. I-SATA1
C. I-SATA2
D. I-SATA3
E. I-SATA4
F. I-SATA5
G. L-SAS0~3
H. L-SAS4~7
Chapter 3: Troubleshooting

3-1 Troubleshooting Procedures

Use the following procedures to troubleshoot your system. If you have followed all of the procedures below and still need assistance, refer to the ‘Technical Support Procedures’ and/or ‘Returning Merchandise for Service’ section(s) in this chapter. Note: Always disconnect the power cord before adding, changing or installing any hardware components.

Before Power On

1. Make sure that there are no short circuits between the motherboard and chassis.

2. Disconnect all ribbon/wire cables from the motherboard, including those for the keyboard and mouse.

3. Remove all add-on cards.

4. Install CPU 1 first (making sure it is fully seated) and connect the front panel connectors to the motherboard.

No Power

1. Make sure that no short circuits between the motherboard and the chassis.

2. Make sure that the ATX power connectors are properly connected.

3. Check that the 115V/230V switch on the power supply is properly set, if available.

4. Turn the power switch on and off to test the system, if applicable.

5. The battery on your motherboard may be old. Check to verify that it still supplies ~3VDC. If it does not, replace it with a new one.
No Video

1. If the power is on, but you have no video, remove all the add-on cards and cables.

2. Use the speaker to determine if any beep codes exist. Refer to Appendix A for details on beep codes.

System Boot Failure

If the system does not display POST or does not respond after the power is turned on, check the following:

1. Check for any error beep from the motherboard speaker.

 • If there is no error beep, try to turn on the system without DIMM modules installed. If there is still no error beep, try to turn on the system again with only one processor installed in CPU Socket#1. If there is still no error beep, replace the motherboard.

 • If there are error beeps, clear the CMOS settings by unplugging the power cord and contracting both pads on the CMOS Clear Jumper (JBT1). (Refer to Section 2-8 in Chapter 2.)

2. Remove all components from the motherboard, especially the DIMM modules. Make sure that system power is on, and memory error beeps are activated.

3. Turn on the system with only one DIMM module installed. If the system boots, check for bad DIMM modules or slots by following the Memory Errors Troubleshooting procedure in this Chapter.

Losing the System’s Setup Configuration

1. Make sure that you are using a high quality power supply. A poor quality power supply may cause the system to lose the CMOS setup information. Refer to Section 1-6 for details on recommended power supplies.

2. The battery on your motherboard may be old. Check to verify that it still supplies ~3VDC. If it does not, replace it with a new one.

3. If the above steps do not fix the Setup Configuration problem, contact your vendor for repairs.
Memory Errors

When a No-Memory Beep Code is issued by the system, check the following:

1. Make sure that the memory modules are compatible with the system and that the DIMM modules are properly and fully installed. (For memory compatibility, refer to the Memory Compatibility Chart posted on our website @ http://www.supermicro.com.)

2. Check if different speeds of DIMMs have been installed. It is strongly recommended that you use the same RAM type and speed for all DIMMs in the system.

3. Make sure that you are using the correct type of (RDIMM)/Load Reduced (LRDIMM) ECC DDR4 DIMM modules recommended by the manufacturer.

4. Check for bad DIMM modules or slots by swapping a single module among all memory slots and check the results.

5. Make sure that all memory modules are fully seated in their slots. Follow the instructions given in Section 2-4 in Chapter 2.

6. Please follow the instructions given in the DIMM Population Tables listed in Section 2-4 to install your memory modules.

When the System Becomes Unstable

A. When the system becomes unstable during or after OS installation, check the following:

1. CPU/BIOS support: Make sure that your CPU is supported, and you have the latest BIOS installed in your system.

2. Memory support: Make sure that the memory modules are supported by testing the modules using memtest86 or a similar utility.

 Note: Refer to the product page on our website http:\\www.supermicro.com for memory and CPU support and updates.

3. HDD support: Make sure that all hard disk drives (HDDs) work properly. Replace the bad HDDs with good ones.

4. System cooling: Check system cooling to make sure that all heatsink fans, and CPU/system fans, etc., work properly. Check Hardware Monitoring settings in the IPMI to make sure that the CPU and System temperatures are
within the normal range. Also check the front panel Overheat LED, and make sure that the Overheat LED is not on.

5. Adequate power supply: Make sure that the power supply provides adequate power to the system. Make sure that all power connectors are connected. Please refer to our website for more information on minimum power requirement.

6. Proper software support: Make sure that the correct drivers are used.

B. When the system becomes unstable before or during OS installation, check the following:

1. Source of installation: Make sure that the devices used for installation are working properly, including boot devices such as CD/DVD disc, CD/DVD-ROM.

2. Cable connection: Check to make sure that all cables are connected and working properly.

3. Using minimum configuration for troubleshooting: Remove all unnecessary components (starting with add-on cards first), and use minimum configuration (with a CPU and a memory module installed) to identify the trouble areas. Refer to the steps listed in Section A above for proper troubleshooting procedures.

4. Identifying bad components by isolating them: If necessary, remove a component in question from the chassis, and test it in isolation to make sure that it works properly. Replace a bad component with a good one.

5. Check and change one component at a time instead of changing several items at the same time. This will help isolate and identify the problem.

6. To find out if a component is good, swap this component with a new one to see if the system will work properly. If so, then the old component is bad. You can also install the component in question in another system. If the new system works, the component is good and the old system has problems.

3-2 Technical Support Procedures

Before contacting Technical Support, please take the following steps. Also, please note that as a motherboard manufacturer, Supermicro also sells motherboards through its channels, so it is best to first check with your distributor or reseller for
troubleshooting services. They should know of any possible problem(s) with the specific system configuration that was sold to you.

1. Please go through the ‘Troubleshooting Procedures’ and ‘Frequently Asked Question’ (FAQ) sections in this chapter or see the FAQs on our website (http://www.supermicro.com/) before contacting Technical Support.

2. BIOS upgrades can be downloaded from our website (http://www.supermicro.com).

3. If you still cannot resolve the problem, include the following information when contacting Supermicro for technical support:
 - Motherboard model and PCB revision number
 - BIOS release date/version (This can be seen on the initial display when your system first boots up.)
 - System configuration

4. An example of a Technical Support form is on our website at (http://www.supermicro.com/RmaForm/).
 - Distributors: For immediate assistance, please have your account number ready when placing a call to our technical support department. We can be reached by e-mail at support@supermicro.com.
3-3 Battery Removal and Installation

Battery Removal

To remove the onboard battery, follow the steps below:

1. Power off your system and unplug your power cable.

2. Locate the onboard battery as shown below.

3. Using a tool such as a pen or a small screwdriver, push the battery lock outwards to unlock it. Once unlocked, the battery will pop out from the holder.

4. Remove the battery.

Proper Battery Disposal

Warning! Please handle used batteries carefully. Do not damage the battery in any way; a damaged battery may release hazardous materials into the environment. Do not discard a used battery in the garbage or a public landfill. Please comply with the regulations set up by your local hazardous waste management agency to dispose of your used battery properly.
3-4 Frequently Asked Questions

Question: What are the various types of memory that my motherboard can support?

Answer: The motherboard supports Registered (RDIMM)/Load Reduced (LRDIMM) ECC DDR4 DIMM modules. To enhance memory performance, do not mix memory modules of different speeds and sizes. Please follow all memory installation instructions given on Section 2-4 in Chapter 2.

Question: How do I update my BIOS?

It is recommended that you do not upgrade your BIOS if you are not experiencing any problems with your system. Updated BIOS files are located on our website at http://www.supermicro.com. Please check our BIOS warning message and the information on how to update your BIOS on our website. Select your motherboard model and download the BIOS file to your computer. Also, check the current BIOS revision to make sure that it is newer than your BIOS before downloading. You can choose from the zip file and the .exe file. If you choose the zip BIOS file, please unzip the BIOS file onto a bootable USB device. Run the batch file using the format FLASH.BAT filename.rom from your bootable USB device to flash the BIOS. Then, your system will automatically reboot.

Warning: Do not shut down or reset the system while updating the BIOS to prevent possible system boot failure!

Note: The SPI BIOS chip used on this motherboard cannot be removed. Send your motherboard back to our RMA Department at Supermicro for repair. For BIOS Recovery instructions, please refer to the AMI BIOS Recovery Instructions posted at http://www.supermicro.com.

Question: How do I handle the used battery?

Answer: Please handle used batteries carefully. Do not damage the battery in any way; a damaged battery may release hazardous materials into the environment. Do not discard a used battery in the garbage or a public landfill. Please comply with the regulations set up by your local hazardous waste management agency to dispose of your used battery properly.
3-5 Returning Merchandise for Service

A receipt or copy of your invoice marked with the date of purchase is required before any warranty service will be rendered. You can obtain service by calling your vendor for a Returned Merchandise Authorization (RMA) number. When returning the motherboard to the manufacturer, the RMA number should be prominently displayed on the outside of the shipping carton, and the shipping package is mailed prepaid or hand-carried. Shipping and handling charges will be applied for all orders that must be mailed when service is complete. For faster service, you can also request a RMA authorization online (http://www.supermicro.com/RmaForm/).

This warranty only covers normal consumer use and does not cover damages incurred in shipping or from failure due to the alternation, misuse, abuse or improper maintenance of products.

During the warranty period, contact your distributor first for any product problems.
Chapter 4: AMI BIOS

Chapter 4
BIOS

4-1 Introduction

This chapter describes the AMI BIOS setup utility for the X10DRL-CT/iT/C. The ROM BIOS is stored in a Flash EEPROM and can be easily updated. This chapter describes the basic navigation of the AMI BIOS setup utility screens.

Note: For AMI BIOS recovery, please refer to the UEFI BIOS Recovery Instructions in Appendix C.

Starting BIOS Setup Utility

To enter the AMI BIOS setup utility screens, press the <Delete> key while the system is booting up.

Note: In most cases, the <Delete> key is used to invoke the AMI BIOS setup screen.

Each main BIOS menu option is described in this manual. The AMI BIOS setup menu screen has two main frames. The left frame displays all the options that can be configured. Grayed-out options cannot be configured. Options in blue can be configured by the user. The right frame displays the key legend. Above the key legend is an area reserved for a text message. When an option is selected in the left frame, it is highlighted in white. Often a text message will accompany it.

Note: the AMI BIOS has default text messages built in. Supermicro retains the option to include, omit, or change any of these text messages.

The AMI BIOS setup utility uses a key-based navigation system called "hot keys." Most of the AMI BIOS setup utility "hot keys" can be used at any time during the setup navigation process. These keys include <F1>, <F4>, <Enter>, <Esc>, arrow keys, etc.

Note: Options printed in Bold are default settings.

How To Change the Configuration Data

The configuration data that determines the system parameters may be changed by entering the AMI BIOS setup utility. This setup utility can be accessed by pressing at the appropriate time during system boot.
How to Start the Setup Utility

Normally, the only visible Power-On Self-Test (POST) routine is the memory test. As the memory is being tested, press the <Delete> key to enter the main menu of the AMI BIOS setup utility. From the main menu, you can access the other setup screens. An AMI BIOS identification string is displayed at the left bottom corner of the screen, below the copyright message.

Warning: Do not upgrade the BIOS unless your system has a BIOS-related issue. Flashing the wrong BIOS can cause irreparable damage to the system. In no event shall Supermicro be liable for direct, indirect, special, incidental, or consequential damages arising from a BIOS update. If you have to update the BIOS, do not shut down or reset the system while the BIOS is updating to avoid possible boot failure.

4-2 Main Setup

When you first enter the AMI BIOS setup utility, you will enter the Main setup screen. You can always return to the Main setup screen by selecting the Main tab on the top of the screen. The Main BIOS setup screen is shown below.
The following Main menu items will be displayed:

System Date/System Time

Use this option to change the system date and time. Highlight *System Date* or *System Time* using the arrow keys. Enter new values using the keyboard. Press the <Tab> key or the arrow keys to move between fields. The date must be entered in Day MM/DD/YYYY format. The time is entered in HH:MM:SS format.

 Note: The time is in the 24-hour format. For example, 5:30 P.M. appears as 17:30:00.

Supermicro X10DRL-CT

Version: This item displays the version of the BIOS ROM used in the system.

Build Date: This item displays the date when the version of the BIOS ROM used in the system was built.

Memory Information

Total Memory: This item displays the total size of memory available in the system.

Memory Speed: This item displays the default speed of the memory modules installed in the system.
4-3 Advanced Setup Configurations

Use the arrow keys to select Advanced setup and press <Enter> to access the submenu items:

Warning: Take Caution when changing the Advanced settings. An incorrect value, a very high DRAM frequency or an incorrect BIOS timing setting may cause the system to malfunction. When this occurs, restore the setting to the manufacture default setting.

Boot Feature

Quiet Boot

Use this feature to select the screen display between POST messages or the OEM logo at bootup. Select Disabled to display the POST messages. Select Enabled to display the OEM logo instead of the normal POST messages. The options are **Enabled** and Disabled.

AddOn ROM Display Mode

Use this item to set the display mode for the Option ROM. Select Keep Current to use the current AddOn ROM display setting. Select Force BIOS to use the Option ROM display mode set by the system BIOS. The options are **Force BIOS** and Keep Current.

Bootup Num-Lock State

Use this feature to set the Power-on state for the Numlock key. The options are Off and On.
Wait For 'F1' If Error
Select Enabled to force the system to wait until the 'F1' key is pressed if an error occurs. The options are Disabled and Enabled.

INT19 (Interrupt 19) Trap Response
Interrupt 19 is the software interrupt that handles the boot disk function. When this item is set to Immediate, the ROM BIOS of the host adaptors will "capture" Interrupt 19 at bootup immediately and allow the drives that are attached to these host adaptors to function as bootable disks. If this item is set to Postponed, the ROM BIOS of the host adaptors will not capture Interrupt 19 immediately and allow the drives attached to these adaptors to function as bootable devices at bootup. The options are Immediate and Postponed.

Re-try Boot
When EFI Boot is selected, the system BIOS will automatically reboot the system from an EFI boot device after its initial boot failure. Select Legacy Boot to allow the BIOS to automatically reboot the system from a Legacy boot device after its initial boot failure. The options are Disabled, Legacy Boot, and EFI Boot.

Power Configuration

Watch Dog Function
Select Enabled to allow the Watch Dog timer to reboot the system when it is inactive for more than 5 minutes. The options are Enabled and Disabled.

Power Button Function
This feature controls how the system shuts down when the power button is pressed. Select 4 Seconds Override for the user to power off the system after pressing and holding the power button for 4 seconds or longer. Select Instant Off to instantly power off the system as soon as the user presses the power button. The options are 4 Seconds Override and Instant Off.

Restore on AC Power Loss
Use this feature to set the power state after a power outage. Select Power-Off for the system power to remain off after a power loss. Select Power-On for the system power to be turned on after a power loss. Select Last State to allow the system to resume its last power state before a power loss. The options are Power-On, Stay-Off and Last State.
CPU Configuration

This submenu displays the following CPU information as detected by the BIOS. It also allows the user to configure CPU settings.

CPU1 / CPU2

This submenu displays the following information of the CPU installed in Socket 1 and Socket 2.

- Processor Socket
- Processor ID
- Processor Frequency
- Processor Max Ratio
- Processor Min Ratio
- Microcode Revision
- L1 Cache RAM
- L2 Cache RAM
- L3 Cache RAM
- CPU 1 Version
- CPU 2 Version

Clock Spread Spectrum

Select Enabled to allow the BIOS to monitor and attempt to reduce the level of Electromagnetic Interference caused by the components whenever needed. The options are Disabled and Enabled.

Hyper-Threading (All)

Select Enable to support Intel's Hyper-threading Technology to enhance CPU performance. The options are Enable and Disable.

Cores Enabled

Select the number of cores to enable. Leaving this at '0' means all cores are enabled. Up to 12 cores are available. The default is 0.
Execute-Disable Bit (Available if supported by the OS & the CPU)
Select Enable for Execute Disable Bit Technology support, which will allow the processor to designate areas in the system memory where an application code can execute and where it cannot, thus preventing a worm or a virus from flooding illegal codes to overwhelm the processor to damage the system during an attack. This feature is used in conjunction with the items: "Clear MCA," "VMX," "Enable SMX," and "Lock Chipset" for Virtualization media support. The options are Enable and Disable. (Refer to Intel and Microsoft websites for more information.)

PPIN Control
Select Unlock/Enable to use the Protected-Processor Inventory Number (PPIN) in the system. The options are Unlock/Enable and Unlock/Disable.

Hardware Prefetcher (Available when supported by the CPU)
If set to Enable, the hardware prefetcher will prefetch streams of data and instructions from the main memory to the L2 cache to improve CPU performance. The options are Disable and Enable.

Adjacent Cache Line Prefetch (Available when supported by the CPU)
Select Enable for the CPU to prefetch both cache lines for 128 bytes as comprised. Select Disable for the CPU to prefetch both cache lines for 64 bytes. The options are Disable and Enable.

Note: Please reboot the system for changes on this setting to take effect.
Please refer to Intel’s website for detailed information.

DCU (Data Cache Unit) Streamer Prefetcher (Available when supported by the CPU)
If set to Enable, the DCU Streamer Prefetcher will prefetch data streams from the cache memory to the DCU (Data Cache Unit) to speed up data accessing and processing to enhance CPU performance. The options are Disable and Enable.

DCU IP Prefetcher
If set to Enable, the IP prefetcher in the DCU (Data Cache Unit) will prefetch IP addresses to improve network connectivity and system performance. The options are Enable and Disable.

Direct Cache Access (DCA)
Select Enable to use Intel DCA (Direct Cache Access) Technology to improve the efficiency of data transferring and accessing. The options are Auto, Enable, and Disable.
X2APIC (Advanced Programmable Interrupt Controller)

Based on Intel’s Hyper-Threading architecture, each logical processor (thread) is assigned 256 APIC IDs (APIIDs) in 8-bit bandwidth. When this feature is set to Enable, the APIC ID will be expanded (X2) from 8 bits to 16 bits to provide 512 APIIDs to each thread to enhance CPU performance. The options are Disable and Enable.

AES-NI

Select Enable to use the Intel Advanced Encryption Standard (AES) New Instructions (NI) to ensure data security. The options are Enable and Disable.

Intel Virtualization Technology

Select Enable to use Intel Virtualization Technology support for Direct I/O VT-d support by reporting the I/O device assignments to the VMM (Virtual Machine Monitor) through the DMAR ACPI tables. This feature offers fully-protected I/O resource sharing across Intel platforms, providing greater reliability, security and availability in networking and data-sharing. The options are Enable and Disable.

Advanced Power Management Configuration

Power Technology

Select Energy Efficient to support power-saving mode. Select Custom to customize system power settings. Select Max Performance to optimize system performance. Select Disabled to disable power-saving settings. The options are Disable, Energy Efficient, and Custom.

If the option is set to Energy Efficient or Custom, the following items will display:

CPU P State Control (Available when Power Technology is set to Custom)

EIST (P-states)

EIST (Enhanced Intel SpeedStep Technology) allows the system to automatically adjust processor voltage and core frequency to reduce power consumption and heat dissipation. The options are Disable and Enable.

Turbo Mode

Select Enabled to use the Turbo Mode to boost system performance. The options are Enable and Disable.
P-state Coordination

This feature is used to change the P-state (Power-Performance State) coordination type. P-state is also known as "SpeedStep" for Intel processors. Select HW_ALL to change the P-state coordination type for hardware components only. Select SW_ALL to change the P-state coordination type for all software installed in the system. Select SW_ANY to change the P-state coordination type for a software program in the system. The options are HW_ALL, SW_ALL, and SW_ANY.

CPU C State Control (Available when Power Technology is set to Custom)

Package C State limit

Use this item to set the limit on the C-State package register. The options are C0/1 state, C2 state, C6 (non-Retention) state, and C6 (Retention) state.

CPU C3 Report

Select Enable to allow the BIOS to report the CPU C3 State (ACPI C2) to the operating system. During the CPU C3 State, the CPU clock generator is turned off. The options are Enable and Disable.

CPU C6 Report (Available when Power Technology is set to Custom)

Select Enable to allow the BIOS to report the CPU C6 state (ACPI C3) to the operating system. During the CPU C6 state, power to all cache is turned off. The options are Enable and Disable.

Enhanced Halt State (C1E)

Select Enabled to use Enhanced Halt-State technology, which will significantly reduce the CPU's power consumption by reducing the CPU's clock cycle and voltage during a Halt-state. The options are Disable and Enable.

CPU T State Control (Available when Power Technology is set to Custom)

ACPI (Advanced Configuration Power Interface) T-States

Select Enable to support CPU throttling by the operating system to reduce power consumption. The options are Enable and Disable.
Chipset Configuration

Warning! Please set the correct settings for the items below. A wrong configuration setting may cause the system to become malfunction.

North Bridge

This feature allows the user to configure the settings for the Intel North Bridge.

II0 Configuration

EV DFX (Device Function On-Hide) Feature
When this feature is set to Enable, the EV_DFX Lock Bits that are located on a processor will always remain clear during electric tuning. The options are Disable and Enable.

II01 Configuration

II01 Port 1A Link Speed
This item configures the PCI-E port Bifuraction setting for a PCI-E port specified by the user. The options are Gen 1 (2.5GT/s), Gen 2 (5 GT/s), and Gen 3 (8GT/s).

II01 Port 2A Link Speed
This item configures the PCI-E port Bifuraction setting for a PCI-E port specified by the user. The options are Gen 1 (2.5GT/s), Gen 2 (5 GT/s), and Gen 3 (8GT/s).

II01 Port 2C Link Speed
This item configures the PCI-E port Bifuraction setting for a PCI-E port specified by the user. The options are Gen 1 (2.5GT/s), Gen 2 (5 GT/s), and Gen 3 (8GT/s).

II01 Port 3A Link Speed
This item configures the PCI-E port Bifuraction setting for a PCI-E port specified by the user. The options are Gen 1 (2.5GT/s), Gen 2 (5 GT/s), and Gen 3 (8GT/s).

IOAT (Intel® IO Acceleration) Configuration

Enable IOAT
Select Enable to enable Intel I/OAT (I/O Acceleration Technology) support, which significantly reduces CPU overhead by leveraging CPU architectural improvements and freeing the system resource for other tasks. The options are Enable and Disable.
No Snoop
Select Enable to support no-snoop mode for each CB device. The options are Disable and Enable.

Relaxed Ordering
Select Enable to enable Relaxed Ordering support which will allow certain transactions to violate the strict-ordering rules of PCI bus for a transaction to be completed prior to other transactions that have already been enqueued. The options are Disable and Enable.

▶ Intel VT for Directed I/O (VT-d)

Intel VT for Direct I/O (VT-d)

Intel® VT for Directed I/O (VT-d)
Select Enable to use Intel Virtualization Technology support for Direct I/O VT-d support by reporting the I/O device assignments to the VMM (Virtual Machine Monitor) through the DMAR ACPI Tables. This feature offers fully-protected I/O resource sharing across Intel platforms, providing greater reliability, security and availability in networking and data-sharing. The options are Enable and Disable.

Interrupt Remapping
Select Enable for Interrupt Remapping support to enhance system performance. The options are Enable and Disable.

Coherency Support (Non-Isoch)
Select Enable for the Non-Isoch VT-d engine to pass through DMA (Direct Memory Access) to enhance system performance. The options are Enable and Disable.

Coherency Support (Isoch)
Select Enable for the Isoch VT-d engine to pass through ATS to enhance system performance. The options are Enable and Disable.
QPI (Quick Path Interconnect) Configuration

QPI Status
The following information will display:

- Number of CPU
- Number of IIO
- Current QPI Link Speed
- Current QPI Link Frequency
- QPI Global MMIO Low Base/Limit
- QPI Global MMIO High Base/Limit
- QPI PCIe Configuration Base/Size

Link Frequency Select
Use this item to select the desired frequency for QPI Link connections. The options are 6.4GB/s, 8.0GB/s, 9.6GB/s, Auto, and Auto Limited.

Link L0p Enable
Select Enable for Link L0p support. The options are Enable and Disable.

Link L1 Enable
Select Enable for Link L1 support. The options are Enable and Disable.

COD Enable (Available when the OS and the CPU support this feature)
Select Enabled for Cluster-On-Die support to enhance system performance in cloud computing. The options are Enable, Disable, and Auto.

Early Snoop (Available when the OS and the CPU support this feature)
Select Enabled for Early Snoop support to enhance system performance. The options are Enable, Disable, and Auto.

Isoc Mode
Select Enabled for Isochronous support to meet QoS (Quality of Service) requirements. This feature is especially important for Virtualization Technology. The options are Enable and Disable.
Memory Configuration

Enforce POR
Select Enable to enforce POR restrictions on DDR4 frequency and voltage programming. The options are Enabled and Disabled.

Memory Frequency
Use this feature to set the maximum memory frequency for onboard memory modules. The options are Auto, 1333, 1400, 1600, 1800, 1867, 2000, 2133, 2200, 2400, 2600, 2667, and Reserved (Do not select Reserved).

Data Scrambling
Select Enabled to enable data scrambling to enhance system performance and data integrity. The options are Auto, Disabled and Enabled.

DRAM RAPL (Running Average Power Limit) Baseline
Use this feature to set the run-time power-limit baseline for DRAM modules. The options are Disable, DRAM RAPL Mode 0, and DRAM RAPL Mode 1.

Set Throttling Mode
Throttling improves reliability and reduces power consumption in the processor via automatic voltage control during processor idle states. The options are Disabled and CLTT (Closed Loop Thermal Throttling).

A7 Mode
Select Enabled to support the A7 (Addressing) mode to improve memory performance. The options are Enable and Disable.

DIMM Information
This item displays the status of a DIMM module specified by the user.

- P1-DIMMA1 - P1-DIMMD1
- P2-DIMME1 - P2-DIMMH1
Memory RAS (Reliability_Availability_Serviceability) Configuration

Use this submenu to configure the following Memory RAS settings.

RAS Mode
When Disable is selected, RAS is not supported. When Mirror is selected, the motherboard maintains two identical copies of all data in memory for data backup. When Lockstep is selected, the motherboard uses two areas of memory to run the same set of operations in parallel to boost performance. The options are Disable, Mirror, and Lockstep Mode.

Memory Rank Sparing
Select Enable to enable memory-sparing support for memory ranks to improve memory performance. The options are Disabled and Enabled.

Patrol Scrub
Patrol Scrubbing is a process that allows the CPU to correct correctable memory errors detected on a memory module and send the correction to the requestor (the original source). When this item is set to Enabled, the IO hub will read and write back one cache line every 16K cycles, if there is no delay caused by internal processing. By using this method, roughly 64 GB of memory behind the IO hub will be scrubbed every day. The options are Enable and Disable.

Patrol Scrub Interval
This feature allows you to decide how many hours the system should wait before the next complete patrol scrub is performed. Use the keyboard to enter a value from 0-24. The Default setting is 24.

Demand Scrub
Demand Scrubbing is a process that allows the CPU to correct correctable memory errors found on a memory module. When the CPU or I/O issues a demand-read command, and the read data from memory turns out to be a correctable error, the error is corrected and sent to the requestor (the original source). Memory is updated as well. Select Enable to use Demand Scrubbing for ECC memory correction. The options are Enable and Disable.

Device Tagging
Select Enable to support device tagging. The options are Disable and Enable.
South Bridge Configuration
The following South Bridge information will display:

USB Configuration
- USB Module Version
- USB Devices

Legacy USB Support
Select Enabled to support onboard legacy USB devices. Select Auto to disable legacy support if there are no legacy USB devices present. Select Disable to have all USB devices available for EFI applications only. The options are Enabled, Disabled and Auto.

XHCI Hand-Off
This is a work-around solution for operating systems that do not support XHCI (Extensible Host Controller Interface) hand-off. The XHCI ownership change should be claimed by the XHCI driver. The settings are Enabled and Disabled.

EHCI Hand-Off
This item is for operating systems that do not support Enhanced Host Controller Interface (EHCI) hand-off. When this item is enabled, EHCI ownership change will be claimed by the EHCI driver. The settings are Enabled and Disabled.

Port 60/64 Emulation
Select Enabled for I/O port 60h/64h emulation support, which in turn, will provide complete legacy USB keyboard support for the operating systems that do not support legacy USB devices. The options are Disabled and Enabled.

USB 3.0 Support
Select Enabled for USB 3.0 support. The options are Smart Auto, Auto, Enabled, Disabled and Manual.

EHCI1
Select Enabled to enable EHCI (Enhanced Host Controller Interface) support on USB 2.0 connector #1 (-at least one USB 2.0 connector should be enabled for EHCI support.) The options are Disabled and Enabled.
EHCI2
Select Enabled to enable EHCI (Enhanced Host Controller Interface) support on USB 2.0 connector #2 (-at least one USB 2.0 connector should be enabled for EHCI support.) The options are Disabled and Enabled.

XHCI Pre-Boot Driver
Select Enabled to enable XHCI (Extensible Host Controller Interface) support on a pre-boot drive specified by the user. The options are Enabled and Disabled.
Chapter 4: AMI BIOS

SATA Configuration

When this submenu is selected, AMI BIOS automatically detects the presence of the SATA devices that are supported by the Intel PCH chip and displays the following items:

SATA Controller

This item enables or disables the onboard SATA controller supported by the Intel PCH chip. The options are **Enabled** and **Disabled**.

Configure SATA as

Select IDE to configure a SATA drive specified by the user as an IDE drive. Select AHCI to configure a SATA drive specified by the user as an AHCI drive. Select RAID to configure a SATA drive specified by the user as a RAID drive. The options are IDE, **AHCI**, and RAID.

*If the item above "Configure SATA as" is set to AHCI, the following items will display:

Support Aggressive Link Power Management

When this item is set to Enabled, the SATA AHCI controller manages the power usage of the SATA link. The controller will put the link to a low power state when the I/O is inactive for an extended period of time, and the power state will return to normal when the I/O becomes active. The options are **Enabled** and Disabled.

SATA Port 0~ Port 5

This item displays the information detected on the installed SATA drive on the particular SATA port.

- Model number of drive and capacity
- Software Preserve Support

Port 0 ~ Port 5 Spin Up Device

On an edge detect from 0 to 1, set this item to allow the PCH to initialize the device. The options are **Enabled** and **Disabled**.

Port 0 ~ Port 5 SATA Device Type

Use this item to specify if the SATA port specified by the user should be connected to a Solid State drive or a Hard Disk Drive. The options are Hard Disk Drive and Solid State Drive.
*If the item above "Configure SATA as” is set to IDE, the following items will display:

Serial ATA Port 0~ Port 5

This item indicates that a SATA port specified by the user is installed (present) or not.

Port 0 ~ Port 5 SATA Device Type (Available when a SATA port is detected)

Use this item to specify if the SATA port specified by the user should be connected to a Solid State drive or a Hard Disk Drive. The options are Hard Disk Drive and Solid State Drive.

*If the item above "Configure SATA as” is set to RAID, the following items will display:

Support Aggressive Link Power Management

When this item is set to Enabled, the SATA AHCI controller manages the power usage of the SATA link. The controller will put the link to a low power state when the I/O is inactive for an extended period of time, and the power state will return to normal when the I/O becomes active. The options are Enabled and Disabled.

SATA RAID Option ROM/UEFI Driver

Select EFI to load the EFI driver for system boot. Select Legacy to load a legacy driver for system boot. The options are Disabled, EFI, and Legacy.

SATA/sSATA RAID Boot Select

This option specifies which controller the motherboard uses to boot from. The options are SATA Controller, sSATA Controller and Both.

Serial ATA Port 0~ Port 5

This item displays the information detected on the installed SATA drives on the particular SATA port.

- Model number of drive and capacity

- Software Preserve Support

Port 0~ Port 5

Select Enabled to enable a SATA port specified by the user. The options are Disabled and Enabled.
Port 0 ~ Port 5 Spin Up Device
On an edge detect from 0 to 1, set this item to allow the PCH to start a COMRE-SET initialization to the device. The options are Enabled and Disabled.

Port 0 ~ Port 5 SATA Device Type
Use this item to specify if the SATA port specified by the user should be connected to a Solid State drive or a Hard Disk Drive. The options are Hard Disk Drive and Solid State Drive.

▶ Server ME (Management Engine) Configuration
This feature displays the following system ME configuration settings.

• General ME Configuration

• Operational Firmware Version

• Recovery Firmware Version

• ME Firmware Features

• ME Firmware Status #1

• ME Firmware Status #2

 • Current State

 • Error Code
PCIe/PCI/PnP Configuration

The following PCI information will be displayed:

- PCI Bus Driver Version

PCI Latency Timer

Use this item to configure the PCI latency timer for a device installed on a PCI bus. Select 32 to set the PCI latency timer to 32 PCI clock cycles. The options are 32, 64, 96, 128, 160, 192, 224 and 248 (PCI Bus Clocks).

PCI-X Latency Timer

Use this item to configure the PCI-X latency timer for a device installed on a PCI-X bus. Select 32 to set the PCI-X latency timer to 32 PCI-X clock cycles. The options are 32, 64, 96, 128, 160, 192, 224 and 248 (PCI Bus Clocks).

PCI PERR/SERR Support

Select Enabled to allow a PCI device to generate a PERR number for a PCI Bus Signal Error Event, and generate an SERR number for a PCI Bus Signal Error Event. The options are Enabled and Disabled.

Above 4G Decoding (Available if the system supports 64-bit PCI decoding)

Select Enabled to decode a PCI device that supports 64-bit in the space above 4G Address. The options are Enabled and Disabled.

SR-IOV (Available if the system supports Single-Root Virtualization)

Select Enabled for Single-Root IO Virtualization support. The options are Enabled and Disabled.

Maximum Payload

Select Auto for the system BIOS to automatically set the maximum payload value for a PCI-E device to enhance system performance. The options are Auto, 128 Bytes, and 256 Bytes.

Maximum Read Request

Select Auto for the system BIOS to automatically set the maximum size for a read request for a PCI-E device to enhance system performance. The options are Auto, 128 Bytes, 256 Bytes, 512 Bytes, 1024 Bytes, 2048 Bytes, and 4096 Bytes.

ASPM Support

Use this item to set the Active State Power Management (ASPM) level for a PCI-E device. Select Auto for the system BIOS to automatically set the ASPM level based
on the system configuration. Select Disabled to disable ASPM support. The options are Disabled, and Auto.

Warning: Enabling ASPM support may cause some PCI-E devices to fail!

MMIOHBase

Use this item to select the base memory size according to memory-address mapping for the IO hub. The base memory size must be between 4032G to 4078G. The options are 56T, 48T, 24T, 512G, and 256G.

MMIO High Size

Use this item to select the high memory size according to memory-address mapping for the IO hub. The options are 256G, 128G, 512G, and 1024G.

CPU2 Slot4 PCI-E 3.0 x8,
CPU1 Slot5 PCI-E x16,
CPU1 Slot6 PCI-E 3.0x8,
Onboard SAS Option ROM

Select Enabled to enable Option ROM support to boot the computer using a device installed on the slot specified by the user. The options are Disabled, Legacy and EFI.

Onboard LAN Option ROM Type

Select Enabled to enable Option ROM support to boot the computer using a device installed on the slot specified by the user. The options are Legacy and EFI.

Onboard LAN1/LAN2/LAN3/LAN4 Option ROM / Onboard Video Option ROM

Use this option to select the type of device installed in LAN Port1~Port4 or the onboard video device used for system boot. The default setting for LAN1 Option ROM is PXE, for LAN2/LAN3/LAN4 Option ROM is Disabled and for Onboard Video Option ROM is Legacy.

VGA Priority

Use this item to select the graphics device to be used as the primary video display for system boot. The options are Onboard and Offboard.

Network Stack

Select Enabled to enable PXE (Preboot Execution Environment) or UEFI (Unified Extensible Firmware Interface) for network stack support. The options are Enabled and Disabled.
Super IO Configuration

Super IO Chip AST2400

Serial Port 1 Configuration / Serial Port 2 Configuration

Serial Port 1 / Serial Port 2

Select Enabled to enable the onboard serial port specified by the user. The options are Enabled and Disabled.

Device Settings

This item displays the base I/O port address and the Interrupt Request address of a serial port specified by the user.

Change Port 1 Settings / Change Port 2 Settings

This feature specifies the base I/O port address and the Interrupt Request address of Serial Port 1 or Serial Port 2. Select Auto for the BIOS to automatically assign the base I/O and IRQ address to a serial port specified.

The options for Serial Port 1 are Auto, (IO=3F8h; IRQ=4), (IO=3F8h; IRQ=3, 4, 5, 6, 7, 9, 10, 11, 12), (IO=2F8h; IRQ=3, 4, 5, 6, 7, 9, 10, 11, 12), (IO=3E8h; IRQ=3, 4, 5, 6, 7, 9, 10, 11, 12), and (IO=2E8h; IRQ=3, 4, 5, 6, 7, 9, 10, 11, 12).

The options for Serial Port 2 are Auto, (IO=3F8h; IRQ=4), (IO=3F8h; IRQ=3, 4, 5, 6, 7, 9, 10, 11, 12), (IO=2F8h; IRQ=3, 4, 5, 6, 7, 9, 10, 11, 12), (IO=3E8h; IRQ=3, 4, 5, 6, 7, 9, 10, 11, 12), and (IO=2E8h; IRQ=3, 4, 5, 6, 7, 9, 10, 11, 12).

Serial Port 2 Attribute

Select SOL to use COM Port 2 as a Serial_Over_LAN (SOL) port for console redirection. The options are COM and SOL.

Serial Port Console Redirection

COM 1

COM 1 Console Redirection

Select Enabled to enable COM Port 1 Console Redirection, which will allow a client machine to be connected to a host machine at a remote site for networking. The options are Disabled and Enabled.

*If the item above set to Enabled, the following items will become available for configuration:
COM1 Console Redirection Settings

Terminal Type

This feature allows the user to select the target terminal emulation type for Console Redirection. Select VT100 to use the ASCII Character set. Select VT100+ to add color and function key support. Select ANSI to use the Extended ASCII Character Set. Select VT-UTF8 to use UTF8 encoding to map Unicode characters into one or more bytes. The options are ANSI, VT100, VT100+, and VT-UTF8.

Bits Per second

Use this item to set the transmission speed for a serial port used in Console Redirection. Make sure that the same speed is used in the host computer and the client computer. A lower transmission speed may be required for long and busy lines. The options are 9600, 19200, 38400, 57600 and 115200 (bits per second).

Data Bits

Use this feature to set the data transmission size for Console Redirection. The options are 7 (Bits) and 8 (Bits).

Parity

A parity bit can be sent along with regular data bits to detect data transmission errors. Select Even if the parity bit is set to 0, and the number of 1's in data bits is even. Select Odd if the parity bit is set to 0, and the number of 1's in data bits is odd. Select None if you do not want to send a parity bit with your data bits in transmission. Select Mark to add a mark as a parity bit to be sent along with the data bits. Select Space to add a Space as a parity bit to be sent with your data bits. The options are None, Even, Odd, Mark and Space.

Stop Bits

A stop bit indicates the end of a serial data packet. Select 1 Stop Bit for standard serial data communication. Select 2 Stop Bits if slower devices are used. The options are 1 and 2.

Flow Control

Use this item to set the flow control for Console Redirection to prevent data loss caused by buffer overflow. Send a "Stop" signal to stop sending data when the receiving buffer is full. Send a "Start" signal to start sending data when the receiving buffer is empty. The options are None and Hardware RTS/CTS.

VT-UTF8 Combo Key Support

Select Enabled to enable VT-UTF8 Combination Key support for ANSI/VT100 terminals. The options are Enabled and Disabled.
Recorder Mode
Select Enabled to capture the data displayed on a terminal and send it as text messages to a remote server. The options are Disabled and Enabled.

Resolution 100x31
Select Enabled for extended-terminal resolution support. The options are Disabled and Enabled.

Legacy OS Redirection Resolution
Use this item to select the number of rows and columns used in Console Redirection for legacy OS support. The options are 80x24 and 80x25.

Putty KeyPad
This feature selects Function Keys and KeyPad settings for Putty, which is a terminal emulator designed for the Windows OS. The options are VT100, LINUX, XTERMR6, SCO, ESCN, and VT400.

Redirection After BIOS Post
Use this feature to enable or disable legacy Console Redirection after BIOS POST. When the option-Bootloader is selected, legacy Console Redirection is disabled before booting the OS. When the option- Always Enable is selected, legacy Console Redirection remains enabled upon OS bootup. The options are Always Enable and Bootloader.

SOL/COM2

Console Redirection
Select Enabled to use the SOL port for Console Redirection. The options are Enabled and Disabled.

*If the item above set to Enabled, the following items will become available for user's configuration:
SOL/COM2 Console Redirection Settings

Use this feature to specify how the host computer will exchange data with the client computer, which is the remote computer used by the user.

Terminal Type

Use this feature to select the target terminal emulation type for Console Redirection. Select VT100 to use the ASCII Character set. Select VT100+ to add color and function key support. Select ANSI to use the Extended ASCII Character Set. Select VT-UTF8 to use UTF8 encoding to map Unicode characters into one or more bytes. The options are ANSI, VT100, VT100+, and VT-UTF8.

Bits Per second

Use this feature to set the transmission speed for a serial port used in Console Redirection. Make sure that the same speed is used in the host computer and the client computer. A lower transmission speed may be required for long and busy lines. The options are 9600, 19200, 38400, 57600 and 115200 (bits per second).

Data Bits

Use this feature to set the data transmission size for Console Redirection. The options are 7 (Bits) and 8 (Bits).

Parity

A parity bit can be sent along with regular data bits to detect data transmission errors. Select Even if the parity bit is set to 0, and the number of 1's in data bits is even. Select Odd if the parity bit is set to 0, and the number of 1's in data bits is odd. Select None if you do not want to send a parity bit with your data bits in transmission. Select Mark to add a mark as a parity bit to be sent along with the data bits. Select Space to add a Space as a parity bit to be sent with your data bits. The options are None, Even, Odd, Mark and Space.

Stop Bits

A stop bit indicates the end of a serial data packet. Select 1 Stop Bit for standard serial data communication. Select 2 Stop Bits if slower devices are used. The options are 1 and 2.

Flow Control

Use this feature to set the flow control for Console Redirection to prevent data loss caused by buffer overflow. Send a “Stop” signal to stop sending data when
the receiving buffer is full. Send a "Start" signal to start data-sending when the receiving buffer is empty. The options are None and Hardware RTS/CTS.

VT-UTF8 Combo Key Support

Select Enabled to enable VT-UTF8 Combination Key support for ANSI/VT100 terminals. The options are Enabled and Disabled.

Recorder Mode

Select Enabled to capture the data displayed on a terminal and send it as text messages to a remote server. The options are Disabled and Enabled.

Resolution 100x31

Select Enabled for extended-terminal resolution support. The options are Disabled and Enabled.

Legacy OS Redirection Resolution

Use this feature to select the number of rows and columns used in Console Redirection for legacy OS support. The options are 80x24 and 80x25.

Putty KeyPad

This feature selects Function Keys and KeyPad settings for Putty, which is a terminal emulator designed for the Windows OS. The options are VT100, LINUX, XTERMR6, SCO, ESCN, and VT400.

Redirection After BIOS Post

Use this feature to enable or disable legacy Console Redirection after BIOS POST (Power-On Self-Test). When this feature is set to Bootloader, legacy Console Redirection is disabled before booting the OS. When this feature is set to Always Enable, legacy Console Redirection remains enabled upon OS boot. The options are Always Enable and Bootloader.

Legacy Console Redirection Settings

Legacy Serial Redirection Port

Select a COM port to redirect legacy OS and OPROM messages. The options are COM1 and SOL/COM2.
Serial Port for Out-of-Band Management/Windows Emergency Management Services (EMS)

The submenu allows the user to configure Console Redirection settings to support Out-of-Band Serial Port management.

EMS Console Redirection

Select Enabled to use a COM port selected by the user for EMS Console Redirection. The options are Enabled and Disabled.

*If the item above set to Enabled, the following items will become available for user's configuration:

EMS Console Redirection Settings

Out-of-Band Management Port

The feature selects a serial port in a client server to be used by the Windows Emergency Management Services (EMS) to communicate with a remote host server. The options are COM1 (Console Redirection) and COM2/SOL (Console Redirection).

Terminal Type

Use this feature to select the target terminal emulation type for Console Redirection. Select VT100 to use the ASCII character set. Select VT100+ to add color and function key support. Select ANSI to use the extended ASCII character set. Select VT-UTF8 to use UTF8 encoding to map Unicode characters into one or more bytes. The options are ANSI, VT100, VT100+, and VT-UTF8.

Bits Per Second

This item sets the transmission speed for a serial port used in Console Redirection. Make sure that the same speed is used in both host computer and the client computer. A lower transmission speed may be required for long and busy lines. The options are 9600, 19200, 57600, and 115200 (bits per second).

Flow Control

Use this item to set the flow control for Console Redirection to prevent data loss caused by buffer overflow. Send a "Stop" signal to stop data-sending when the receiving buffer is full. Send a "Start" signal to start data-sending when the receiving buffer is empty. The options are None, Hardware RTS/CTS, and Software Xon/Xoff.

The setting for each these features is displayed:

Data Bits, Parity, Stop Bits
ACPI Settings

WHEA Support
Select Enabled to support the Windows Hardware Error Architecture (WHEA) platform and provide a common infrastructure for the system to handle hardware errors within the Windows OS environment to reduce system crashes and to enhance system recovery and health monitoring. The options are Enabled and Disabled.

High Precision Timer
Select Enabled to activate the High Precision Event Timer (HPET) that produces periodic interrupts at a much higher frequency than a Real-time Clock (RTC) does in synchronizing multimedia streams, providing smooth playback and reducing the dependency on other timestamp calculation devices, such as an x86 RDTSC Instruction embedded in the CPU. The High Performance Event Timer is used to replace the 8254 Programmable Interval Timer. The options are Enabled and Disabled.

NUMA (Available when the OS supports this feature)
Select Enabled to enable Non-Uniform Memory Access support to enhance system performance. The options are Enabled and Disabled.
4-4 Event Logs

Use this feature to configure Event Log settings.

- Change SMBIOS Event Log Settings
- View SMBIOS Event Log

Change SMBIOS Event Log Settings

This feature allows the user to configure SMBIOS Event settings.

Enabling/Disabling Options

SMBIOS Event Log

Select Enabled to enable SMBIOS (System Management BIOS) Event Logging during system boot. The options are **Enabled** and **Disabled**.

Runtime Error Logging Support

Select Enabled to support Runtime Error Logging. The options are **Enabled** and **Disabled**. If this item is set to Enable, the following item will be available for configuration:

Erasing Settings

Erase Event Log
Select Enabled to erase all error events in the SMBIOS (System Management BIOS) log before an event logging is initialized at bootup. The options are No and Yes.

When Log is Full

Select Erase Immediately to immediately erase all errors in the SMBIOS event log when the event log is full. Select Do Nothing for the system to do nothing when the SMBIOS event log is full. The options are Do Nothing and Erase Immediately.

SMBIOS Event Log Standard Settings

Log System Boot Event

Select Enabled to log system boot events. The options are Disabled and Enabled.

MECI (Multiple Event Count Increment)

Enter the increment value for the multiple event counter. Enter a number between 1 to 255. The default setting is 1.

METW (Multiple Event Count Time Window)

This item is used to determine how long (in minutes) should the multiple event counter wait before generating a new event log. Enter a number between 0 to 99. The default setting is 60.

Note: Please reboot the system for the changes to take effect.

View SMBIOS Event Log

This item allows the user to view the event in the SMBIOS event log. Select this item and press <Enter> to view the status of an event in the log. The following categories are displayed:

Date/Time/Error Code/Severity
4-5 IPMI

Use this feature to configure Intelligent Platform Management Interface (IPMI) settings.

IPMI Firmware Revision
This item indicates the IPMI firmware revision used in your system.

IPMI Status
This item indicates the status of the IPMI firmware installed in your system.

▶ System Event Log

Enabling/Disabling Options

SEL Components
Select Enabled to enable all system event logging support at bootup. The options are Enabled and Disabled.

Erasing Settings

Erase SEL
Select Yes, On next reset to erase all system event logs upon next system reboot. Select Yes, On every reset to erase all system event logs upon each system reboot. Select No to keep all system event logs after each system reboot. The options are No, Yes, On next reset, and Yes, On every reset.
When SEL is Full

This feature allows the user to determine what the BIOS should do when the system event log is full. Select Erase Immediately to erase all events in the log when the system event log is full. The options are Do Nothing and Erase Immediately.

Note: After making changes on a setting, be sure to reboot the system for the changes to take effect.

▸ BMC Network Configuration

The following items will be displayed:

- IPMI LAN Selection
- IPMI Network Link Status

Update IPMI LAN Configuration

Select Yes for the system BIOS to automatically reset the following IPMI settings at next system boot. The options are Yes and No.

Configuration Address Source (Available when the item above - Update IPMI LAN Configuration is set to Yes)

Use this item to select the IP address source for this computer. If Static is selected, you will need to know the IP address of this computer and enter it to the system manually in the field. If DHCP is selected, AMI BIOS will search for a DHCP (Dynamic Host Configuration Protocol) server attached to the network and request the next available IP address for this computer. The options are DHCP Unspecified, and Static.

Station IP Address

This item displays the Station IP address for this computer. This should be in decimal and in dotted quad form (i.e., 192.168.10.253).

Subnet Mask

This item displays the sub-network that this computer belongs to. The value of each three-digit number is separated by dots and it should not exceed 255.

Station MAC Address

This item displays the Station MAC address for this computer. Mac addresses are 6 two-digit hexadecimal numbers.

Gateway IP Address

This item displays the Gateway IP address for this computer. This should be in decimal and in dotted quad form (i.e., 192.168.10.253).
4-6 Security Settings

This menu allows the user to configure the following security settings for the system.

Password Check

Select Setup for the system to prompt for a password at Setup. Select Always for the system to prompt for a password at bootup and upon entering the BIOS Setup utility. The options are Setup and Always.

Administrator Password

Use this feature to set the administrator password which is required before entering the BIOS setup utility. The length of the password should be from 3 characters to 20 characters long.

User Password

Use this feature to set the user password which is required to enter the BIOS setup utility. The length of the password should be from 3 characters to 20 characters long.
4-7 Boot Settings

Use this feature to configure Boot Settings:

Boot Configuration

Setup Prompt Timeout

Use this item to indicate how many seconds the system shall wait for the BIOS setup activation key to respond before the system starts to boot. The default setting is **1**.

Boot Mode Select

Use this item to select the type of device to be used for system boot. The options are Legacy, UEFI, and **Dual**.

Fixed Boot Order Priorities

This option prioritizes the order of bootable devices from which the system will boot. Press <Enter> on each entry from top to bottom to select devices.

- Dual Boot Order #1
- Dual Boot Order #2
- Dual Boot Order #3
- Dual Boot Order #4
- Dual Boot Order #5
- Dual Boot Order #6
• Dual Boot Order #7
• Dual Boot Order #8
• Dual Boot Order #9
• Dual Boot Order #10
• Dual Boot Order #11
• Dual Boot Order #12
• Dual Boot Order #13
• Dual Boot Order #14
• Dual Boot Order #15

Add New Boot Option
This feature allows the user to add a new boot option to system boot features.

Add Boot Option
Use this item to specify the name of the driver that the new boot option is added to.

Path for Boot Option
This item is used to specify the path to the driver that the new boot option is added to. The format for the path is "fsx:\path\filename.efi".

Boot Option File Path

Create
After the driver option name and the file path are set, press <Enter> to enter to submenu and click OK to create the new boot option drive.

▼Delete Boot Option
Use this item to select a boot device to delete from the boot priority list.

Delete Boot Option
Select the target boot device to delete.
Network Drive BBS Priorities
- Legacy Boot Order #1

UEFI Application Boot Priorities
- UEFI Boot Order #1
Discard Changes and Exit

Select this option to quit the BIOS setup without making any permanent changes to the system configuration, and reboot the computer. Select Discard Changes and Exit from the Exit menu and press <Enter>.

Save Changes and Reset

When you have completed the system configuration changes, select this option to leave the BIOS setup utility and reboot the computer for the new system configuration parameters to take effect. Select Save Changes and Exit from the Exit menu and press <Enter>.

Save Options

Save Changes

When you have completed the system configuration changes, select this option to save all changes made. This will not reset (reboot) the system.

Discard Changes

Select this option and press <Enter> to discard all the changes and return to the AMI BIOS Utility Program.
Restore Defaults
To set this feature, select Restore Defaults from the Exit menu and press <Enter>. These are manufacture default settings designed for maximum system performance but not for maximum stability.

Save As User Defaults
To set this feature, select Save as User Defaults from the Exit menu and press <Enter>. This enables the user to save any changes to the BIOS setup for future use.

Restore User Defaults
To set this feature, select Restore User Defaults from the Exit menu and press <Enter>. Use this feature to retrieve user-defined settings that were saved previously.

Boot Override
This feature allows the user to override the Boot priorities sequence in the Boot menu, and immediately boot the system with another device specified by the user. This is a one-time override.
Appendix A

BIOS Error Beep Codes

During the POST (Power-On Self-Test) routines, which are performed at each system boot, errors may occur.

Non-fatal errors are those which, in most cases, allow the system to continue to boot. The error messages normally appear on the screen.

Fatal errors will not allow the system to continue with bootup procedure. If a fatal error occurs, you should consult with your system manufacturer for possible repairs.

These fatal errors are usually communicated through a series of audible beeps. The numbers on the fatal error list correspond to the number of beeps for the corresponding error.

A-1 BIOS Error Beep Codes

<table>
<thead>
<tr>
<th>Beep Code/LED</th>
<th>Error Message</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 beep</td>
<td>Refresh</td>
<td>Ready to boot</td>
</tr>
<tr>
<td>5 short beeps + 1 long beep</td>
<td>Memory error</td>
<td>No memory detected in the system</td>
</tr>
</tbody>
</table>
| 5 beeps | No Con-In or No Con-Out devices | Con-In includes USB or PS/2 keyboard, PCI or Serial Console Redirection, IPMI KVM or SOL.
 | | Con-Out includes Video Controller, PCI or Serial Console Redirection, IPMI SOL. |
| 1 beep per device | Refresh | 1 beep or each USB device detected |

X10 IPMI Error Codes

<table>
<thead>
<tr>
<th>Beep Code/LED</th>
<th>Error Message</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Continuous Beep</td>
<td>System OH</td>
<td>System Overheat</td>
</tr>
</tbody>
</table>
Appendix B

Software Installation Instructions

B-1 Installing Software Programs

The Supermicro website that contains drivers and utilities for your system is located at http://www.supermicro.com/wftp. Some of these must be installed, such as the chipset driver.

After accessing the product drivers and utilities page, go into the CDR_Images directory and locate the ISO file for your motherboard. Download this file to create a DVD of the drivers and utilities it contains. (You may also use a utility to extract the ISO file if preferred.)

After creating a DVD with the ISO files, insert the disk into the DVD drive on your system and the display shown in Figure B-1 should appear.

Another option is to go to the Supermicro website at http://www.supermicro.com/products/. Find the product page for your motherboard here, where you may download individual drivers and utilities to your hard drive or a USB flash drive and install from there.

Note: Please refer to the documents posted on our website at http://www.supermicro.com/support/manuals/ for additional instructions that may be applicable to your system.

Click the icons showing a hand writing on paper to view the readme files for each item. Click the computer icons to the right of these items to install each item (from top to the bottom) one at a time. After installing each item, you must re-boot the system.

Driver/Tool Installation Display Screen

Click the icons showing a hand writing on paper to view the readme files for each item. Click the computer icons to the right of these items to install each item (from top to the bottom) one at a time. After installing each item, you must re-boot the system.
system before moving on to the next item on the list. The bottom icon with a CD on it allows you to view the entire contents.

When making a storage driver diskette by booting into a Driver CD, please set the SATA Configuration to "Compatible Mode" and configure SATA as IDE in the BIOS Setup. After making the driver diskette, be sure to change the SATA settings back to your original settings.

B-2 Installing SuperDoctor5

The Supermicro SuperDoctor® 5 is a hardware monitoring program that functions in a command-line or web-based interface in Windows and Linux operating systems. The program monitors system health information such as CPU temperature, system voltages, system power consumption, fan speed, and provides alerts via email or Simple Network Management Protocol (SNMP).

SuperDoctor 5 comes in local and remote management versions and can be used with Nagios to maximize your system monitoring needs. With SuperDoctor 5 Management Server (SSM Server), you can remotely control power on/off and reset chassis intrusion for multiple systems with SuperDoctor 5 or IPMI. SD5 Management Server monitors HTTP and SMTP services to optimize the efficiency of your operation.

Note: The default User Name and Password for SuperDoctor 5 is admin/admin.

SuperDoctor 5 Interface Display Screen (Health Information)

Appendix C

UEFI BIOS Recovery Instructions

Warning: Do not upgrade the BIOS unless your system has a BIOS-related issue. Flashing the wrong BIOS can cause irreparable damage to the system. In no event shall Supermicro be liable for direct, indirect, special, incidental, or consequential damages arising from a BIOS update. If you need to update the BIOS, do not shut down or reset the system while the BIOS is updating to avoid possible boot failure.

C-1 An Overview to the UEFI BIOS

The Unified Extensible Firmware Interface (UEFI) provides a software-based interface between the operating system and the platform firmware in the pre-boot environment. The UEFI specification supports an architecture-independent mechanism for add-on card initialization to allow the UEFI OS loader, which is stored in the add-on card, to boot the system. The UEFI offers a clean, hands-off control to a computer system at bootup.

C-2 How to Recover the UEFI BIOS Image (-the Main BIOS Block)

A UEFI BIOS flash chip consists of a recovery BIOS block and a main BIOS block (a main BIOS image). The boot block contains critical BIOS codes, including memory detection and recovery codes for the user to flash a new BIOS image if the original main BIOS image is corrupted. When the system power is on, the boot block codes execute first. Once it is completed, the main BIOS code will continue with system initialization and bootup.

Note: Follow the BIOS recovery instructions below for BIOS recovery when the main BIOS boot crashes. However, when the BIOS boot block crashes, you will need to follow the procedures below for BIOS recovery.

C-3 To Recover the Main BIOS Block Using a USB-Attached Device

This feature allows the user to recover a BIOS image using a USB-attached device without additional utilities used. A USB flash device such as a USB flash drive, or a USB CD/DVD ROM/RW device can be used for this purpose. However, a USB Hard Disk drive cannot be used for BIOS recovery at this time.
The file system supported by UEFI is FAT (including FAT12, FAT16, and FAT32) installed on a bootable or non-bootable USB-attached device. However, the BIOS might need several minutes to locate the SUPER.ROM file if the media size becomes too large because it contains too many folders and files.

To perform UEFI BIOS recovery using a USB-attached device, follow the instructions below.

1. Using a different machine, copy the "Super.ROM" binary image file into the disc root "\" directory of a USB device or a writeable CD/DVD.

 Note: If you cannot locate the "Super.ROM" file in your driver disk, visit our website at www.supermicro.com to download the BIOS image into a USB flash device and rename it "Super.ROM" for BIOS recovery use.

2. Insert the USB device that contains the new BIOS image ("Super.ROM") into your USB drive and power on the system

3. While powering on the system, please keep pressing <Ctrl> and <Home> simultaneously on your keyboard until the following screen (or a screen similar to the one below) displays.

Warning!! Please stop pressing the <Ctrl> and <Home> keys immediately when you see the screen (or a similar screen) below; otherwise, it will trigger a system reboot.

Note: On the other hand, if the following screen displays, please load the "Super.ROM" file to the root folder and connect this folder to the system. (You can do so by inserting a USB device that contains the new "Super.ROM" image to your machine for BIOS recovery.)
4. After locating the new BIOS binary image, the system will enter the BIOS recovery menu as shown below.

\[\text{Note: At this point, you may decide if you want to start with BIOS recovery. If you decide to proceed with BIOS recovery, follow the procedures below.}\]

5. When the screen as shown above displays, using the arrow key, select the item "Proceed with flash update" and press the <Enter> key. You will see the progress of BIOS recovery as shown in the screen below.

\[\text{Note: Do not interrupt the process of BIOS flashing until it is completed.}\]
6. After the process of BIOS recovery is completed, press any key to reboot the system.

7. Using a different system, extract the BIOS package into a bootable USB flash drive.

8. When a DOS prompt appears, enter `FLASH.BAT BIOSname.###` at the prompt.

 Note: *Do not interrupt this process* until BIOS flashing is completed.

9. After seeing the message that BIOS update is completed, unplug the AC power cable from the power supply to clear the CMOS, and then plug the AC power cable into the power supply again to power on the system.

10. Press `` continuously to enter the BIOS Setup utility.

11. Press `<F3>` to load default settings.

12. After loading default settings, press `<F4>` to save the settings and exit the BIOS Setup utility.
(Disclaimer Continued)

The products sold by Supermicro are not intended for and will not be used in life support systems, medical equipment, nuclear facilities or systems, aircraft, aircraft devices, aircraft/emergency communication devices or other critical systems whose failure to perform be reasonably expected to result in significant injury or loss of life or catastrophic property damage. Accordingly, Supermicro disclaims any and all liability, and should buyer use or sell such products for use in such ultra-hazardous applications, it does so entirely at its own risk. Furthermore, buyer agrees to fully indemnify, defend and hold Supermicro harmless for and against any and all claims, demands, actions, litigation, and proceedings of any kind arising out of or related to such ultra-hazardous use or sale.