USER’S MANUAL

Revision 1.1d
The information in this User’s Manual has been carefully reviewed and is believed to be accurate. The vendor assumes no responsibility for any inaccuracies that may be contained in this document, makes no commitment to update or to keep current the information in this manual, or to notify any person or organization of the updates. Please Note: For the most up-to-date version of this manual, please see our web site at www.supermicro.com.

Super Micro Computer, Inc. ("Supermicro") reserves the right to make changes to the product described in this manual at any time and without notice. This product, including software, if any, and documentation may not, in whole or in part, be copied, photocopied, reproduced, translated or reduced to any medium or machine without prior written consent.

IN NO EVENT WILL SUPER MICRO COMPUTER, INC. BE LIABLE FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, SPECULATIVE OR CONSEQUENTIAL DAMAGES ARISING FROM THE USE OR INABILITY TO USE THIS PRODUCT OR DOCUMENTATION, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. IN PARTICULAR, SUPER MICRO COMPUTER, INC. SHALL NOT HAVE LIABILITY FOR ANY HARDWARE, SOFTWARE, OR DATA STORED OR USED WITH THE PRODUCT, INCLUDING THE COSTS OF REPAIRING, REPLACING, INTEGRATING, INSTALLING OR RECOVERING SUCH HARDWARE, SOFTWARE, OR DATA.

Any disputes arising between manufacturer and customer shall be governed by the laws of Santa Clara County in the State of California, USA. The State of California, County of Santa Clara shall be the exclusive venue for the resolution of any such disputes. Super Micro's total liability for all claims will not exceed the price paid for the hardware product.

FCC Statement: This equipment has been tested and found to comply with the limits for a Class A digital device pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the manufacturer’s instruction manual, may cause harmful interference with radio communications. Operation of this equipment in a residential area is likely to cause harmful interference, in which case you will be required to correct the interference at your own expense.

California Best Management Practices Regulations for Perchlorate Materials: This Perchlorate warning applies only to products containing CR (Manganese Dioxide) Lithium coin cells. “Perchlorate Material-special handling may apply. See www.dtsc.ca.gov/hazardouswaste/perchlorate”

WARNING: Handling of lead solder materials used in this product may expose you to lead, a chemical known to the State of California to cause birth defects and other reproductive harm.

Manual Revision 1.1d

Release Date: February 14, 2009

Unless you request and receive written permission from Super Micro Computer, Inc., you may not copy any part of this document.

Information in this document is subject to change without notice. Other products and companies referred to herein are trademarks or registered trademarks of their respective companies or mark holders.

Copyright © 2009 by Super Micro Computer, Inc.
All rights reserved.
Printed in the United States of America
Preface

About This Manual

This manual is written for system integrators, PC technicians and knowledgeable PC users. It provides information for the installation and use of the SUPERmicro® PDSM4/E motherboard. The PDSM4/E supports single Intel® Pentium® D (Dual-Core™)/Pentium 4 Extreme Edition/Pentium 4/Pentium Extreme Edition/Celeron® D LGA (Land Grid Array) 775 Processors at system bus speeds of 1066 MHz/800 MHz/533 MHz. The LGA 775 Pentium D/Pentium 4/Celeron D Processor is housed in a Flip-Chip Land Grid Array (FC-LGA4) package that interfaces with the motherboard via an LGA775 socket. The PDSM4/E supports the Intel Hyper-Threadin (HT) Technology, the EM64T Technology, the Enhanced Intel SpeedStep® Technology (EIST) and the Matrix Storage Technology. Please refer to the motherboard specifications pages on our web site (http://www.supermicro.com/Product) for updates or visit Intel's web site for processor support. This product is intended to be professionally installed.

Manual Organization

Chapter 1 describes the features, specifications and performance of the PDSM4/PDSM4E mainboard and provides detailed information about the chipset.

Chapter 2 provides hardware installation instructions. Read this chapter when installing the processor, memory modules and other hardware components into the system. If you encounter any problems, see Chapter 3, which describes troubleshooting procedures for the video, the memory and the system setup.

Chapter 4 includes an introduction to BIOS and provides detailed information on running the CMOS Setup utility.

Appendix A provides BIOS POST Messages.

Appendix B lists BIOS POST Codes.

Appendix C lists Software Installation Instructions.

Conventions Used in the Manual

Special attention should be given to the following symbols for proper installation and to prevent damage done to the components or injury to yourself:

Danger/Caution: Instructions to be strictly followed to prevent catastrophic system failure or to avoid bodily injury.

Warning: Important information given to ensure proper system installation or to prevent damage to the components.

*Note: Additional Information given to differentiate various models or to ensure correct system setup.
Table of Contents

Preface

About This Manual ... iii

Manual Organization ... iii

Conventions Used in the Manual .. ii

Chapter 1: Introduction

1-1 Overview .. 1-1

Checklist .. 1-1

Contacting Supermicro .. 1-2

Supermicro PDSM4/E Image .. 1-3

Supermicro PDSM4/E Layout ... 1-4

Supermicro PDSM4/E Quick Reference 1-5

Intel E7230 (Mukilteo) Chipset: System Block Diagram 1-6

Motherboard Features ... 1-7

1-2 Chipset Overview .. 1-9

1-3 PC Health Monitoring ... 1-10

1-4 Power Configuration Settings .. 1-10

1-5 ACPI Features ... 1-11

1-6 Power Supply .. 1-12

1-7 Important Safety and Regulatory Information 1-12

Chapter 2: Installation

2-1 Static-Sensitive Devices ... 2-1

2-2 Processor and Heatsink Installation 2-2

2-3 Mounting the Motherboard in the Chassis 2-5

2-4 Installing DDR 2 Memory .. 2-6

2-5 I/O Port/Front Control Panel Connector Locations 2-7

2-6 Connecting Cables .. 2-8

Power Supply Connectors ... 2-8

Processor Power Connector .. 2-8

NMI Button .. 2-9

PWR LED .. 2-9

HDD LED ... 2-10

NIC1/NIC2 LED Indicators .. 2-10

OH/Fan Fail LED ... 2-11

Reset Button .. 2-11
PWR Button ... 2-12
Serial Ports ... 2-12
PWR LED .. 2-13
Chassis Intrusion .. 2-13
Universal Serial Bus (USB) ... 2-14
ATX PS/2 Keyboard and PS/2 Mouse Ports .. 2-15
GLAN Ports ... 2-15
Fan Headers ... 2-16
Power Fault ... 2-16
Wake-On-Ring ... 2-17
Wake-On-LAN .. 2-17
VGA Connector .. 2-18
Speaker Header ... 2-18

2-7 Jumper Settings ... 2-19
Explanation of Jumpers .. 2-19
GLAN Enable/Disable .. 2-19
CMOS Clear ... 2-20
Watch Dog Enable .. 2-20
SMBus to PCI/PCI-E Slots .. 2-21
VGA Enable ... 2-21
SCSI Enable/Disable ... 2-22
SCSI Termination Enable/Disable .. 2-22
Force PWR-ON Enable/Disable ... 2-23

2-8 Onboard Indicators .. 2-24
GLAN LED Indicators ... 2-24

2-9 Floppy, Parallel Port, Hard Drive, LP IPMI and SCSI Connections 2-25
Floppy Connector .. 2-25
IDE Connector .. 2-26
LP IPMI .. 2-26
Ultra 320 SCSI Connector .. 2-27
Parallel Port ... 2-28

Chapter 3: Troubleshooting

3-1 Troubleshooting Procedures ... 3-1
Before Power On ... 3-1
No Power ... 3-1
No Video .. 3-1
Memory Errors ... 3-2
Losing the System’s Setup Configuration .. 3-2
3-2 Technical Support Procedures .. 3-2
3-3 Frequently Asked Questions ... 3-3
3-4 Returning Merchandise for Service .. 3-4

Chapter 4: BIOS

4-1 Introduction .. 4-1
4-2 Running Setup ... 4-2
4-3 Main BIOS Setup ... 4-2
4-4 Advanced Setup .. 4-7
4-5 Security Setup ... 4-18
4-6 Boot Setup ... 4-20
4-7 Exit ... 4-20

Appendices:

Appendix A: BIOS POST Messages ... A-1
Appendix B: BIOS POST Codes .. B-1
Appendix C: Software Installation Instructions .. C-1
Chapter 1
Introduction

1-1 Overview

Checklist

Congratulations on purchasing your computer motherboard from an acknowledged leader in the industry. Supermicro boards are designed with the utmost attention to detail to provide you with the highest standards in quality and performance.

Please check that the following items have all been included with your motherboard. If anything listed here is damaged or missing, contact your retailer.

All Included in the Retail Box Only

One (1) Supermicro Mainboard
One (1) IDE cable (CBL-036)
One (1) floppy drive ribbon cable (CBL-022)
One (1) SCSI cable (CBL-034-0320) (*PDSM4 only)
Four (4) SATA cables (CBL-044) (*PDSME only) (*For retail only)
Two (2) SATA cables (CBL-044) (*PDSM4 only) (*For retail only)
One (1) I/O shield (CSE-PT7)
One (1) Supermicro CD containing drivers and utilities
One (1) User's/BIOS Manual
One (1) SCSI Ultra 320 User's Manual (*PDSM4 only)
Contacting Supermicro

Headquarters
Address: SuperMicro Computer, Inc.
980 Rock Ave.
San Jose, CA 95131 U.S.A.
Tel: +1 (408) 503-8000
Fax: +1 (408) 503-8008
Email: marketing@supermicro.com (General Information)
support@supermicro.com (Technical Support)
Web Site: www.supermicro.com

Europe
Address: SuperMicro Computer B.V.
Het Sterrenbeeld 28, 5215 ML
's-Hertogenbosch, The Netherlands
Tel: +31 (0) 73-6400390
Fax: +31 (0) 73-6416525
Email: sales@supermicro.nl (General Information)
support@supermicro.nl (Technical Support)
rma@supermicro.nl (Customer Support)

Asia-Pacific
Address: SuperMicro, Taiwan
4F, No. 232-1 Liancheng Road
Chung-Ho 235, Taipei Hsien, Taiwan, R.O.C.
Tel: +886-(2) 8226-3990
Fax: +886-(2) 8226-3991
Web Site: www.supermicro.com.tw
Technical Support:
Email: support@supermicro.com.tw
Tel: 886-2-8228-1366, ext.132 or 139
An Important Note to the User

- All images and layouts shown in this manual were based upon the latest PCB Revision available at the time of publishing. The motherboard you've received may or may not look exactly the same as the graphics shown in this manual.
Important Notes to the User

- All images and graphics shown in this manual were based upon PCB Rev. 1.0, the latest PCB Revision available at the time of publishing of this manual. The motherboard you've received may or may not look exactly the same as the graphics shown in this manual.
- See Chapter 2 for detailed information on jumpers, I/O ports and JF1 front panel connections.
- "1" indicates the location of "Pin 1".
- When the LE1 LED is on, the 5V Standby PWR is on. Make sure to turn off the power before installing or removing components.
- SCSI and the PCI-X 100MHz ZCR (the Green Slot) are available on the PDSM4 only.
PDSM4/PDSME Quick Reference

Jumper

<table>
<thead>
<tr>
<th>Jumper</th>
<th>Description</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>JP5/JP6</td>
<td>SMB to PCI Slots</td>
<td>Open/Open (Disabled)</td>
</tr>
<tr>
<td>JBT1</td>
<td>CMOS Clear</td>
<td>See Section 2-7</td>
</tr>
<tr>
<td>JPA1 (*PDSM4 only)</td>
<td>SCSI Channel Enable</td>
<td>Pins 1-2 (Enabled)</td>
</tr>
<tr>
<td>JPA2 (*PDSM4 only)</td>
<td>SCSI Channel Termin.Enable</td>
<td>Open (Enabled)</td>
</tr>
<tr>
<td>JPF</td>
<td>Power Force-On</td>
<td>Open (Disabled)</td>
</tr>
<tr>
<td>JPG1</td>
<td>VGA Enable</td>
<td>Pins 1-2 (Enabled)</td>
</tr>
<tr>
<td>JPL1</td>
<td>Giga-bit LAN 1 Enable</td>
<td>Open (Enabled)</td>
</tr>
<tr>
<td>JPL2</td>
<td>Giga-bit LAN 2 Enable</td>
<td>Pins 1-2 (Enabled)</td>
</tr>
<tr>
<td>JWD</td>
<td>Watch Dog Enable</td>
<td>Pins 1-2 (Reset)</td>
</tr>
</tbody>
</table>

Connector

<table>
<thead>
<tr>
<th>Connector</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>24-Pin ATX (JPW1)</td>
<td>ATX 24-Pin Power Connector</td>
</tr>
<tr>
<td>8-Pin PWR (JPW2)</td>
<td>12V 8-pin Power Connector (Required)</td>
</tr>
<tr>
<td>COM1(J31), COM2 (COM2)</td>
<td>COM Port 1 & COM 2 Header</td>
</tr>
<tr>
<td>DIMM#1A,#2A,#1B,#2B</td>
<td>Memory (DIMM) Slots (1 through 4)</td>
</tr>
<tr>
<td>Fans 1-6</td>
<td>Chassis/System Fan headers (Fans 1-5) & CPU Fan6</td>
</tr>
<tr>
<td>FP Control (JF1)</td>
<td>Front Panel Control Header</td>
</tr>
<tr>
<td>Floppy Connector (J27)</td>
<td>Floppy Disk Connector</td>
</tr>
<tr>
<td>IDE1(J3)</td>
<td>IDE Slot</td>
</tr>
<tr>
<td>JA1 (*PDSM4 only)</td>
<td>SCSI Channel Connector</td>
</tr>
<tr>
<td>J9</td>
<td>Speaker Connector</td>
</tr>
<tr>
<td>JL1</td>
<td>Chassis Intrusion Header</td>
</tr>
<tr>
<td>JLED</td>
<td>PWR LED</td>
</tr>
<tr>
<td>KB/MS(J28)</td>
<td>PS/2 Keyboard/Mouse Connector</td>
</tr>
<tr>
<td>LAN1/LAN2 (JLAN1/2)</td>
<td>Ethernet RJ45 (Gigabit LAN) Port1/Port2 Connectors</td>
</tr>
<tr>
<td>Printer</td>
<td>Parallel Port (Printer) Header</td>
</tr>
<tr>
<td>Power Fault (PW3)</td>
<td>Power Fault Header (*See Chapter 2)</td>
</tr>
<tr>
<td>SATA 0-3 (I-SATA 0-3)</td>
<td>4 Intel SATA Headers</td>
</tr>
<tr>
<td>Slot 1</td>
<td>PCI-X 100 MHz ZCR Slot (Green slot) (*PDSM4 only)</td>
</tr>
<tr>
<td>Slot 2</td>
<td>PCI-X 100 MHz</td>
</tr>
<tr>
<td>Slot 4</td>
<td>PCI-Exp.x4</td>
</tr>
<tr>
<td>Slots 5/6</td>
<td>PCI-X 133 MHz slots</td>
</tr>
<tr>
<td>Slot 7</td>
<td>LP IPMI</td>
</tr>
<tr>
<td>SPKR1</td>
<td>Internal Buzzer</td>
</tr>
<tr>
<td>USB1/2(J15)</td>
<td>Back Panel Universal Serial Bus Ports 1, 2</td>
</tr>
<tr>
<td>USB3/4(J45),USB5/6(J46)</td>
<td>Front Panel Accessible USB headers 3,4,5,6</td>
</tr>
<tr>
<td>VGA (JG1)</td>
<td>VGA Connector</td>
</tr>
<tr>
<td>WOL(WOL)</td>
<td>Wake On LAN header</td>
</tr>
<tr>
<td>WOR(JWOR)</td>
<td>Wake On Ring header</td>
</tr>
</tbody>
</table>

LED Indicator

<table>
<thead>
<tr>
<th>LED Indicator</th>
<th>Description (*Refer to Addendum A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LE 1</td>
<td>Onboard +5V Standby PWR warning LED Indicator</td>
</tr>
<tr>
<td>LE3/LE4</td>
<td>BIOS POST Code Indicators</td>
</tr>
</tbody>
</table>
Motherboard Features

CPU
- Single Intel Pentium D (Dual-Core)/Pentium 4 Extreme Edition/Pentium 4/Pentium Extreme Edition/Celeron D LGA (Land Grid Array) 775 Processors at system bus speeds of 1066 MHz/800 MHz/533 MHz.
- Hyper-Threading (HT), EM64T, Enhanced Intel SpeedStep (EIST) supported

Using the EM64T Feature
- Use a CPU that supports the EM64T Technology
- Install a 64-bit OS (Windows XP Professional x64 Ed, Server 2003x64 Ed.)
- Install the 64-bit drivers for all MB components, devices and add-on cards

Using the Hyper-Threading (HT) Technology
- Use a CPU that supports Hyper-Threading Technology
- Install an OS that supports HT, including Windows XP/2003 Server and Linux 2.4x. (Under Linux, use the HT compiler to compile the code. For other operating systems, be sure to disable the HT feature in the BIOS.)
- Enable the HT feature in the BIOS (under "Advanced" Setting) before installing a supported OS. (*Note: visit www.Intel.com for CPU support and driver updates.)

OS Licensing Support

Memory (*Note: See Section 2-4 for details.)
- Four DIMM slots support Dual/Single Channel DDR2 667/533/400 MHz up to 8 GB of ECC Unbuffered two-way interleaved DDR2 SDRAM.

Chipset
- Intel E7230 (Mukilteo)
- Intel ICH7R
- Intel PXH

Expansion Slots
- One (1) PCI-Express x4 slot (Slot 4)
- Two (2) PCI-X 64-Bit 133 MHz slots (Slot 5/Slot 6)
- One (1) PCI-X 64-Bit 100 MHz slot (*PDSM4: Green Slot-Slot 1)
- One (1) PCI-X 64-Bit 100 MHz slot (Slot 2)
- One Low Profile IPMI Slot (Slot 7)

BIOS
- 8Mb Firmware Hub Phoenix BIOS
- APM 1.2, DMI 2.3, PCI 2.2, PCI-X 1.0, ACPI 1.0, Plug and Play (PnP), SM-BIOS 2.3, Hardware BIOS Virus Protection
PC Health Monitoring
• Onboard voltage monitors for CPU cores, Chipset Voltage, Memory Voltage, +1.8V, +3.3V, +5V, +12V, and −12V
• CPU 4-phase-switching voltage regulator
• Status monitor for fan speed & System OH/Fan Fail LED/Control
• Pulse Width Modulation Fan Control & Low noise fan speed control
• Environmental temperature monitoring via BIOS, PWR-Up from AC PWR loss
• SuperDoctor III, NMI
• System Resource alert via SuperDoctor III

ACPI Features
• Slow blinking LED for suspend state indicator
• BIOS support for USB keyboard
• Main switch override mechanism
• Internal/external modem ring-on

Onboard I/O
• Adaptec Ultra 320 AIC-7901 SCSI Controller (*PDSM4 only)
• 1 ATA/100 EIDE Channel
• Intel ICH7R SATA Controller, 4 connectors for 4 devices with support of RAID functions 0, 1, 5 and 10 (*RAID 5: supported by Intel's RAID Controller only.)
• 1 floppy port interface (up to 2.88 MB)
• 1 Fast UART 16550 compatible serial port and 1 header
• Two Intel single-port 82573 PCI-E Gigabit Ethernet Controller
• PS/2 mouse and PS/2 keyboard ports
• Up to 6 USB (Universal Serial Bus) 2.0 ports for a speed
• VGA Connector
• Low Profile IPMI 2.0
• Super I/O (Winbond 83627HF), Hardware Monitoring: W83792D
• ATI Rage XL 8 MB

Temperature
• Monitoring CPU, chassis environment
• CPU Thermal Trip support
• Thermal Monitor 2 (TM2) (available if supported by the CPU)

Other
• Wake-on-LAN (WOL)
• Wake-on-Ring (WOR)
• Onboard +5vsb warning LED Indicator ("LE 1")

CD Utilities
• Drivers and software for Intel E7230 chipset utilities

Dimensions
• 9.6" (W) x 12" (L) (243.84 mm x 304.8 mm)
Figure 1-3. E7230 MukilteoChipset:
System Block Diagram

Note: This is a general block diagram and may not exactly represent the features on your motherboard. See the following pages for the actual specifications of each motherboard.
1-2 Chipset Overview

Intel's Mukilteo (E7230) chipset, designed for use with the Pentium 4 Processor in the 90nm Process in the LGA 775 Land Grid Array Package, is comprised of two primary components: the Memory Controller Hub (MCH) and the I/O Controller Hub (ICH7R). In addition, Intel's PCI-X (PXH) is used for added functionality. The PDSM4/PDSME provides the performance and feature-set required for the high-end desktop and the UP workstation market. The PDSM4/PDSME provides the performance and feature-set required for the high-end server and the UP workstation market.

Memory Controller Hub (MCH)

The function of the MCH is to manage the data flow between four interfaces: the CPU interface, the DDR2 System Memory Interface, the PCI Express Interface, and the Direct Media Interface (DMI). The MCH is optimized for the Pentium 4 processor in the 90nm process in the LGA775 Land Grid Array Package. It supports one or two channels of DDR2 SDRAM.

The I/O Controller (ICH7R) provides the data buffering and interface arbitration required for the system to operate efficiently. It also provides the bandwidth needed for the system to maintain its peak performance. The Direct Media Interface (DMI) provides the connection between the MCH and the ICH7R. The ICH7R supports PCI-E devices, four Serial ATA ports, six USB 2.0 ports and two IDE devices. In addition, the ICH7R offers the Intel Matrix Storage Technology which provides various RAID options for data protection and rapid data access. It also supports the next generation of client management through the use of PROActive technology in conjunction with Intel's next generation Gigabit Ethernet controller.

Intel ICH7R System Features

The I/O Controller Hub provides the I/O subsystem with access to the rest of the system. Functions and capabilities include:

* Advanced Configuration and Power Interface, Version 2.0 (ACPI)
* Intel I/O External Design Specification (EDS)
* Mukilteo Memory Controller Hub (MCH) External Design Specification (EDS)
* Intel I/O Controller Hub 7 (ICH7) Thermal Design Guideline
* Intel 82573 Platform LAN Connect (PLC) PCI Design
* Low Pin Count (LPC) Interface
1-3 PC Health Monitoring

This section describes the PC health monitoring features of the PDSM4/PDSME. The motherboard has an onboard System Hardware Monitor chip that supports PC health monitoring.

Onboard Voltage Monitors for the CPU Cores, Chipset Voltage, Memory Voltage, +3.3V, +5V, +12V, and −12V (via SuperO Doctor)

The onboard voltage monitor will scan these voltages continuously. Once a voltage becomes unstable, it will give a warning or send an error message to the screen. Users can adjust the voltage thresholds to define the sensitivity of the voltage monitor.

Fan Status Monitor with Firmware Speed Control

The PC health monitor can check the RPM status of the cooling fans. The onboard fans are controlled by Thermal Management via BIOS.

CPU Overheat/Fan Fail LED and Control

This feature is available when the user enables the CPU overheat warning function in the BIOS. This allows the user to define an overheat temperature. When this temperature reaches the threshold, the CPU thermal trip feature will be activated and it will send a signal to the Speaker LED and, at the same time, the CPU speed will be decreased. It will also activate the alarm if a fan failure occurs.

1-4 Power Configuration Settings

This section describes features of your motherboard that deal with power and power settings.

Slow Blinking LED for Suspend-State Indicator

When the CPU goes into a suspend state, the chassis power LED will start blinking to indicate that the CPU is in suspend mode. When the user presses any key, the CPU will wake-up and the LED will automatically stop blinking and remain on.

BIOS Support for USB Keyboard

If the USB keyboard is the only keyboard in the system, it will function like a normal keyboard during system boot-up.

Main Switch Override Mechanism

When an ATX power supply is used, the power button can function as a system suspend button. When the user presses the power button, the system will enter a SoftOff state. The monitor will be suspended and the hard drive will spin down.
Pressing the power button again will cause the whole system to wake-up. During the SoftOff state, the ATX power supply provides power to keep the required circuitry in the system alive. In case the system malfunctions and you want to turn off the power, just press and hold the power button for 4 seconds. The power will turn off and no power will be provided to the motherboard.

Wake Ring-On (WOR)

Wake-up events can be triggered by a device such as the external modem ringing when the system is in the SoftOff state. Note that external modem ring-on can only be used with an ATX 2.01 (or above) compliant power supply.

Wake-On-LAN (WOL)

Wake-On-LAN is defined as the ability of a management application to remotely power up a computer that is powered off. Remote PC setup, up-dates and asset tracking can occur after hours and on weekends so that daily LAN traffic is kept to a minimum and users are not interrupted. The motherboard has a 3-pin header (WOL) to connect to the 3-pin header on a Network Interface Card (NIC) that has WOL capability. Note that Wake-On-LAN can only be used with an ATX 2.01 (or above) compliant power supply.

1-5 ACPI Features

ACPI stands for Advanced Configuration and Power Interface. The ACPI specification defines a flexible and abstract hardware interface that provides a standard way to integrate power management features throughout a PC system, including its hardware, operating system and application software. This enables the system to automatically turn on and off peripherals such as CD-ROMs, network cards, hard disk drives and printers. This also includes consumer devices connected to the PC such as VCRs, TVs, telephones and stereos.

In addition to enabling operating system-directed power management, ACPI provides a generic system event mechanism for Plug and Play and an operating system-independent interface for configuration control. ACPI leverages the Plug and Play BIOS data structures while providing a processor architecture-independent implementation that is compatible with both Windows and Linux Operating Systems.
1-6 Power Supply

As with all computer products, a stable power source is necessary for proper and reliable operation. It is even more important for processors that have high CPU clock rates of 1 GHz and faster.

The PDSM4/PDSME accommodates 12V ATX power supplies. Although most power supplies generally meet the specifications required by the CPU, some are inadequate. A 2 amps of current supply on a 5V Standby rail is strongly recommended.

The PDSM4/PDSME accommodates ATX power supplies. It is strongly recommended that you use a high quality power supply that meets ATX power supply Specification 2.02 or above. You should use one that will supply at least 350W of power. Also your power supply must supply 1.5A for the Ethernet ports. It must also be SSI compliant (info at http://www.ssiforum.org/). Additionally, in areas where noisy power transmission is present, you may choose to install a line filter to shield the computer from noise. It is recommended that you also install a power surge protector to help avoid problems caused by power surges. Please note that the 8-pin 12V power connection (JPW2) is also required to provide adequate power to your system.
Chapter 2
Installation

2-1 Static-Sensitive Devices

Electro-static Discharge (ESD) can damage electronic components. To prevent damage to your system board, it is important to handle it very carefully. The following measures are generally sufficient to protect your equipment from ESD.

Precautions

• Use a grounded wrist strap designed to prevent static discharge.
• Touch a grounded metal object before removing the board from the antistatic bag.
• Handle the board by its edges only; do not touch its components, peripheral chips, memory modules or gold contacts.
• When handling chips or modules, avoid touching their pins.
• Put the motherboard and peripherals back into their antistatic bags when not in use.
• For grounding purposes, make sure your computer chassis provides excellent conductivity between the power supply, the case, the mounting fasteners and the motherboard.
• Use only the correct type of onboard CMOS battery. Do not install the onboard upside down battery to avoid possible explosion.

Unpacking

The motherboard is shipped in antistatic packaging to avoid static damage. When unpacking the board, make sure the person handling it is static protected.
2-2 Processor and Heatsink Fan Installation

When handling the processor package, avoid placing direct pressure on the label area of the fan.

(*Notes: 1. Always connect the power cord last and always remove it before adding, removing or changing any hardware components. Make sure that you install the processor into the CPU socket before you install the CPU heatsink.

2. Intel's boxed Pentium 4 CPU package contains the CPU fan and heatsink assembly. If you buy a CPU separately, make sure that you use only Intel-certified multi-directional heatsink and fan.

3. The Intel Pentium 4 LGA 775 heatsink and fan comes with a push-pin design and no tool is needed for installation.

4. Make sure to install the motherboard into the chassis before you install the CPU heatsink and fan.)

5. When purchasing an LGA 775 CPU or when receiving a motherboard with an LGA 775 CPU pre-installed, make sure that the CPU plastic cap is in place and none of the CPU pins are bent; otherwise, contact the retailer immediately.

6. Refer to the MB Features Section for more details on CPU support.

Installation of the LGA775 Processor

1. Press the socket lever to release the load plate, which covers the CPU socket, from its locking position.

2. Gently lift the socket lever to open the load plate.
3. Locate Pin 1 on the CPU socket. (*Note: Pin 1 is the corner marked with a triangle). Please note that the North Key and the South Key are located vertically in the CPU housing.

4. Position the motherboard in such a way that Pin 1 of the CPU socket is located at the left bottom of the CPU housing.

5. Use your thumb and your index finger to hold the CPU at the North Center Edge and the South Center Edge of the CPU.

6. Align Pin 1 of the CPU with Pin 1 of the socket. Once aligned, carefully lower the CPU straight down to the socket. (**Do not drop the CPU on the socket. Do not move the CPU horizontally or vertically. Do not rub the CPU against the surface or against any pins of the socket to avoid damage to the CPU or the socket.)

7. With the CPU inside the socket, inspect the four corners of the CPU to make sure that the CPU is properly installed.

8. Use your thumb to gently push the lever down and lock it in the hook.

9. If the CPU is properly installed into the socket, the plastic cap will be automatically released from the load plate when the lever is pushed into the hook. Remove the plastic cap from the motherboard.

Warning: Please keep the plastic cap. The motherboard and the CPU must be shipped with the plastic cap properly installed to protect the CPU pins. Shipment without the CPU plastic cap properly installed will void the warranty.)
Installation of the Heatsink

1. Locate the CPU Fan on the motherboard. (Refer to the layout on the right for the CPU Fan location.)

2. Position the heatsink in such a way that the heatsink fan wires are closest to the CPU fan and are not interfered with other components.

3. Inspect the CPU Fan wires to make sure that the wires are routed through the bottom of the heatsink.

4. Remove the thin layer of the protective film from the copper core of the heatsink.

(*Warning: CPU overheat may occur if the protective film is not removed from the heatsink.)

5. Apply the proper amount of thermal grease on the CPU. (*Note: if your heatsink came with a thermal pad, please ignore this step.)

6. If necessary, rearrange the wires to make sure that the wires are not pinched between the heatsink and the CPU. Also make sure to keep clearance between the fan wires and the fins of the heatsink.

7. Align the four heatsink fasteners with the mounting holes on the motherboard. Gently push the pairs of diagonal fasteners (#1 & #2, and #3 & #4) into the mounting holes until you hear a click. (*Note: Make sure to orient each fastener in a way that the narrow end of the groove is pointing outward.)
8. Repeat Step 6 to insert all four heatsink fasteners into the mounting holes.

9. Once all four fasteners are securely inserted into the mounting holes and the heatsink is properly installed on the motherboard, connect the heatsink fan wires to the CPU Fan connector.

Heatsink Removal

1. Unplug the power cord from the power supply.

2. Disconnect the heatsink fan wires from the CPU fan header.

3. Use your finger tips to gently press on the fastener cap and turn it counterclockwise to make a 1/4 (90°) turn, and then pull the fastener upward to loosen it.

4. Repeat Step 3 to loosen all fasteners from the mounting holes.

5. With all fasteners loosened, remove the heatsink from the CPU.

2-3 Mounting the Motherboard in the Chassis

All motherboards have standard mounting holes to fit different types of chassis. Make sure the locations of all the mounting holes for both the motherboard and the chassis match. Although a chassis may have both plastic and metal mounting fasteners, metal ones are highly recommended because they ground the motherboard to the chassis. Make sure the metal standoffs click in or are screwed in tightly. Then use a screwdriver to secure the motherboard onto the motherboard tray. (*Note: some components are very close to the mounting holes. Please take all necessary precautionary measures to prevent damage done to these components when installing the motherboard into the chassis.)*

Caution: To avoid damaging the motherboard and its components, please do not use a force greater than 8 lb/inch on each mounting screw during motherboard installation.
2-4 Installing DDR 2 Memory

Memory Module Installation

Exercise extreme care when installing or removing memory modules to prevent any possible damage.

1. Insert each DDR 2 memory module vertically into its slot. Pay attention to the notch along the bottom of the module to prevent inserting the module incorrectly. (See support information below.)

2. Gently press down on the memory module until it snaps into place.

Support

The PDSM4/PDSME supports Dual channel, ECC unbuffered DDR 2 667/533/400 SDRAM. Both interleaved and non-interleaved memory are supported, so you may populate any number of DIMM slots. (Populating DIMM#1A, DIMM#1B, and/or DIMM#2A, DIMM#2B with memory modules of the same size and of the same type will result in dual channel, two-way interleaved memory which is faster than the single channel, non-interleaved memory. When ECC memory is used, it may take 25-40 seconds for the VGA to display.)

(*Note: 1. Due to chipset limitation, 8GB Memory can only be supported by the following operating systems:
2. You may install a maximum of 2GB DIMMs on each slot; however, only DDR 2 533 2GB density modules are available for this configuration.
3. Some old-version of DDR 2-667 may not match Intel's On-Die-Temperature requirement and will automatically be down-graded to run @ 533 MHz. If this occurs, contact your memory vendor to check the ODT value.)

Note:

Due to memory allocation to system devices, the amount of memory that remains available for operational use will be reduced when 4 GB of RAM is used. The reduction in memory availability is disproportional. Refer to the table on the next page. For Microsoft Windows users: Microsoft implemented a design change in Windows XP with Service Pack 2 (SP2) and Windows Vista. This change is specific to the Physical Address Extension (PAE) mode behavior which improves driver compatibility. For more information, please read the following article at Microsoft's Knowledge Base website at: http://support.microsoft.com/kb/888137.
Chapter 2: Installation

Possible System Memory Allocation & Availability

<table>
<thead>
<tr>
<th>System Device</th>
<th>Size</th>
<th>Physical Memory Remaining (-Available)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(4 GB Total System Memory)</td>
</tr>
<tr>
<td>Firmware Hub flash memory (System BIOS)</td>
<td>1 MB</td>
<td>3.99 GB</td>
</tr>
<tr>
<td>Local APIC</td>
<td>4 KB</td>
<td>3.99 GB</td>
</tr>
<tr>
<td>Area Reserved for the chipset</td>
<td>2 MB</td>
<td>3.99 GB</td>
</tr>
<tr>
<td>I/O APIC (4 Kbytes)</td>
<td>4 KB</td>
<td>3.99 GB</td>
</tr>
<tr>
<td>PCI Enumeration Area 1</td>
<td>256 MB</td>
<td>3.76 GB</td>
</tr>
<tr>
<td>PCI Express (256 MB)</td>
<td>256 MB</td>
<td>3.51 GB</td>
</tr>
<tr>
<td>PCI Enumeration Area 2 (if needed) -Aligned on 256-MB boundary-</td>
<td>512 MB</td>
<td>3.01 GB</td>
</tr>
<tr>
<td>VGA Memory</td>
<td>16 MB</td>
<td>2.85 GB</td>
</tr>
<tr>
<td>TSEG</td>
<td>1 MB</td>
<td>2.84 GB</td>
</tr>
<tr>
<td>Memory available for the OS & other applications</td>
<td></td>
<td>2.84 GB</td>
</tr>
</tbody>
</table>

DDR 2 Installation

To Install:
Insert module vertically and press down until it snaps into place. Pay attention to the notch.

To Remove:
Use your thumbs to gently push each release tab outward to release the DIMM from the slot.
2-5 I/O Port/Control Panel Connector Locations

The I/O ports are color coded in conformance with the PC99 specification to make setting up your system easier. See Figure 2-3 below for the colors and locations of the various IO ports.

I/O Port Locations and Definitions

![Image of I/O ports and definitions]

Front Control Panel

JF1 contains header pins for various buttons and indicators that are normally located on a control panel at the front of the chassis. These connectors are designed specifically for use with Supermicro server chassis. See Figure 2-4 for the descriptions of the various control panel buttons and LED indicators. Refer to the following section for descriptions and pin definitions.

![Diagram of JF1 header pins]
2-6 Connecting Cables

ATX Power Connector

The main power supply connector (JPW1) on the PDSM4/PDSME meets the SSI (Superset ATX) specification. Make sure that the orientation of the connector is correct. You must also use the 8 pin (JPW2) power connector for adequate power supply to the system (below.) See the table on the right for pin definitions.

<table>
<thead>
<tr>
<th>Pin Number Definition</th>
<th>Pin Number Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>+3.3V</td>
</tr>
<tr>
<td>14</td>
<td>-12V</td>
</tr>
<tr>
<td>15</td>
<td>COM</td>
</tr>
<tr>
<td>16</td>
<td>PS_ON#</td>
</tr>
<tr>
<td>17</td>
<td>COM</td>
</tr>
<tr>
<td>18</td>
<td>COM</td>
</tr>
<tr>
<td>19</td>
<td>COM</td>
</tr>
<tr>
<td>20</td>
<td>Res(NC)</td>
</tr>
<tr>
<td>21</td>
<td>+5V</td>
</tr>
<tr>
<td>22</td>
<td>+5V</td>
</tr>
<tr>
<td>23</td>
<td>+5V</td>
</tr>
<tr>
<td>24</td>
<td>COM</td>
</tr>
</tbody>
</table>

Processor Power Connector

In addition to the Primary ATX power connector (above), the 12V 8-pin Processor connector at JPW2 must also be connected to your power supply to provide adequate power supply to the system.

8-Pin +12v Power Supply Connector

<table>
<thead>
<tr>
<th>Pins</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 thru 4</td>
<td>Ground</td>
</tr>
<tr>
<td>5 thru 8</td>
<td>+12v</td>
</tr>
</tbody>
</table>

A. 24-Pin ATX PWR
B. 8-Pin 12V PWR
NMI Button

The non-maskable interrupt button header is located on pins 19 and 20 of JF1. Refer to the table on the right for pin definitions.

Power LED

The Power LED connection is located on pins 15 and 16 of JF1. Refer to the table on the right for pin definitions.

NMI LED Pin Definitions (JF1)

<table>
<thead>
<tr>
<th>Pin#</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>NMI_LED Sig.</td>
</tr>
<tr>
<td>20</td>
<td>GND</td>
</tr>
</tbody>
</table>

PWR(LED) Pin Definitions (JF1)

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>LED_Anode</td>
</tr>
<tr>
<td>16</td>
<td>PWR LED Sig.</td>
</tr>
</tbody>
</table>

A. NMI

B. PWR LED
HDD LED

The HDD LED connection is located on pins 13 and 14 of JF1. Attach the hard drive LED cable here to display disk activity (including SCSI, Serial ATA and IDE drive activities). See the table on the right for pin definitions.

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>Vcc</td>
</tr>
<tr>
<td>14</td>
<td>HD Active</td>
</tr>
</tbody>
</table>

NIC1/NIC2 LED Indicators

The NIC (Network Interface Controller) LED connections for the GLAN port1 is located on pins 11 and 12 of JF1, and for the GLAN port2 is located on pins 9 and 10 of JF1. Attach the NIC LED cables to display network activity. Refer to the tables on the right for pin definitions.

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Vcc</td>
</tr>
<tr>
<td>12</td>
<td>GND</td>
</tr>
</tbody>
</table>

A. HDD LED
B. NIC1/NIC2 LED
Overheat/FanFail LED

Connect an LED cable to the OH/Fan Fail connection on pins 7 and 8 of JF1 to provide advanced warning of chassis overheating or system fan failure. Refer to the table on the right for pin definitions.

Reset Button

The Reset Button connection is located on pins 3 and 4 of JF1. Attach it to the hardware reset switch on the computer case. Refer to the table on the right for pin definitions.

A. OH/Fan Fail LED

B. Reset
Power Button

The Power Button connection is located on pins 1 and 2 of JF1. Momentarily contacting both pins will power on/off the system. This button can also be configured to function as a suspend button (with a setting in BIOS - see Chapter 4). To turn off the power when set to suspend mode, press the button for at least 4 seconds. Refer to the table on the right for pin definitions.

Serial Ports

Two serial ports: COM1 (J31), COM2 (COM2) are included on the motherboard. COM1 (J31) is a port located on the backpanel. See the table on the right for pin definitions.

A. PWR Button
B. COM1
C. COM2

Serial Port Pin Definitions (COM1)

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CD</td>
</tr>
<tr>
<td>2</td>
<td>RD</td>
</tr>
<tr>
<td>3</td>
<td>TD</td>
</tr>
<tr>
<td>4</td>
<td>DTR</td>
</tr>
<tr>
<td>5</td>
<td>Ground</td>
</tr>
<tr>
<td>6</td>
<td>DSR</td>
</tr>
<tr>
<td>7</td>
<td>RTS</td>
</tr>
<tr>
<td>8</td>
<td>CTS</td>
</tr>
<tr>
<td>9</td>
<td>RI</td>
</tr>
<tr>
<td>10</td>
<td>NC</td>
</tr>
</tbody>
</table>

Serial Port Pin Definitions (COM2)

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CD</td>
</tr>
<tr>
<td>2</td>
<td>RD</td>
</tr>
<tr>
<td>3</td>
<td>TD</td>
</tr>
<tr>
<td>4</td>
<td>DTR</td>
</tr>
<tr>
<td>5</td>
<td>Ground</td>
</tr>
<tr>
<td>6</td>
<td>DSR</td>
</tr>
<tr>
<td>7</td>
<td>RTS</td>
</tr>
<tr>
<td>8</td>
<td>CTS</td>
</tr>
<tr>
<td>9</td>
<td>RI</td>
</tr>
<tr>
<td>10</td>
<td>NC</td>
</tr>
</tbody>
</table>
Power LED

The Power LED connector is located at JLED. This connection is used to provide LED indication of power being supplied to the system. See the table on the right for pin definitions.

Chassis Intrusion

A Chassis Intrusion header is located at JL1. Attach the appropriate cable to inform you of a chassis intrusion.
Universal Serial Bus (USB)

There are two Universal Serial Bus ports (USB 1/2) located at (J15) on the I/O back panel and additional four USB ports (USB 3/4/5/6) located next to the SATA ports on the motherboard. These ports, labeled USB3 to USB6, can be used to provide front side chassis access (cables not included). See the tables on the right for pin definitions.

A. USB 1/2
B. FP USB3/4
C. FP USB5/6

Universal Serial Bus Pin Definitions

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Definition</th>
<th>Pin Number</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+5V</td>
<td>1</td>
<td>+5V</td>
</tr>
<tr>
<td>2</td>
<td>P0-</td>
<td>2</td>
<td>P0-</td>
</tr>
<tr>
<td>3</td>
<td>P0+</td>
<td>3</td>
<td>P0+</td>
</tr>
<tr>
<td>4</td>
<td>Ground</td>
<td>4</td>
<td>Ground</td>
</tr>
<tr>
<td>5</td>
<td>N/A</td>
<td>5</td>
<td>Key</td>
</tr>
</tbody>
</table>

Front Panel Universal Serial Bus Pin Definitions

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+5V</td>
</tr>
<tr>
<td>2</td>
<td>P0-</td>
</tr>
<tr>
<td>3</td>
<td>P0+</td>
</tr>
<tr>
<td>4</td>
<td>Ground</td>
</tr>
<tr>
<td>5</td>
<td>N/A</td>
</tr>
</tbody>
</table>
ATX PS/2 Keyboard and
PS/2 Mouse Ports

The ATX PS/2 keyboard and PS/2 mouse are located next to the USB port on the motherboard. See the table at right for pin definitions. (Note: NC=No connection.)

GLAN (Giga-bit Ethernet Ports)

Two G-bit Ethernet ports (GLAN1/GLAN2) are located next to the VGA Connector on the IO backplane. This port accepts RJ45 type cables.

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Data</td>
</tr>
<tr>
<td>2</td>
<td>NC</td>
</tr>
<tr>
<td>3</td>
<td>Ground</td>
</tr>
<tr>
<td>4</td>
<td>VCC</td>
</tr>
<tr>
<td>5</td>
<td>Clock</td>
</tr>
<tr>
<td>6</td>
<td>NC</td>
</tr>
</tbody>
</table>

A. KB/Mouse
B. LAN1
C. LAN2
Fan Headers

The PDSM4/PDSME has five chasis/system fan headers (Fan1 to Fan5) and one CPU Fan (CPU Fan6). (*Note: all these fans are 4-pin fans. However, Pins 1-3 of the fan headers are backward compatible with the traditional 3-pin fans.) See the table on the right for pin definitions. (*The onboard fan speeds are controlled by Thermal Management via BIOS Hardware Monitor in the Advanced Setting. Note: Default: Disabled, When using Thermal Management setting, please use all 3-pin fans or all 4-pin fans on the motherboard. Please do not use 3-pin fans and 4-pin fans on the same board.)*

Power Fault

Connect a cable from your power supply to the Power Fault header (PW3) to provide warning of power supply failure. This warning signal is passed through the PWR_LED pin to indicate of a power failure on the chassis. See the table on the right for pin definitions.

4-pin Fan Header Pin Definitions

<table>
<thead>
<tr>
<th>Pin#</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ground (black)</td>
</tr>
<tr>
<td>2</td>
<td>+12V (red)</td>
</tr>
<tr>
<td>3</td>
<td>Tachometer</td>
</tr>
<tr>
<td>4</td>
<td>PWM_Control</td>
</tr>
</tbody>
</table>

Caution: These fan headers use DC power.

Power Fault Pin Definition

<table>
<thead>
<tr>
<th>Jumper Position</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PWR/#1</td>
</tr>
<tr>
<td>2</td>
<td>PWR/#2</td>
</tr>
<tr>
<td>3</td>
<td>PWR/#3</td>
</tr>
<tr>
<td>4</td>
<td>Signal: Alarm</td>
</tr>
</tbody>
</table>

Note: This feature is only available when using redundant Supermicro power supplies.
Wake-On-Ring

The Wake-On-Ring header (JWOR) is located between the two PCI-X 133 MHz slots. This function allows your computer to receive and be awakened by an incoming call to the modem when in suspend state. See the table on the right for pin definitions. You must have a Wake-On-Ring card and cable to use this feature.

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ground</td>
</tr>
<tr>
<td>2</td>
<td>Wake-up</td>
</tr>
</tbody>
</table>

Wake-On-LAN

The Wake-On-LAN (WOL) header located to Fan 4. See the table on the right for pin definitions. You must enable the LAN Wake-Up function in the BIOS and also have a LAN card with a Wake-on-LAN connector and cable to use this feature.

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+5V Standby</td>
</tr>
<tr>
<td>2</td>
<td>Ground</td>
</tr>
<tr>
<td>3</td>
<td>Wake-up</td>
</tr>
</tbody>
</table>
VGA Connector

A VGA connector (JG1) is located between COM1 and GLAN1 on the IO backplane. Refer to the board layout below for the location.

Internal/External Speaker Header

A Speaker Header (J9) is located between the Buzzer and the Floppy Drive on the Motherboard. This header can be used for external or internal purpose. Refer to the table on the right to configure internal or external speaker settings.
2-7 Jumper Settings

Explanation of Jumpers

To modify the operation of the motherboard, jumpers can be used to choose between optional settings. Jumpers create shorts between two pins to change the function of the connector. Pin 1 is identified with a square solder pad on the printed circuit board. See the motherboard layout pages for jumper locations. Note: On two pin jumpers, "Closed" means the jumper is on and "Open" means the jumper is off the pins.

GLAN Enable/Disable

JPL1/JPL2 enable or disable the GLAN ports on the motherboard. See the table on the right for jumper settings. (*Note: For JPL1, the default setting is Open to enable. For JPL2, the default setting is Pins 1-2 to enable.)

A. GLAN1 Enable (JPL1)
B. GLAN2 Enable (JPL2)
CMOS Clear

JBT1 is used to clear CMOS. Instead of pins, this "jumper" consists of contact pads to prevent the accidental clearing of CMOS. To clear CMOS, use a metal object such as a small screwdriver to touch both pads at the same time to short the connection. Always remove the AC power cord from the system before clearing CMOS.

Note: For an ATX power supply, you must completely shut down the system, remove the AC power cord and then short JBT1 to clear CMOS. **Do not use the PW_ON connector to clear CMOS.**

Watch Dog Enable

JWD controls Watch Dog, a system monitor that takes action when a software application hangs. Close Pins 1-2 to reset the system if a program hangs. Close Pins 2-3 to generate a non-maskable interrupt for the program that hangs. (This function requires software support.). **Watch Dog must also be enabled in BIOS.**

Watch Dog Jumper Settings

<table>
<thead>
<tr>
<th>Jumper Position</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pins 1-2</td>
<td>WD to Reset</td>
</tr>
<tr>
<td>Pins 2-3</td>
<td>WD to NMI</td>
</tr>
<tr>
<td>Open</td>
<td>Disabled</td>
</tr>
</tbody>
</table>

A. Watch Dog Enable
B. Clear CMOS
SMBus to PCI/PCI-Exp. Slots

Jumpers JP5, JP6 allow you to connect PCIX/PCI-E slots to the System Management Bus. The default setting is "Open" to disable the connection. See the table on the right for jumper settings.

VGA Enable/Disable

JPG1 enables or disables the VGA Connector on the motherboard. See the table on the right for jumper settings. The default setting is enabled.
SCSI Enable/Disable (*PDSM4 Only)

Jumper JPA1 allows you to enable or disable the SCSI Controller. The default setting is pins 1-2 to enable the SCSI connection. See the table on the right for jumper settings.

A. SCSI Enable

<table>
<thead>
<tr>
<th>Jumper Position</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pins 1-2</td>
<td>Enabled</td>
</tr>
<tr>
<td>Pins 2-3</td>
<td>Disabled</td>
</tr>
</tbody>
</table>

B. SCSI Termination

Jumper JPA2 allows you to enable or disable the termination of the SCSI connector. The default setting is open to enable (-to terminate-) the SCSI channel. (For SCSI to function properly, please do not change the default setting.) See the table on the right for jumper settings.

SCSI Channel Termination Enable/Disable

<table>
<thead>
<tr>
<th>Jumper Position</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>*Open</td>
<td>Enabled</td>
</tr>
<tr>
<td>Closed</td>
<td>Disabled</td>
</tr>
</tbody>
</table>

(Default: Open: Do not change the default setting!)
Force-Power-On Enable/Disable

Jumper JPF allows you to enable or disable the function of Force-Power-On. If enabled, the power will always stay on automatically. If this function disabled, the user needs to press the power button to power on the system.

<table>
<thead>
<tr>
<th>Jumper Position</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>Normal</td>
</tr>
<tr>
<td>On</td>
<td>Force On</td>
</tr>
</tbody>
</table>
2-8 Onboard Indicators

GLAN LEDs

There are two GLAN ports on the motherboard. Each Gigabit Ethernet LAN port has two LEDs. The yellow LED indicates activity while the other LED may be green, orange or off to indicate the speed of the connection. See the table at right for the functions associated with the second LED.
2-9 Floppy, Hard Disk Drive, LP IPMI, SCSI and Parallel Port Connections

Note the following when connecting the floppy and hard disk drive cables:

- The floppy disk drive cable has seven twisted wires.
- A red mark on a wire typically designates the location of pin 1.
- A single floppy disk drive ribbon cable has two connectors to provide for two floppy disk drives. The connector with twisted wires always connects to drive A, and the connector that does not have twisted wires always connects to drive B.

Floppy Connector Pin Definitions

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Function</th>
<th>Pin Number</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GND</td>
<td>2</td>
<td>FDHDIN</td>
</tr>
<tr>
<td>3</td>
<td>GND</td>
<td>4</td>
<td>Reserved</td>
</tr>
<tr>
<td>5</td>
<td>Key</td>
<td>6</td>
<td>FDEDIN</td>
</tr>
<tr>
<td>7</td>
<td>GND</td>
<td>8</td>
<td>Index-</td>
</tr>
<tr>
<td>9</td>
<td>GND</td>
<td>10</td>
<td>Motor Enable</td>
</tr>
<tr>
<td>11</td>
<td>GND</td>
<td>12</td>
<td>Drive Select B-</td>
</tr>
<tr>
<td>13</td>
<td>GND</td>
<td>14</td>
<td>Drive Select A-</td>
</tr>
<tr>
<td>15</td>
<td>GND</td>
<td>16</td>
<td>Motor Enable</td>
</tr>
<tr>
<td>17</td>
<td>GND</td>
<td>18</td>
<td>DIR-</td>
</tr>
<tr>
<td>19</td>
<td>GND</td>
<td>20</td>
<td>STEP-</td>
</tr>
<tr>
<td>21</td>
<td>GND</td>
<td>22</td>
<td>Write Data-</td>
</tr>
<tr>
<td>23</td>
<td>GND</td>
<td>24</td>
<td>Write Gate-</td>
</tr>
<tr>
<td>25</td>
<td>GND</td>
<td>26</td>
<td>Track 00-</td>
</tr>
<tr>
<td>27</td>
<td>GND</td>
<td>28</td>
<td>Write Protect-</td>
</tr>
<tr>
<td>29</td>
<td>GND</td>
<td>30</td>
<td>Read Data-</td>
</tr>
<tr>
<td>31</td>
<td>GND</td>
<td>32</td>
<td>Side 1 Select-</td>
</tr>
<tr>
<td>33</td>
<td>GND</td>
<td>34</td>
<td>Diskette</td>
</tr>
</tbody>
</table>

A. Floppy Connector

The floppy connector is located between the IDE connectors and the IPMI socket. See the table below for pin definitions.
IDE Connectors

An IDE Connector is located at J3 of the motherboard. See the table on the right for pin definitions.

LP IPMI

There is a Low Profile IPMI Socket (Slot 7) on the motherboard. Refer to the layout below for the 1UPIPMI location.

- IDE Connectors
- IDE Connector Pin Definitions
- LP IPMI
- Diagram of motherboard components
Ultra 320 SCSI Connectors (*PDSM4 only)

A SCSI Connector is located at JA1 of the motherboard. See the table on the right for pin definitions.

68-pin Ultra320 SCSI Connector

<table>
<thead>
<tr>
<th>Connector Contact Number</th>
<th>Signal Names</th>
<th>Connector Contact Number</th>
<th>Signal Names</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+DB(12)</td>
<td>35</td>
<td>-DB(12)</td>
</tr>
<tr>
<td>2</td>
<td>+DB(13)</td>
<td>36</td>
<td>-DB(13)</td>
</tr>
<tr>
<td>3</td>
<td>+DB(14)</td>
<td>37</td>
<td>-DB(14)</td>
</tr>
<tr>
<td>4</td>
<td>+DB(15)</td>
<td>38</td>
<td>-DB(15)</td>
</tr>
<tr>
<td>5</td>
<td>+DB(P1)</td>
<td>39</td>
<td>-DB(P1)</td>
</tr>
<tr>
<td>6</td>
<td>+DB(0)</td>
<td>40</td>
<td>-DB(0)</td>
</tr>
<tr>
<td>7</td>
<td>+DB(1)</td>
<td>41</td>
<td>-DB(1)</td>
</tr>
<tr>
<td>8</td>
<td>+DB(2)</td>
<td>42</td>
<td>-DB(2)</td>
</tr>
<tr>
<td>9</td>
<td>+DB(3)</td>
<td>43</td>
<td>-DB(3)</td>
</tr>
<tr>
<td>10</td>
<td>+DB(4)</td>
<td>44</td>
<td>-DB(4)</td>
</tr>
<tr>
<td>11</td>
<td>+DB(5)</td>
<td>45</td>
<td>-DB(5)</td>
</tr>
<tr>
<td>12</td>
<td>+DB(6)</td>
<td>46</td>
<td>-DB(6)</td>
</tr>
<tr>
<td>13</td>
<td>+DB(7)</td>
<td>47</td>
<td>-DB(7)</td>
</tr>
<tr>
<td>14</td>
<td>+DB(P)</td>
<td>48</td>
<td>-DB(P)</td>
</tr>
<tr>
<td>15</td>
<td>GROUND</td>
<td>49</td>
<td>GROUND</td>
</tr>
<tr>
<td>16</td>
<td>DIFFSENS</td>
<td>50</td>
<td>GROUND</td>
</tr>
<tr>
<td>17</td>
<td>TERMPWR</td>
<td>51</td>
<td>TERMPWR</td>
</tr>
<tr>
<td>18</td>
<td>TERMPWR</td>
<td>52</td>
<td>TERMPWR</td>
</tr>
<tr>
<td>19</td>
<td>RESERVED</td>
<td>53</td>
<td>RESERVED</td>
</tr>
<tr>
<td>20</td>
<td>GROUND</td>
<td>54</td>
<td>GROUND</td>
</tr>
<tr>
<td>21</td>
<td>+ATN</td>
<td>55</td>
<td>+ATN</td>
</tr>
<tr>
<td>22</td>
<td>GROUND</td>
<td>56</td>
<td>GROUND</td>
</tr>
<tr>
<td>23</td>
<td>+BSY</td>
<td>57</td>
<td>-BSY</td>
</tr>
<tr>
<td>24</td>
<td>+ACK</td>
<td>58</td>
<td>-ACK</td>
</tr>
<tr>
<td>25</td>
<td>+RST</td>
<td>59</td>
<td>-RST</td>
</tr>
<tr>
<td>26</td>
<td>+MSG</td>
<td>60</td>
<td>-MSG</td>
</tr>
<tr>
<td>27</td>
<td>+SEL</td>
<td>61</td>
<td>-SEL</td>
</tr>
<tr>
<td>28</td>
<td>+C/D</td>
<td>62</td>
<td>-C/D</td>
</tr>
<tr>
<td>29</td>
<td>+REQ</td>
<td>63</td>
<td>-REQ</td>
</tr>
<tr>
<td>30</td>
<td>+IO</td>
<td>64</td>
<td>-IO</td>
</tr>
<tr>
<td>31</td>
<td>+DB(8)</td>
<td>65</td>
<td>-DB(8)</td>
</tr>
<tr>
<td>32</td>
<td>+DB(9)</td>
<td>66</td>
<td>-DB(9)</td>
</tr>
<tr>
<td>33</td>
<td>+DB(10)</td>
<td>67</td>
<td>-DB(10)</td>
</tr>
<tr>
<td>34</td>
<td>+DB(11)</td>
<td>68</td>
<td>-DB(11)</td>
</tr>
</tbody>
</table>
Parallel (Printer) Port Connector

The parallel (printer) port is located next to the COM2 Port. See the table on the right for pin definitions.

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Function</th>
<th>Pin Number</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Strobe-</td>
<td>2</td>
<td>Auto Feed-</td>
</tr>
<tr>
<td>3</td>
<td>Data Bit 0</td>
<td>4</td>
<td>Error-</td>
</tr>
<tr>
<td>5</td>
<td>Data Bit 1</td>
<td>6</td>
<td>Init-</td>
</tr>
<tr>
<td>7</td>
<td>Data Bit 2</td>
<td>8</td>
<td>SLCT IN-</td>
</tr>
<tr>
<td>9</td>
<td>Data Bit 3</td>
<td>10</td>
<td>GND</td>
</tr>
<tr>
<td>11</td>
<td>Data Bit 4</td>
<td>12</td>
<td>GND</td>
</tr>
<tr>
<td>13</td>
<td>Data Bit 5</td>
<td>14</td>
<td>GND</td>
</tr>
<tr>
<td>15</td>
<td>Data Bit 6</td>
<td>16</td>
<td>GND</td>
</tr>
<tr>
<td>17</td>
<td>Data Bit 7</td>
<td>18</td>
<td>GND</td>
</tr>
<tr>
<td>19</td>
<td>ACK</td>
<td>20</td>
<td>GND</td>
</tr>
<tr>
<td>21</td>
<td>BUSY</td>
<td>22</td>
<td>GND</td>
</tr>
<tr>
<td>23</td>
<td>PE</td>
<td>24</td>
<td>GND</td>
</tr>
<tr>
<td>25</td>
<td>SLCT</td>
<td>26</td>
<td>NC</td>
</tr>
</tbody>
</table>

A. Printer
3-1 Troubleshooting Procedures

Use the following procedures to troubleshoot your system. If you have followed all of the procedures below and still need assistance, refer to the 'Technical Support Procedures' and/or 'Returning Merchandise for Service' section(s) in this chapter. Always disconnect the AC power cord before adding, changing or installing any hardware components.

Before Power On

1. Make sure that the +5v standby LED (LE1) is not on. (*Note: If LE1 is on, it indicates that Standby PWR is on. Be sure to unplug the power cable before installing or removing the components.)
2. Make sure that the 8-pin 12v power connector at JPW2 is connected.
3. Make sure there aren't any short circuits between the motherboard and chassis.
4. Disconnect all ribbon/wire cables from the motherboard, including those for the keyboard and mouse.
5. Remove all add-on cards.
6. Install a CPU and heatsink (-Be sure that it is fully seated,) and then, connect the chassis speaker and the power LED to the motherboard. Check all jumper settings as well.
7. Make sure to use the correct type of CMOS battery as specified by the Manufacturer. Do not install the battery upside down to prevent possible explosion.

No Power

1. Make sure that there are no short circuits between the motherboard and the chassis.
2. Make sure that all jumpers are set to their default positions.
3. Check if the 115V/230V switch on the power supply is properly set.
4. Turn the power switch on and off to test the system.
5. The battery on your motherboard may be old. Check to verify that it still supplies ~3VDC. If it does not, replace it with a new one.

No Video

1. If the power is on, but you have no video--in this case, you will need to remove all the add-on cards and cables first.
2. Use the speaker to determine if any beep codes exist. (Refer to Appendix A for details on beep codes.)
3. Remove all memory modules and turn on the system. (If the alarm is on, check the specs of the memory, reset the memory or try a different one.)
NOTE

If you are a system integrator, VAR or OEM, a POST diagnostics card is recommended. For I/O port 80h codes, refer to App. B.

Memory Errors

1. Make sure that the DIMM modules are properly installed and fully seated in the slots.
2. You should be using unbuffered, ECC DDR 2-677/533/400 memory (see the next page). Also, it is recommended that you use the same memory speed for all DIMMs in the system. See Section 2-4 for memory limitations.
3. Check for bad DIMM modules or slots by swapping modules between slots and noting the results.
4. Check the power supply voltage 115V/230V switch.

Losing the System’s Setup Configuration

1. Please be sure to use a high quality power supply. A poor quality power supply may cause the system to lose the CMOS setup information. Refer to Section 1-6 for details on recommended power supplies.
2. The battery on your motherboard may be old. Check to verify that it still supplies ~3VDC. If it does not, replace it with a new one.
3. If the above steps do not fix the Setup Configuration problem, contact your vendor for repairs.

3-2 Technical Support Procedures

Before contacting Technical Support, please make sure that you have followed all the steps listed below. Also, note that as a motherboard manufacturer, Supermicro does not sell directly to end-users, so it is best to first check with your distributor or reseller for troubleshooting services. They should know of any possible problem(s) with the specific system configuration that was sold to you.

1. Please go through the ‘Troubleshooting Procedures’ and ‘Frequently Asked Question’ (FAQ) sections in this chapter or see the FAQs on our web site (http://www.supermicro.com/support/faqs/) before contacting Technical Support.
2. BIOS upgrades can be downloaded from our web site at (http://www.supermicro.com/support/bios/).

Note: Not all BIOS can be flashed; some can be flashed, depending on the
3-3 Frequently Asked Questions

Question: What type of memory does my motherboard support?

Answer: The PDSM4/PDSME supports up to 8 GB of unbuffered, ECC, DDR2-677/533/400, two-way interleaved or non-interleaved SDRAM. See Section 2-4 for details on installing memory.

Question: Why does Microsoft Windows XP (SP2) and Windows Vista show less memory than what is physically installed?

Answer: Microsoft implemented a design change in Windows XP with Service Pack 2 (SP2) and Windows Vista. This change is specific to the Physical Address Extension (PAE) mode behavior which improves driver compatibility. For more information, please read the following article at Microsoft's Knowledge Base website at: http://support.microsoft.com/kb/888137.

Question: How do I update my BIOS?

Answer: It is recommended that you do not upgrade your BIOS if you are not experiencing any problems with your system. Updated BIOS files are located on our web site at http://www.supermicro.com/support/bios/. Please check our BIOS warning message and the information on how to update your BIOS on our web site. Select your motherboard model and download the BIOS file to your computer. Also, check the current BIOS revision and make sure that it is newer than your BIOS before downloading. You can choose from the zip file and the .exe file. If you choose the zip BIOS file, please unzip the BIOS file onto a bootable device or a USB pen. Run the batch file using the format flash.bat filename.rom from your bootable device or USB pen to flash the BIOS. Then, your system will automati-
cally reboot. If you choose the .exe file, please run the .exe file under Windows to create the BIOS flash floppy disk. Insert the floppy disk into the system you wish to flash the BIOS. Then, bootup the system to the floppy disk. The BIOS utility will automatically flash the BIOS without any prompts. Please note that this process may take a few minutes to complete. Do not be concerned if the screen is paused for a few minutes.

Warning: Do not shut down or reset the system while updating BIOS to prevent possible system boot failure!

Question: What's on the CD that came with my motherboard?

Answer: The supplied compact disc has quite a few drivers and programs that will greatly enhance your system. We recommend that you review the CD and install the applications you need. Applications on the CD include chipset drivers for the Windows OS, security and audio drivers.

Question: How do I connect the ATA100/66 cable to my IDE device(s)?

Answer: The 80-wire/40-pin high-density ATA100/66 IDE cable that came with your system has two connectors to support two drives. This special cable must be used to take advantage of the speed the ATA100/66 technology offers. **Connect the blue connector to the onboard IDE header and the other connector(s) to your hard drive(s)**. Consult the documentation that came with your disk drive for details on actual jumper locations and settings.

3-4 Returning Merchandise for Service

A receipt or copy of your invoice marked with the date of purchase is required before any warranty service will be rendered. You can obtain service by calling your vendor for a Returned Merchandise Authorization (RMA) number. When returning to the manufacturer, the RMA number should be prominently displayed on the outside of the shipping carton, and mailed prepaid or hand-carried. Shipping and handling charges will be applied for all orders that must be mailed when service is complete.

This warranty only covers normal consumer use and does not cover damages incurred in shipping or from failure due to the alteration, misuse, abuse or improper maintenance of products.

For faster service, RMA authorizations may be requested online (http://www.supermicro.com/support/rma/). However during the warranty period, contact your distributor first for any product problems.
4-1 Introduction

This chapter describes the Phoenix BIOS™ Setup utility for the PDSM4/PDSME. The Phoenix ROM BIOS is stored in a flash chip and can be easily upgraded using a floppy disk-based program.

Note: Due to periodic changes to the BIOS, some settings may have been added or deleted and might not yet be recorded in this manual. Please refer to the Manual Download area of the Supermicro web site <http://www.supermicro.com> for any changes to the BIOS reflected in this manual.

Warning: Do not shut down or reset the system while updating the BIOS to prevent possible boot failure.

System BIOS

The BIOS is the Basic Input Output System used in all IBM® PC, XT™, AT®, and PS/2® compatible computers. The Phoenix BIOS flash chip stores the system parameters, types of disk drives, video displays, etc. in the CMOS. The CMOS memory requires very little electrical power. When the computer is turned off, a backup battery provides power to the BIOS flash chip, enabling it to retain system parameters. Each time the computer is powered on the computer is configured with the values stored in the BIOS ROM by the system BIOS, which gains control at boot-up.

How To Change the Configuration Data

The CMOS information that determines the system parameters may be changed by entering the BIOS Setup utility. This Setup utility can be accessed by pressing the <Delete> key at the appropriate time during system boot. (See below.)

Starting the Setup Utility

Normally, the only visible POST (Power On Self Test) routine is the memory test. As the memory is being tested, press the <Delete> key to enter the main menu of the BIOS Setup utility. From the main menu, you can access the other setup screens, such as the Security and Power menus. Beginning with Section 4-3, detailed descriptions are given for each parameter setting in the Setup utility.
4-2 Running Setup

*Default settings are in bold text unless otherwise noted.

The BIOS setup options described in this section are selected by choosing the appropriate text from the main BIOS Setup screen. All displayed text is described in this section, although the screen display is often all you need to understand how to set the options (Refer to the next page).

When you first power on the computer, the Phoenix BIOS™ is immediately activated.

While the BIOS is in control, the Setup program can be activated in one of two ways:

1. By pressing <Delete> immediately after turning the system on, or
2. When the message shown below appears briefly at the bottom of the screen during the POST (Power On Self-Test), press the <Delete> key to activate the main Setup menu:

 Press the <Delete> key to enter Setup

(*Note: Please load "System Setup Default" when using the system the first time.)

4-3 Main BIOS Setup

All main Setup options are described in this section. The main BIOS Setup screen is displayed below.

Press the <Esc> key to exit the CMOS Setup Menu. The next section describes in detail how to navigate through the menus.

Items that use submenus are indicated with the ▼ icon. With the item highlighted, press the <Enter> key to access the submenu.

After entering the submenu, use the Up/Down arrow keys to move among the different settings in each menu. Use the Left/Right arrow keys to change the options for each setting. Press <Tab>, <Shift-Tab>, or <Enter> to select a field.
Main BIOS Setup Menu

Main Setup Features

System Time
To set the system date and time, key in the correct information in the appropriate fields. Then press the <Enter> key to save the data.

System Date
Using the arrow keys, highlight the month, day and year fields, and enter the correct data. Press the <Enter> key to save the data.

BIOS Date
This feature allows the BIOS to display the date when the this version of BIOS was built.

Legacy Diskette A
This setting allows the user to set the type of floppy disk drive installed as diskette A. The options are Disabled, 360Kb 5.25 in, 1.2MB 5.25 in, 720Kb 3.5 in, 1.44/1.25MB, 3.5 in and 2.88MB 3.5 in.
Parallel ATA

This setting allows the user to enable/disable the function of the Parallel ATA and configure Parallel ATA settings. The options are Enabled and Disabled.

Serial ATA

This setting allows the user to enable or disable the function of the Serial ATA. The options are Disabled and Enabled.

Native Mode Operation

Select the native mode for the ATA. The options are: Serial ATA and Auto.

SATA Controller Mode

Select Compatible to allow the SATA and PATA drives to be auto-detected and placed in the Legacy Mode. Select Enhanced to allow the SATA and PATA drives to be auto-detected and placed in the Native IDE Mode. (*Note: The Enhanced mode is supported by the Windows 2000 OS or a later version.)

When the SATA Controller Mode is set to "Enhanced", the following items will display:

Serial ATA (SATA) RAID

Select Enable to enable the function of the Serial ATA RAID. The options are Enabled and Disabled (*Default). (*For the Windows OS environment, if this feature is set to Enabled, be sure to use the RAID driver. If set to Disabled, use the Non-RAID driver.) (*Note: If this item-SATA RAID is set to Enabled, the next item-"SATA AHCI Enable" will not be available. If this feature is set to "Enhanced", the following feature will be available:)

SATA AHCI

Select Enable to enable the function of the Serial ATA Advanced Host Interface.

⚠️ (*Warning: Exercise extreme caution when using this function. This feature is for advanced programmers only.) The options are Enabled and Disabled.

ICH RAID CodeBase

Select Intel to enable Intel's ICH RAID Controller for the Windows OS. Select Adaptec to enable Adaptec's RAID Controller for the Linux OS. The options are Intel and Adaptec.
Primary IDE Master/Slave, Secondary IDE Master/Slave, or Primary IDE Master/Slave, SATA Port 1, SATA Port 2, SATA Port 3, SATA Port 4

These settings allow the user to set the parameters of Primary IDE Master/Slave and Secondary IDE Master/Slave slots. Hit <Enter> to activate the following sub-menu screen for detailed options of these items. Set the correct configurations accordingly. The items included in the sub-menu are:

Type

This option allows the user to select the type of IDE hard drive. The option **Auto** will allow the BIOS to automatically determine the hard drive's capacity, number of heads, etc.). Enter a number between 1-39 to select a predetermined type of hard drive, CDROM and ATAPI Removable. The option "User" will allow the user to enter the parameters of the HDD installed at this connection. Select CDROM if a CDROM drive is installed. Select ATAPI if a removable disk drive is installed.
CHS Format

The following items will be displayed by the BIOS:

TYPE: This item displays the type of CPU.

Cylinders: This item indicates the status of Cylinders.

Headers: This item indicates the number of headers.

Sectors: This item displays the number of sectors.

Maximum Capacity: This item displays the maximum storage capacity of the system.

LBA Format

The following items will be displayed by the BIOS:

Total Sectors: This item displays the number of total sectors available in the LBA Format.

Maximum Capacity: This item displays the maximum capacity in the LBA Format.

Multi-Sector Transfer

This item allows the user to specify the number of sectors per block to be used in multi-sector transfer. The options are **Disabled**, 4 Sectors, 8 Sectors, and 16 Sectors.

LBA Mode Control

This item determines if the BIOS will access the Primary IDE Master Device via the LBA mode. The options are **Enabled** and **Disabled**.

32 Bit I/O

This feature allows the user to enable or disable the function of 32-bit data transfer. The options are **Enabled** and **Disabled**.

Transfer Mode

This feature allows the user to select the transfer mode. The options are **Standard**, Fast PIO1, Fast PIO2, Fast PIO3, Fast PIO4, FPIO3/DMA1, and FPIO4/DMA2.

Ultra DMA Mode

This feature allows the user to select the Ultra DMA Mode. The options are **Disabled**, Mode 0, Mode 1, Mode 2, Mode 3, Mode 4, and Mode 5.

System Memory

This display informs you how much system memory is detected in the system.

Extended Memory

This display informs you how much extended memory is detected in the system.
4-4 Advanced Setup

Choose Advanced from the Phoenix BIOS Setup Utility main menu with the arrow keys. You should see the following display. The items with a triangle beside them have sub menus that can be accessed by highlighting the item and pressing <Enter>. Options for PIR settings are displayed by highlighting the setting option using the arrow keys and pressing <Enter>. All Advanced BIOS Setup options are described in this section.

![Setup Screen Emulation (Alt-PrtSc Capture To Clipboard / F10 Print)]

- **Boot Features**
- **Memory Cache**
- **PCI Configuration**
- **Advanced Chipset Control**
- **Advanced Processor Options**
- **I/O Device Configuration**
- **DMI Event Logging**
- **ASL Configuration**
- **Console Redirection**
- **Hardware Monitor**

Item Specific Help
- *Select Boot features*

F1 Help F4 Select Item +/- Change Values F9 Setup Defaults

Esc Exit ← Select Menu Enter Select ↑ Sub-Menu F10 Previous Values

Boot Features

Access the submenu to make changes to the following settings.

Quick Boot Mode

If enabled, this feature will speed up the POST (Power On Self Test) routine by skipping certain tests after the computer is turned on. The settings are **Enabled** and Disabled. If Disabled, the POST routine will run at normal speed.

Quiet Mode

Set to Disabled to display the Diagnostic Screen during POST. The settings are **Enabled** and Disabled.

POST Errors

Use this setting to pause or resume boot prompt if an error occurs on boot. The options are **Enabled** and Disabled.
ACPI Mode

Use the setting to determine if you want to employ ACPI (Advanced Configuration and Power Interface) power management on your system. The options are Yes and No.

Enable Multimedia Timer

Select Yes to enable support for the High Performance Event Timer for Windows® XP, Windows 2003 or later. The options are Yes and No.

Power Button Behavior

If set to Instant-Off, the system will power off immediately as soon as the user hits the power button. If set to 4-sec., the system will power off when the user presses the power button for 4 seconds or longer. The options are instant-off and 4-sec override.

Resume On Modem Ring

Select On to "wake your system up" when an incoming call is received by your modem. The options are On and Off.

Resume On PME#

Select On to "wake your system up" from the PME#. The options are On and Off.

Power Loss Control

This setting allows you to choose how the system will react when power returns after an unexpected loss of power. The options are Last State, Stay off, and Power On.

Watch Dog

If enabled, this option will automatically reset the system if the system is not active for more than 5 minutes. The options are Enabled and Disabled.

Summary Screen

This setting allows you to Enable or Disable the summary screen which displays the system configuration during bootup.

Memory Cache

Memory Cache

Set to enabled to set the state of Cache Memory. The options are Enabled and Disabled.
Cache System BIOS Area

This setting allows you to designate a reserve area in the system memory to be used as a System BIOS buffer to allow the BIOS to write (cache) its data into this reserved memory area. Select "Write Protect" to enable this function, and this area will be reserved for the BIOS ROM access only. Select "Uncached" to disable this function and make this area available for other devices.

Cache Video BIOS Area

This setting allows you to designate a reserve area in the system memory to be used as a Video BIOS buffer to allow the BIOS to write (cache) its data into this reserved memory area. Select "Write Protect" to enable the function and this area will be reserved for Video BIOS ROM access only. Select "Uncached" to disable this function and make this area available for other devices.

Cache Base 0-512K

If enabled, this feature will allow the data stored in the base memory area: block 0-512K to be cached (written) into a buffer, a storage area in the Static DRM (SDROM) or to be written into L1, L2 cache inside the CPU to speed up CPU operations. Select "Uncached" to disable this function. Select "Write Through" to allow data to be cached into the buffer and written into the system memory at the same time. Select "Write Protect" to prevent data from being written into the base memory area of Block 0-512K. Select "Write Back" to allow the CPU to write data back directly from the buffer without writing data to the System Memory for fast CPU data processing and operation. The options are Uncached, Write Through, Write Protect, and Write Back.

Cache Base 512K-640K

If enabled, this feature will allow the data stored in the base memory area: block 512K-640K to be cached (written) into a buffer, a storage area in the Static DRM (SDROM) or to be written into L1, L2 cache inside the CPU to speed up CPU operations. Select "Uncached" to disable this function. Select "Write Through" to allow data to be cached into the buffer and written into the system memory at the same time. Select "Write Protect" to prevent data from being written into the base memory area of Block 512K-640K. Select "Write Back" to allow the CPU to write data back directly from the buffer without writing data to the System Memory for fast CPU data processing and operation. The options are Uncached, Write Through, Write Protect, and Write Back.

Cache Extended Memory

If enabled, this feature will allow the data stored in the extended memory area to be cached (written) into a buffer, a storage area in the L1, L2, L3 cache inside the CPU to speed up CPU operations. Select "Uncached" to disable this function.
Select "Write Through" to allow data to be cached into the buffer and written into the system memory at the same time. Select "Write Protect" to prevent data from being written into the extended memory area. Select "Write Back" to allow the CPU to write data back directly from the buffer without writing data to the System Memory for fast CPU data processing and operation. The options are Uncached, Write Through, Write Protect, and Write Back.

Discrete MTRR Allocation

If enabled, MTRRs (-Memory Type Range Registers) are configured as distinct, separate units and cannot be overlapped. If enabled, the user can achieve better graphic effects when using a Linux graphic driver that requires the write-combining configuration with 4GB or more memory. The options are Enabled and Disabled.

PCI Configuration

Access the submenu to make changes to the following settings for PCI devices.

Onboard G-Lan1&2 / SCSI OPROM Configuration

Enabling this option provides the capability to boot from GLAN1, GLAN2 or SCSI. The options are Disabled and Enabled.

Default VGA

Select Add-on Card if you want to use an add-on VGA card that is installed. Otherwise, select Onboard VGA to use the built-in VGA video. The options are Add-on Card and Onboard VGA.

Reset Configuration Data

If set to Yes, this setting clears the Extended System Configuration Data- (ESCD) area. The options are Yes and No.

Frequency for PCIX#1-#2/SCI, PCIX#5-#6

This option allows the user to change the bus frequency for the devices installed in the slots indicated. The options are Auto, PCI 33 MHz, PCI 66 MHz, PCI-X 66 MHz, PCI-X 100 MHz, and PCI-X 133 MHz.

Slot1 PCI-X 100MHz ZCR, Slot2 PCI-X 100MHz, Slot3 PCI-Exp X1, Slot4 PCI-Exp X4, Slot5 PCI-X 133 MHz, Slot6 PCI-X 133 MHz

Access the submenu for each of the settings above to make changes to the following:

Option ROM Scan

When enabled, this setting will initialize the device expansion ROM. The options are Enabled and Disabled.
Enable Master

This setting allows you to enable the selected device as the PCI bus master. The options are Enabled and Disabled.

Latency Timer

This setting allows you to set the clock rate for Bus Master. A high-priority, high-throughput device may benefit from a greater clock rate. The options are Default, 0020h, 0040h, 0060h, 0080h, 00A0h, 00C0h, and 00E0h. For Unix, Novell and other Operating Systems, please select the option: other. If a drive fails after the installation of a new software, you might want to change this setting and try again. A different OS requires a different Bus Master clock rate.
Large Disk Access Mode

This setting determines how large hard drives are to be accessed. The options are DOS or Other (for Unix, Novelle NetWare and other operating systems).

Advanced Chipset Control

Access the submenu to make changes to the following settings.

Warning: Take Caution when changing the Advanced settings. An incorrect setting, a very high DRAM frequency, or an incorrect DRAM timing may cause the system to become unstable. When this occurs, reset the setting to the default setting.

Clock Spectrum Feature

If Enabled, the BIOS will monitor the level of Electromagnetic Interference caused by the components and will attempt to decrease the interference whenever needed. The options are Enabled and Disabled.

ECC Conditions

This setting specifies the ECC Error conditions that will be treated as "ECC Error Events" by the system. The options are None, Single Bit, Multiple Bit, and Both. (*Note: This item is available when it is supported by the memory.)

ECC Error Handler

This setting allows you to select the type of interrupt to be activated as a result of an ECC error. The options are None, NMI (Non-Maskable Interrupt), SMI (System Management Interrupt) and SCI (System Control Interrupt.) (*Note: This item is available when it is supported by the memory.)

Route Port 80h Cycles to

This feature allows the user to decide which bus to send the debug information to. The options are PCI and LPC.

USB Function

If set to Enabled to enable the USB function when the user keys in a value to a USB item. The options are Enabled and Disabled.

Legacy USB Support

This setting allows you to enable support for the Legacy USB devices. The settings are Enabled and Disabled.
Advanced Processor Options

Access the submenu to make changes to the following settings:

CPU Speed

The feature allows the BIOS to display the CPU Speed.

Frequency Ratio

This feature allows the user to select the ratio for the internal frequency multiplier of the CPU. The options are Default, X14, X15, and X16.

Hyper-threading (*Available when supported by the CPU.*)

This setting allows you to Enable or Disable the function of hyper-threading. Enabling hyper-threading results in increased CPU performance. (Applicable for XP systems.)

Machine Checking (*Available when supported by the CPU.*)

Set to Enabled to activate the function of Machine Checking and allow the CPU to detect and report hardware (machine) errors via a set of model-specific registers (MSRs). The options are Disabled or Enabled.

Enhanced Intel Speed Step (Available when supported by the CPU.)

Select Enabled to use the Enhanced Intel SpeedStep Technology and allow the system to automatically adjust the processor voltage and core frequency to reduce power consumption and heat dissipation. The options are Enabled and Disabled. Please refer to Intel’s web site for detailed information.

Thermal Management 2 (*Available when supported by the CPU.*)

Set to Enabled to use Thermal Management 2 (TM2) which will lower CPU voltage and frequency when the CPU temperature reaches a pre-defined overheat threshold. Set to Disabled to use Thermal Manager 1 (TM1), allowing CPU clocking to be regulated via CPU Internal Clock modulation when the CPU temperature reaches the overheat threshold.
Adjacent Cache Line Prefetch

The CPU fetches the cache line for 64 bytes if this option is set to Disabled. The CPU fetches both cache lines for 128 bytes as comprised if Enabled. The options are Disabled and Enabled.

Set Maximum Extended CPUID=3

If enabled, this feature allows you to set the value of Maximum CPUID Extended function to 3. The options are Enabled or Disabled.

Echo TPR

Set to Enabled to prevent xTPR messages from being sent to the system. The options are Disabled and Enabled. (For debug only)

C1 Enhanced Mode (*Available when supported by the CPU.)

Set to Enabled to enable Enhanced Halt State to lower CPU voltage/frequency to prevent overheat. The options are Enabled and Disabled. (*Note: please refer to Intel's web site for detailed information.)

VT Feature (*Available when supported by the CPU.)

Set to Enabled to utilize enhanced virtualization capabilities provided by the Intel Vanderpool Technology which allows one platform to run multiple operating systems and applications in independent partitions, creating multiple "virtual" systems in one physical computer. The options are Enabled and Disabled. (*Note: If there is any change to this setting, you will need to power off and restart the system for the change to take effect.) Please refer to Intel's web site for detailed information.

No Execute Mode Memory Protection

Set to Enabled to enable Execute Disable Bit and allow the processor to classify areas in memory where an application code can execute and where it cannot, and thus preventing a worm or a virus from inserting and creating a flood of codes to overwhelm the processor or damage the system during an attack.

(*Note: this feature is available when your OS and your CPU support the function of Execute Disable Bit.) The options are Disabled and Enabled. (Note: For more information regarding hardware/software support for this function, please refer to Intel's and Microsoft's web sites.)
I/O Device Configuration

Access the submenu to make changes to the following settings.

KBC Clock input

This setting allows you to set the clock frequency for the Keyboard Clock. The options are 6MHz, 8MHz, **12 MHz**, and 16MHz.

Serial Port A

This setting allows you to decide how Serial Port A is controlled. The options are **Enabled** and Disabled.

Base I/O Address

This setting allows you to select the base I/O address for Serial Port A. The options are **3F8**, **2F8**, **3E8**, and **2E8**.

Interrupt

This setting allows you to set the Interrupt for Serial Port A. The options are **IRQ3** and **IRQ4**.

Serial Port B

This setting allows you to decide how Serial Port A is controlled. The options are **Enabled** and Disabled.

Mode

This feature allows the user to set the mode for Serial Port B. The options are **Normal**, IR (Infra-Red) and ASK-IR.

Base I/O Address

This setting allows you to select the base I/O address for Serial Port B. The options are **3F8**, **2F8**, **3E8** and **2E8**.

Interrupt

This setting allows you to set the Interrupt for Serial Port B. The options are **IRQ3** and **IRQ4**.

Parallel Port

This setting allows you to assign control of the Parallel Port. The options are **Enabled** and Disabled.

Base I/O Address

This setting allows you to select the base I/O address for the Parallel Port. The options are **378**, **278** and **3BC**.
Interrupt

This setting allows you to set the Interrupt for the Parallel Port. The options are IRQ5 and IRQ7.

Mode

This feature allows the user to set the mode for the Parallel Port. The options are Output Only, Bi-Directional, EPP, and ECP.

DMA Channel

This feature allows the user to select the DMA Channel for the Parallel Port. The options are DMA1 and DMA3.

Floppy Disk Controller

This setting allows you to assign control of the floppy disk controller. The options are Enabled (user defined), Disabled, and Auto (BIOS and OS controlled).

Base I/O Address

Select the base I/O address for the parallel port. The options are Primary and Secondary.

DMI Event Logging

Access the submenu to make changes to the following settings.

Event Log Validity

This is a display to inform you of the event log validity. It is not a setting.

Event Log Capacity

This is a display to inform you of the event log capacity. It is not a setting.

View DMI Event Log

Highlight this item and press <Enter> to view the contents of the event log.

Event Logging

This setting allows you to Enable or Disable event logging.

ECC Event Logging

This setting allows you to Enable or Disable ECC event logging.

Mark DMI Events as Read

Highlight this item and press <Enter> to mark the DMI events as read.
Clear All DMI Event Logs

Select Yes and press <Enter> to clear all DMI event logs. The options are Yes and No.

Console Redirection

Access the submenu to make changes to the following settings.

COM Port Address

This item allows you to specify which COM port to redirect the console to: Onboard COM A or Onboard COM B. This setting can also be Disabled.

BAUD Rate

This item allows you to select the BAUD rate for console redirection. The options are 300, 1200, 2400, 9600, 19.2K, 38.4K, 57.6K, and 115.2K.

Console Type

This item allows you to select the console type for console redirection. The options are VT100, VT100, 8bit, PC-ANSI, 7bit, PC ANSI, VT100+, and VT-UTF8.

Flow Control

This item allows you to set the flow control for console redirection. The options are: None, XON/XOFF, and CTS/RTS.

Console Connection

This item allows you to decide how Console Redirection is to be connected: either Direct or Via Modem.

Continue CR after POST

This item allows you to decide if you want to continue with console redirection after POST routines. The options are On and Off.
Hardware Monitoring

CPU Temperature Threshold

This option allows the user to set a CPU temperature threshold that will activate the alarm system when the CPU temperature reaches this pre-set temperature threshold. The options depend on what type of processor is installed. For Intel Core™ 2 Duo processors ("Conroe"), the values are 55°C, 60°C, 65°C and 70°C. For Intel Pentium® D processors ("Presler and "Smithfield"), they are 75°C, 80°C, 85°C and 90°C. (*See the note below for other information regarding this feature.)

Highlight this and hit <Enter> to see the data for the following items:

CPU Temperature

This displays the current CPU temperature as detected.

System Temperature

This displays the current system temperature as detected.

Fan Speed Control Modes

This feature allows the user to decide how the system controls the speeds of the onboard fans. The CPU temperature and the fan speed are correlative. When the CPU on-die temperature increases, the fan speed will also increase, and vice versa. If the option is set to "3-pin fan," the fan speed is controlled by voltage. If the option is set to "4-pin," the fan speed will be controlled by Pulse Width Modulation (PWM). Select “3-pin” if your chassis came with 3-pin fan headers. Select “4-pin” if your chassis came with 4-pin fan headers. Select “Workstation” if your system is used as a Workstation. Select “Server” if your system is used as a Server. Select “Disable” to disable the fan speed control function to allow the onboard fans to constantly run at full speed (12V). The Options are: 1. Disable, 2. 3-pin (Server), 3. 3-pin (Workstation), 4. 4-pin (Server) and 5. 4-pin (Workstation).

Fan 1 Speed - FAN 6 Speed: If the feature of Auto Fan Control is enabled, the BIOS will automatically display the status of the fans indicated in this item.

The Voltage status of the following items will be displayed:

Vcore, 1.5V, -12V, Vdimm, +3.3V, +12V, 5Vsb, 5VDD, P_VTT, Vbat

*Note: In the Windows OS environment, the Supero Doctor III settings take precedence over the BIOS settings. When first installed, Supero Doctor III adopts the temperature threshold settings previously set in the BIOS. Any subsequent changes to these thresholds must be made within Supero Doctor, since the SD III settings override the BIOS settings. For the Windows OS to adopt the BIOS temperature threshold settings, please change the SDIII settings to be the same as those set in the BIOS.
4-5 Security

Choose Security from the Phoenix BIOS Setup Utility main menu with the arrow keys. You should see the following display. Security setting options are displayed by highlighting the setting using the arrow keys and pressing <Enter>. All Security BIOS settings are described in this section.

Supervisor Password Is:
This item indicates if a supervisor password has been entered for the system. Clear means such a password has not been used and Set means a supervisor password has been entered for the system.

User Password Is:
This item indicates if a user password has been entered for the system. Clear means such a password has not been used and Set means a user password has been entered for the system.

Set Supervisor Password
When the item "Set Supervisor Password" is highlighted, hit the <Enter> key. When prompted, type the Supervisor's password in the dialogue box to set or to change supervisor's password, which allows access to the BIOS.

Set User Password
When the item "Set User Password" is highlighted, hit the <Enter> key. When prompted, type the user's password in the dialogue box to set or to change the user's password, which allows access to the system at boot-up.
Fixed Disk Boot Sector

This setting may offer some protection against viruses when set to Write Protect, which will prevent a virus writing illegal codes into the boot sector of the hard drive. The other option is **Normal**.

Password on Boot

This setting allows you to decide if a password is required for a user to enter the system at system boot. The options are **Enabled** (password required) and **Disabled** (password not required).

4-6 Boot

Choose Boot from the Phoenix BIOS Setup Utility main menu with the arrow keys. You should see the following display. Highlighting a setting with a + or - will expand or collapse that entry. See details on how to change the order and specs of boot devices in the Item Specific Help window. All Boot BIOS settings are described in this section.

![Phoenix BIOS Setup Utility](image)

Boot Priority Order/Excluded from Boot Order.

Use the Up and Down Arrow Keys to select a device. Use <+> and <-> keys to move the device up or down. Use the <f> key or the <r> key to specify the devices. You can also use the keys indicated above to specify the priority of the boot order for a device or move a item from the category of "Excluded from Boot Order" to the category of "Boot Priority Order" and vise versa. Please refer to the window of "Item Specific Help" for details.
4-7 Exit

Choose Exit from the Phoenix BIOS Setup Utility main menu with the arrow keys. You should see the following display. All Exit BIOS settings are described in this section.

Exit Saving Changes
Highlight this item and hit <Enter> to save any changes you made and to exit the BIOS Setup utility.

Exit Discarding Changes
Highlight this item and hit <Enter> to exit the BIOS Setup utility without saving any changes you may have made.

Load Setup Defaults
Highlight this item and hit <Enter> to load the default settings for all items in the BIOS Setup. These are the safest settings to use.

Discard Changes
Highlight this item and hit <Enter> to discard (cancel) any changes you made. You will remain in the Setup utility.

Save Changes
Highlight this item and hit <Enter> to save any changes you made. You will remain in the Setup utility.
Appendix A

BIOS POST Messages and LED Indicators

During the Power-On Self-Test (POST), the BIOS will check for problems. If a problem is found, the BIOS will activate an alarm or display a message. The following is a list of such BIOS messages.

A-1 BIOS POST Beep Codes

<table>
<thead>
<tr>
<th>Beeps</th>
<th>Error Messages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 long beep-pause-1 long beep</td>
<td>Memory Module Errors</td>
</tr>
<tr>
<td>1 long beep + 2 short beeps</td>
<td>VGA Errors</td>
</tr>
</tbody>
</table>

A-2 LE1: 5V Standby PWR LED

<table>
<thead>
<tr>
<th>LE1: 5V Standby PWR LED</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>On</td>
<td>Standby PWR On</td>
</tr>
<tr>
<td></td>
<td>Turn off the PWR supply before removing or installing components</td>
</tr>
</tbody>
</table>

A-3 LE3/LE4 System Debug Indicators

<table>
<thead>
<tr>
<th>State</th>
<th>LE3 Indicator</th>
<th>LE4 Indicator</th>
</tr>
</thead>
<tbody>
<tr>
<td>PWR-ON to POST</td>
<td>Green On</td>
<td>Yellow On</td>
</tr>
<tr>
<td>ECC Memory Testing</td>
<td>Green Flash</td>
<td>Yellow Flash</td>
</tr>
<tr>
<td>PCI Bus Initializing</td>
<td>Green On</td>
<td>Yellow Flash</td>
</tr>
<tr>
<td>VGA Initializing</td>
<td>Green Flash</td>
<td>Yellow On</td>
</tr>
<tr>
<td>System Normal (After POST)</td>
<td>Off</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>Off</td>
<td>N/A</td>
</tr>
</tbody>
</table>

A-4 LED Locations

A. LE1
B. LE3
C. LE4
A-5 BIOS Messages

Failure Fixed Disk
Fixed disk is not working or not configured properly. Check to see if fixed disk is attached properly. Run Setup. Find out if the fixed-disk type is correctly identified.

Stuck key
Stuck key on keyboard.

Keyboard error
Keyboard not working.

Keyboard Controller Failed
Keyboard controller failed test. May require replacing keyboard controller.

Keyboard locked - Unlock key switch
Unlock the system to proceed.

Monitor type does not match CMOS - Run SETUP
Monitor type not correctly identified in Setup

Shadow Ram Failed at offset: nnnn
Shadow RAM failed at offset nnnn of the 64k block at which the error was detected.

System RAM Failed at offset: nnnn
System RAM failed at offset nnnn of in the 64k block at which the error was detected.

Extended RAM Failed at offset: nnnn
Extended memory not working or not configured properly at offset nnnn.

System battery is dead - Replace and run SETUP
The CMOS clock battery indicator shows the battery is dead. Replace the battery and run Setup to reconfigure the system.
Appendix A: BIOS POST Messages

System CMOS checksum bad - Default configuration used
System CMOS has been corrupted or modified incorrectly, perhaps by an application program that changes data stored in CMOS. The BIOS installed Default Setup Values. If you do not want these values, enter Setup and enter your own values. If the error persists, check the system battery or contact your dealer.

System timer error
The timer test failed. Requires repair of system board.

Real time clock error
Real-Time Clock fails BIOS hardware test. May require board repair.

Check date and time settings
BIOS found date or time out of range and reset the Real-Time Clock. May require setting legal date (1991-2099).

Previous boot incomplete - Default configuration used
Previous POST did not complete successfully. POST loads default values and offers to run Setup. If the failure was caused by incorrect values and they are not corrected, the next boot will likely fail. On systems with control of wait states, improper Setup settings can also terminate POST and cause this error on the next boot. Run Setup and verify that the waitstate configuration is correct. This error is cleared the next time the system is booted.

Memory Size found by POST differed from CMOS
Memory size found by POST differed from CMOS.

Diskette drive A error
Diskette drive B error
Drive A: or B: is present but fails the BIOS POST diskette tests. Check to see that the drive is defined with the proper diskette type in Setup and that the diskette drive is attached correctly.

Incorrect Drive A type - run SETUP
Type of floppy drive A: not correctly identified in Setup.

Incorrect Drive B type - run SETUP
Type of floppy drive B: not correctly identified in Setup.
System cache error - Cache disabled
RAM cache failed and BIOS disabled the cache. On older boards, check the cache
jumpers. You may have to replace the cache. See your dealer. A disabled cache slows
system performance considerably.

CPU ID:
CPU socket number for Multi-Processor error.

EISA CMOS not writeable
ServerBIOS2 test error: Cannot write to EISA CMOS.

DMA Test Failed
ServerBIOS2 test error: Cannot write to extended DMA (Direct Memory Access)
registers.

Software NMI Failed
ServerBIOS2 test error: Cannot generate software NMI (Non-Maskable Interrupt).

Fail-Safe Timer NMI Failed
ServerBIOS2 test error: Fail-Safe Timer takes too long.

device Address Conflict
Address conflict for specified device.

Allocation Error for: device
Run ISA or EISA Configuration Utility to resolve resource conflict for the specified
device.

CD ROM Drive
CD ROM Drive identified.

Entering SETUP ...
Starting Setup program

Failing Bits: nnnn
The hex number nnnn is a map of the bits at the RAM address which failed the memory
test. Each 1 (one) in the map indicates a failed bit. See errors 230, 231, or 232 above
for offset address of the failure in System, Extended, or Shadow memory.
Fixed Disk n
Fixed disk n (0-3) identified.

Invalid System Configuration Data
Problem with NVRAM (CMOS) data.

I/O device IRQ conflict
I/O device IRQ conflict error.

PS/2 Mouse Boot Summary Screen:
PS/2 Mouse installed.

nnnn kB Extended RAM Passed
Where nnnn is the amount of RAM in kilobytes successfully tested.

nnnn Cache SRAM Passed
Where nnnn is the amount of system cache in kilobytes successfully tested.

nnnn kB Shadow RAM Passed
Where nnnn is the amount of shadow RAM in kilobytes successfully tested.

nnnn kB System RAM Passed
Where nnnn is the amount of system RAM in kilobytes successfully tested.

One or more I2O Block Storage Devices were excluded from the Setup Boot Menu
There was not enough room in the IPL table to display all installed I2O block-storage devices.

Operating system not found
Operating system cannot be located on either drive A: or drive C:. Enter Setup and see if fixed disk and drive A: are properly identified.

Parity Check 1 nnnn
Parity error found in the system bus. BIOS attempts to locate the address and display it on the screen. If it cannot locate the address, it displays ?????. Parity is a method for checking errors in binary data. A parity error indicates that some data has been corrupted.
Parity Check 2 nnnn
Parity error found in the I/O bus. BIOS attempts to locate the address and display it on the screen. If it cannot locate the address, it displays ????.

Press <F1> to resume, <F2> to Setup, <F3> for previous
Displayed after any recoverable error message. Press <F1> to start the boot process or <F2> to enter Setup and change the settings. Press <F3> to display the previous screen (usually an initialization error of an Option ROM, i.e., an add-on card). Write down and follow the information shown on the screen.

Press <F2> to enter Setup
Optional message displayed during POST. Can be turned off in Setup.

PS/2 Mouse:
PS/2 mouse identified.

Run the I2O Configuration Utility
One or more unclaimed block storage devices have the Configuration Request bit set in the LCT. Run an I2O Configuration Utility (e.g. the SAC utility).

System BIOS shadowed
System BIOS copied to shadow RAM.

UMB upper limit segment address: nnnn
Displays the address nnnn of the upper limit of Upper Memory Blocks, indicating released segments of the BIOS which can be reclaimed by a virtual memory manager.

Video BIOS shadowed
Video BIOS successfully copied to shadow RAM.
Appendix B
BIOS POST Codes

This section lists the POST (Power On Self Test) codes for the PhoenixBIOS. POST codes are divided into two categories: recoverable and terminal.

Recoverable POST Errors

When a recoverable type of error occurs during POST, the BIOS will display an POST code that describes the problem. BIOS may also issue one of the following beep codes:

1 long and two short beeps - video configuration error
1 repetitive long beep - no memory detected

Terminal POST Errors

If a terminal type of error occurs, BIOS will shut down the system. Before doing so, BIOS will write the error to port \textit{80h}, attempt to initialize video and write the error in the top left corner of the screen. The following is a list of codes that may be written to port \textit{80h}.

<table>
<thead>
<tr>
<th>POST Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>01h</td>
<td>IPMI Initialization</td>
</tr>
<tr>
<td>02h</td>
<td>Verify Real Mode</td>
</tr>
<tr>
<td>03h</td>
<td>Disable Non-Maskable Interrupt (NMI)</td>
</tr>
<tr>
<td>04h</td>
<td>Get CPU type</td>
</tr>
<tr>
<td>06h</td>
<td>Initialize system hardware</td>
</tr>
<tr>
<td>07h</td>
<td>Disable shadow and execute code from the ROM.</td>
</tr>
<tr>
<td>08h</td>
<td>Initialize chipset with initial POST values</td>
</tr>
<tr>
<td>09h</td>
<td>Set IN POST flag</td>
</tr>
<tr>
<td>0Ah</td>
<td>Initialize CPU registers</td>
</tr>
<tr>
<td>0Bh</td>
<td>Enable CPU cache</td>
</tr>
<tr>
<td>0Ch</td>
<td>Initialize caches to initial POST values</td>
</tr>
<tr>
<td>0Fh</td>
<td>Initialize I/O component</td>
</tr>
<tr>
<td>0Fh</td>
<td>Initialize the local bus IDE</td>
</tr>
<tr>
<td>10h</td>
<td>Initialize Power Management</td>
</tr>
<tr>
<td>11h</td>
<td>Load alternate registers with initial POST values</td>
</tr>
<tr>
<td>12h</td>
<td>Restore CPU control word during warm boot</td>
</tr>
<tr>
<td>13h</td>
<td>Reset PCI Bus Mastering devices</td>
</tr>
<tr>
<td>14h</td>
<td>Initialize keyboard controller</td>
</tr>
<tr>
<td>15h</td>
<td>1-2-2-3 BIOS ROM checksum</td>
</tr>
<tr>
<td>17h</td>
<td>Initialize cache before memory Auto size</td>
</tr>
<tr>
<td>POST Code</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
</tr>
<tr>
<td>18h</td>
<td>8254 timer initialization</td>
</tr>
<tr>
<td>1Ah</td>
<td>8237 DMA controller initialization</td>
</tr>
<tr>
<td>1Ch</td>
<td>Reset Programmable Interrupt Controller</td>
</tr>
<tr>
<td>20h</td>
<td>1-3-1-1 Test DRAM refresh</td>
</tr>
<tr>
<td>22h</td>
<td>1-3-1-3 Test 8742 Keyboard Controller</td>
</tr>
<tr>
<td>24h</td>
<td>Set ES segment register to 4 GB</td>
</tr>
<tr>
<td>28h</td>
<td>Auto size DRAM</td>
</tr>
<tr>
<td>29h</td>
<td>Initialize POST Memory Manager</td>
</tr>
<tr>
<td>2Ah</td>
<td>Clear 512 kB base RAM</td>
</tr>
<tr>
<td>2Ch</td>
<td>1-3-4-1 RAM failure on address line *xxxx*</td>
</tr>
<tr>
<td>2Eh</td>
<td>1-3-4-3 RAM failure on data bits *xxxx* of low byte of memory bus</td>
</tr>
<tr>
<td>2Fh</td>
<td>Enable cache before system BIOS shadow</td>
</tr>
<tr>
<td>32h</td>
<td>Test CPU bus-clock frequency</td>
</tr>
<tr>
<td>33h</td>
<td>Initialize Phoenix Dispatch Manager</td>
</tr>
<tr>
<td>36h</td>
<td>Warm start shut down</td>
</tr>
<tr>
<td>38h</td>
<td>Shadow system BIOS ROM</td>
</tr>
<tr>
<td>3Ah</td>
<td>Auto size cache</td>
</tr>
<tr>
<td>3Ch</td>
<td>Advanced configuration of chipset registers</td>
</tr>
<tr>
<td>3Dh</td>
<td>Load alternate registers with CMOS values</td>
</tr>
<tr>
<td>41h</td>
<td>Initialize extended memory for RomPilot (optional)</td>
</tr>
<tr>
<td>42h</td>
<td>Initialize interrupt vectors</td>
</tr>
<tr>
<td>45h</td>
<td>POST device initialization</td>
</tr>
<tr>
<td>46h</td>
<td>2-1-2-3 Check ROM copyright notice</td>
</tr>
<tr>
<td>48h</td>
<td>Check video configuration against CMOS</td>
</tr>
<tr>
<td>49h</td>
<td>Initialize PCI bus and devices</td>
</tr>
<tr>
<td>4Ah</td>
<td>Initialize all video adapters in system</td>
</tr>
<tr>
<td>4Bh</td>
<td>QuietBoot start (optional)</td>
</tr>
<tr>
<td>4Ch</td>
<td>Shadow video BIOS ROM</td>
</tr>
<tr>
<td>4Eh</td>
<td>Display BIOS copyright notice</td>
</tr>
<tr>
<td>4Fh</td>
<td>Initialize MultiBoot</td>
</tr>
<tr>
<td>50h</td>
<td>Display CPU type and speed</td>
</tr>
<tr>
<td>51h</td>
<td>Initialize EISA board (optional)</td>
</tr>
<tr>
<td>52h</td>
<td>Test keyboard</td>
</tr>
<tr>
<td>54h</td>
<td>Set key click if enabled</td>
</tr>
<tr>
<td>55h</td>
<td>Enable USB devices</td>
</tr>
<tr>
<td>58h</td>
<td>2-2-3-1 Test for unexpected interrupts</td>
</tr>
<tr>
<td>59h</td>
<td>Initialize POST display service</td>
</tr>
<tr>
<td>5Ah</td>
<td>Display prompt “Press <ESC> to enter SETUP”</td>
</tr>
<tr>
<td>5Bh</td>
<td>Disable CPU cache</td>
</tr>
<tr>
<td>POST Code</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>5Ch</td>
<td>Test RAM between 512 and 640 kB</td>
</tr>
<tr>
<td>60h</td>
<td>Test extended memory</td>
</tr>
<tr>
<td>62h</td>
<td>Test extended memory address lines</td>
</tr>
<tr>
<td>64h</td>
<td>Jump to UserPatch1</td>
</tr>
<tr>
<td>66h</td>
<td>Configure advanced cache registers</td>
</tr>
<tr>
<td>67h</td>
<td>Initialize Multi Processor APIC</td>
</tr>
<tr>
<td>68h</td>
<td>Enable external and CPU caches</td>
</tr>
<tr>
<td>69h</td>
<td>Setup System Management Mode (SMM) area</td>
</tr>
<tr>
<td>6Ah</td>
<td>Display external L2 cache size</td>
</tr>
<tr>
<td>6Bh</td>
<td>Load custom defaults (optional)</td>
</tr>
<tr>
<td>6Ch</td>
<td>Display shadow-area message</td>
</tr>
<tr>
<td>70h</td>
<td>Display error messages</td>
</tr>
<tr>
<td>72h</td>
<td>Check for configuration errors</td>
</tr>
<tr>
<td>76h</td>
<td>Check for keyboard errors</td>
</tr>
<tr>
<td>7Ch</td>
<td>Set up hardware interrupt vectors</td>
</tr>
<tr>
<td>7Dh</td>
<td>Initialize Intelligent System Monitoring (optional)</td>
</tr>
<tr>
<td>7Eh</td>
<td>Initialize coprocessor if present</td>
</tr>
<tr>
<td>80h</td>
<td>Disable onboard Super I/O ports and IRQs (optional)</td>
</tr>
<tr>
<td>81h</td>
<td>Late POST device initialization</td>
</tr>
<tr>
<td>82h</td>
<td>Detect and install external RS232 ports</td>
</tr>
<tr>
<td>83h</td>
<td>Configure non-MCD IDE controllers</td>
</tr>
<tr>
<td>84h</td>
<td>Detect and install external parallel ports</td>
</tr>
<tr>
<td>85h</td>
<td>Initialize PC-compatible PnP ISA devices</td>
</tr>
<tr>
<td>86h</td>
<td>Re-initialize onboard I/O ports.</td>
</tr>
<tr>
<td>87h</td>
<td>Configure Motherboard Configurable Devices (optional)</td>
</tr>
<tr>
<td>88h</td>
<td>Initialize BIOS Data Area</td>
</tr>
<tr>
<td>89h</td>
<td>Enable Non-Maskable Interrupts (NMIs)</td>
</tr>
<tr>
<td>8Ah</td>
<td>Initialize Extended BIOS Data Area</td>
</tr>
<tr>
<td>8Bh</td>
<td>Test and initialize PS/2 mouse</td>
</tr>
<tr>
<td>8Ch</td>
<td>Initialize floppy controller</td>
</tr>
<tr>
<td>8Fh</td>
<td>Determine number of ATA drives (optional)</td>
</tr>
<tr>
<td>90h</td>
<td>Initialize hard-disk controllers</td>
</tr>
<tr>
<td>91h</td>
<td>Initialize local-bus hard-disk controllers</td>
</tr>
<tr>
<td>92h</td>
<td>Jump to UserPatch2</td>
</tr>
<tr>
<td>93h</td>
<td>Build MPTABLE for multi-processor boards</td>
</tr>
<tr>
<td>95h</td>
<td>Install CD ROM for boot</td>
</tr>
<tr>
<td>96h</td>
<td>Clear huge ES segment register</td>
</tr>
<tr>
<td>97h</td>
<td>Fix up Multi Processor table</td>
</tr>
<tr>
<td>98h</td>
<td>1-2 Search for option ROMs and shadow if successful. One long, two short beeps on checksum failure</td>
</tr>
<tr>
<td>POST Code</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>99h</td>
<td>Check for SMART Drive (optional)</td>
</tr>
<tr>
<td>9Ch</td>
<td>Set up Power Management</td>
</tr>
<tr>
<td>9Dh</td>
<td>Initialize security engine (optional)</td>
</tr>
<tr>
<td>9Eh</td>
<td>Enable hardware interrupts</td>
</tr>
<tr>
<td>9Fh</td>
<td>Determine number of ATA and SCSI drives</td>
</tr>
<tr>
<td>A0h</td>
<td>Set time of day</td>
</tr>
<tr>
<td>A2h</td>
<td>Check key lock</td>
</tr>
<tr>
<td>A4h</td>
<td>Initialize typematic rate</td>
</tr>
<tr>
<td>A8h</td>
<td>Erase <ESC> prompt</td>
</tr>
<tr>
<td>AAh</td>
<td>Scan for <ESC> key stroke</td>
</tr>
<tr>
<td>ACh</td>
<td>Enter SETUP</td>
</tr>
<tr>
<td>AEh</td>
<td>Clear Boot flag</td>
</tr>
<tr>
<td>B0h</td>
<td>Check for errors</td>
</tr>
<tr>
<td>B1h</td>
<td>Inform RomPilot about the end of POST (optional)</td>
</tr>
<tr>
<td>B2h</td>
<td>POST done - prepare to boot operating system</td>
</tr>
<tr>
<td>B4h</td>
<td>1 One short beep before boot</td>
</tr>
<tr>
<td>B5h</td>
<td>Terminate QuietBoot (optional)</td>
</tr>
<tr>
<td>B6h</td>
<td>Check password (optional)</td>
</tr>
<tr>
<td>B7h</td>
<td>Initialize ACPI BIOS and PPM Structures</td>
</tr>
<tr>
<td>B9h</td>
<td>Prepare Boot</td>
</tr>
<tr>
<td>BAh</td>
<td>Initialize SMBIOS</td>
</tr>
<tr>
<td>BCh</td>
<td>Clear parity checkers</td>
</tr>
<tr>
<td>BDh</td>
<td>Display MultiBoot menu</td>
</tr>
<tr>
<td>BEh</td>
<td>Clear screen (optional)</td>
</tr>
<tr>
<td>BFh</td>
<td>Check virus and backup reminders</td>
</tr>
<tr>
<td>C0h</td>
<td>Try to boot with INT 19</td>
</tr>
<tr>
<td>C1h</td>
<td>Initialize POST Error Manager (PEM)</td>
</tr>
<tr>
<td>C2h</td>
<td>Initialize error logging</td>
</tr>
<tr>
<td>C3h</td>
<td>Initialize error display function</td>
</tr>
<tr>
<td>C4h</td>
<td>Initialize system error flags</td>
</tr>
<tr>
<td>C6h</td>
<td>Console redirection init.</td>
</tr>
<tr>
<td>C7h</td>
<td>Unhook INT 10h if console redirection enabled</td>
</tr>
<tr>
<td>C8h</td>
<td>Force check (optional)</td>
</tr>
<tr>
<td>C9h</td>
<td>Extended ROM checksum (optional)</td>
</tr>
<tr>
<td>CDh</td>
<td>Reclaim console redirection vector</td>
</tr>
</tbody>
</table>
POST Code Description

<table>
<thead>
<tr>
<th>POST Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>D2h</td>
<td>Unknown interrupt</td>
</tr>
<tr>
<td>D4h</td>
<td>Check Intel Branding string</td>
</tr>
<tr>
<td>D8h</td>
<td>Alert Standard Format initialization</td>
</tr>
<tr>
<td>D9h</td>
<td>Late init for IPMI</td>
</tr>
<tr>
<td>DEh</td>
<td>Log error if micro-code not updated properly</td>
</tr>
</tbody>
</table>

The following are for boot block in Flash ROM

<table>
<thead>
<tr>
<th>POST Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>E0h</td>
<td>Initialize the chipset</td>
</tr>
<tr>
<td>E1h</td>
<td>Initialize the bridge</td>
</tr>
<tr>
<td>E2h</td>
<td>Initialize the CPU</td>
</tr>
<tr>
<td>E3h</td>
<td>Initialize system timer</td>
</tr>
<tr>
<td>E4h</td>
<td>Initialize system I/O</td>
</tr>
<tr>
<td>E5h</td>
<td>Check force recovery boot</td>
</tr>
<tr>
<td>E6h</td>
<td>Checksum BIOS ROM</td>
</tr>
<tr>
<td>E7h</td>
<td>Go to BIOS</td>
</tr>
<tr>
<td>E8h</td>
<td>Set Huge Segment</td>
</tr>
<tr>
<td>E9h</td>
<td>Initialize Multi Processor</td>
</tr>
<tr>
<td>EAh</td>
<td>Initialize OEM special code</td>
</tr>
<tr>
<td>EBh</td>
<td>Initialize PIC and DMA</td>
</tr>
<tr>
<td>ECb</td>
<td>Initialize Memory type</td>
</tr>
<tr>
<td>EDh</td>
<td>Initialize Memory size</td>
</tr>
<tr>
<td>EEh</td>
<td>Shadow Boot Block</td>
</tr>
<tr>
<td>EFh</td>
<td>System memory test</td>
</tr>
<tr>
<td>F0h</td>
<td>Initialize interrupt vectors</td>
</tr>
<tr>
<td>F1h</td>
<td>Initialize Run Time Clock</td>
</tr>
<tr>
<td>F2h</td>
<td>Initialize video</td>
</tr>
<tr>
<td>F3h</td>
<td>Initialize System Management Manager</td>
</tr>
<tr>
<td>F4h</td>
<td>Output one beep</td>
</tr>
<tr>
<td>F5h</td>
<td>Clear Huge Segment</td>
</tr>
<tr>
<td>F6h</td>
<td>Boot to Mini DOS</td>
</tr>
<tr>
<td>F7h</td>
<td>Boot to Full DOS</td>
</tr>
</tbody>
</table>

* If the BIOS detects errors on 2C, 2E, or 30 (base 512K RAM error), it displays an additional word-bitmap (xxxx) indicating the address line or bits that have failed. For example, “2C 0002” means address line 1 (bit one set) has failed. “2E 1020” means data bits 12 and 5 (bits 12 and 5 set) have failed in the lower 16 bits. The BIOS also sends the bitmap to the port-80 LED display. It first displays the checkpoint code, followed by a delay, the high-order byte, another delay, and then the loworder byte of the error. It repeats this sequence continuously.
Appendix C
Software Installation

After all the hardware has been installed, you must first configure Intel's ICH7R SATA RAID* before you install the Windows Operating System and other software drivers.

Important Notes to the User:
*Note 1: If you do not wish to configure onboard SATA RAID functions, please go directly to Section C-4 for Operating System & Other Software Installation.
*Note 2: This chapter describes RAID Configuration Instructions for the Intel ICH RAID Controller designed for the Windows OS. If you have the PDSME Model and choose to use the Linux OS, please enable Adaptec's RAID Controller in the BIOS and refer to the file: "E7230 Note.txt" in the folder: "Intel E7230" saved in the CD that came with your motherboard for Adaptec RAID Configuration Instructions.

C-1 Introduction to Serial ATA and Parallel ATA

To configure the SATA RAID functions, you must first use the Intel ICH7R SATA RAID Utility program to configure the RAID Level that you desire before installing the Windows XP/2000/2003 operating system and other software drivers. (The necessary drivers are all included on the Supermicro CD that came packaged with your motherboard.) Note that the current version of the ICH7R SATA RAID Utility can only support Windows XP/2000/2003 Operating Systems.

Serial ATA (SATA)

Serial ATA (SATA) is a physical storage interface that uses a single cable with a minimum of four wires to create a point-to-point connection between devices. It is a serial link, which supports transfer rates up to 3Gbps. Because the serial cables used in SATA are thinner than the traditional cables used in Parallel ATA (PATA), SATA systems have better airflow and can be installed in smaller chassis than Parallel ATA. In addition, the cables used in PATA are limited to a length of 40cm, while Serial ATA cables can be up to one meter in length. Overall, SATA provides better functionality than PATA.

Introduction to the Intel ICH7R Serial RAID

Located in the South Bridge of the E7230 Mukilteo chipset, the I/O Controller Hub (ICH7R) provides the I/O subsystem with access to the rest of the system. It supports a 2-channel UltraATA/100 Bus Master IDE controller (PATA) and four Serial ATA (SATA) ports. The ICH7R supports the following PATA and SATA device configurations: Legacy mode and Native mode.
RAID Configurations

The following types of RAID configurations are supported:

RAID 0 (Data Striping): this writes data in parallel, interleaved ("striped") sections of two hard drives. Data transfer rate is doubled over using a single disk.

RAID1 (Data Mirroring): an identical data image from one drive is copied to another drive. The second drive must be the same size or larger than the first drive.

RAID 10 (Striping & Mirroring): RAID 0 and 1 schemes are combined (without parity information) to get the benefits of both.

RAID 5: both data and parity information are striped and mirrored across three or more hard drives.

Intel Matrix Storage

The Intel Matrix Storage, supported by the ICH7R, allows the user to create RAID 0 and RAID1 set by using only two identical hard disk drives. The Intel Matrix Storage Technology creates two partitions on each hard disk drive and generate a virtual RAID0 and RAID1 sets. It also allows you the change the HDD partition size without any data.

Configuring BIOS settings for SATA RAID Functions (Native Mode)

1. Press the key during system bootup to enter the BIOS Setup Utility.

Note: If it is the first time powering on the system, we recommend you load the Optimized Default Settings. If you have already done so, please skip to Step 3.

2. Use the arrow keys to select the "Exit" Settings. Once in the "Exit" settings, Scroll down to select "Load Optimized Default Settings" and press the <Enter> key. Select "OK" to confirm the selection. Press the <Enter> key to load the default settings for the BIOS.

3. Use the arrow keys to select the "Main" section in BIOS.

4. Scroll down to "SATA Control Mode" and press the <Enter> key to select "Enhanced"

5. Scroll down to "SATA RAID Enabled" and press <Enter>. Then, select "Enabled."

6. Scroll down to "Exit". Select "Save and Exit" from the "Exit" menu. Press the <Enter> key to save the changes and exit the BIOS.

7. Once you've exited the BIOS Utility, the system will re-boot.

8. During the system boot-up, press the <Ctrl> and <I> keys simultaneously to run the Intel RAID Configuration Utility when prompted by the following message: Press <Ctrl> <I> for Intel RAID Configuration Utility.
Using the Intel ICH7R SATA RAID Utility Program

1. Creating, Deleting and Resetting RAID Volumes:

a. After the system exits from the BIOS Setup Utility, the system will automatically reboot. The following screen appears after Power-On Self Test.

b. When you see the above screen, press the <Ctrl> and the <I> keys simultaneously to have the main menu of the SATA RAID Utility appear:

*Note: All graphics and screen shots shown in the manual are for reference only. The screen shots shown in the manual do not imply Supernic's endorsement or non-endorsement on any 3rd party's product. Your screens may or may not look exactly the same as the graphics shown in this manual.
Creating a RAID 0 Volume:

a. Select "Create RAID Volume" from the main menu and press the <Enter> key. The following screen will appear:

```
Creating a RAID 0 Volume:

b. Specify a name for the RAID 0 set and press the <Tab> key or the <Enter> key to go to the next field. (You can use the <Esc> key to select the previous menu.)

c. When RAID Level item is highlighted, press the <Up Arrow>, <Down Arrow> keys to select RAID 0 (Stripe) and hit <Enter>.

d. When the Disks item is highlighted, press <Enter> to select the HDD to configure as RAID. The following pop-up screen (*See the Note on Page C-3) displays:

e. Use the <Up Arrow>, <Down Arrow> keys to highlight a drive and press <Space> to select it. A triangle appears to confirm the selection of the drive.

f. Use the <Up Arrow>, <Down Arrow> keys to select the stripe size, ranging from 4 KB to 128 KB for the RAID 0 array, and hit <Enter>. (*Note: For a server, please use a lower stripe size, and for a multimedia system, use a higher stripe size. The default stripe size is 128 KB.)

g. Press <Enter> when the Create Volume item is highlighted. A warning message displays.

h. When asked "Are you sure you want to create this volume (Y/N), press "Y" to create the RAID volume, or type "N" to go back to the Create Volume menu.
**Creating a RAID 1 Volume:**

a. Select "Create RAID Volume" from the main menu and press the <Enter> key. The following screen will appear:

b. Specify a name for the **RAID 1** set and press the <Tab> key or the <Enter> key to go to the next field. (You can use the <Esc> key to select the previous menu.)

c. When RAID Level item is highlighted, press the <Up Arrow>, <Down Arrow> keys to select **RAID 1 (Mirror)** and hit <Enter>.

d. When the Capacity item is highlighted, enter your RAID volume capacity and hit <Enter>. The default setting is the maximum capacity allowed.

e. Press <Enter> when the Create Volume item is highlighted. A warning message displays.

f. When asked "Are you sure you want to create this volume (Y/N), press "Y" to create the RAID volume, or type "N" to go back to the Create Volume menu.
Creating a RAID 10 (RAID 1+ RAID 0):

a. Select "Create RAID Volume" from the main menu and press the <Enter> key. The following screen will appear:

b. Specify a name for the RAID 10 set and press <Enter>.

c. When RAID Level item is highlighted, use the <Up Arrow>, <Down Arrow> keys to select RAID 10 (RAID1 + RAID0) and hit <Enter>.

d. When the Stripe Size is highlighted, use the <Up Arrow>, <Down Arrow> keys to select the stripe size from 4 KB to 128 KB for your RAID 10 and hit <Enter>. The default setting is 64KB. (*Note: For a server, please use a lower stripe size, and for a multimedia system, use a higher stripe size.)

e. When the RAID Volume Capacity item is highlighted, enter your RAID volume capacity and hit <Enter>. The default setting is the maximum capacity allowed.

f. Press <Enter> when the Create Volume item is highlighted. A warning message displays.

f. When asked "Are you sure you want to create this volume (Y/N), press "Y" to create the RAID volume, or type "N" to go back to the Create Volume menu.
Creating a RAID 5 Set (Parity):

a. Select "Create RAID Volume" from the main menu and press the <Enter> key. The following screen will appear:

b. Specify a name for the RAID 5 set and press <Enter>.

c. When the Raid Level is highlighted, use the <Up Arrow>, <Down Arrow> keys to select RAID 5 (Parity) and hit <Enter>.

d. When the Disk item is highlighted, press <Enter> to select the HDD to configure as RAID. The following pop-up screen (*See the Note on Page C-3) displays:

e. Use the <Up Arrow>, <Down Arrow> keys to highlight a drive and press <Space> to select it. A triangle appears to confirm the selection of the drive.

f. Use the <Up Arrow>, <Down Arrow> keys to select the stripe size, ranging from 4 KB to 128 KB for the RAID 5 array, and hit <Enter>. (*Note: For a server, please use a lower stripe size, and for a multimedia system, use a higher stripe size. The default stripe size is 128 KB.)

g. Enter your desired RAID volume capacity and press <Enter> when the capacity item is highlighted. The default setting is the maximum capacity allowed.

h. Press Enter when the Create Volume item is highlighted. A warning message displays.

h. When asked "Are you sure you want to create this volume (Y/N), press "Y" to create the RAID volume, or type "N" to go back to the Create Volume menu.
Deleting RAID Volume:

(Warning: Be sure to back up your data before deleting a RAID set. You will lose all data on the disk drives when deleting a RAID set.)

a. From the main menu, select item 2-Delete RAID Volume, and press <Enter>.

b. Use the <Up Arrow>, <Down Arrow> keys to select the RAID set you want to delete and press <Del>. A Warning message displays.

c. When asked "Are you sure you want to delete this volume (Y/N), press "Y" to delete the RAID volume, or type "N" to go back to the Delete Volume menu.
Configuring Non-RAID Settings and Resetting a RAID HDD

(Warning: Be cautious when you reset a RAID volume HDD to non-RAID or Resetting a RAID HDD. Resetting a RAID volume HDD or Restting a RAID HDD will reformat the HDD and delete all internal RAID structure on the drive.)

a. From the main menu, select item3-Reset Disks to Non-RAID, and press <Enter>. The following screen will appear:

![Intel Matrix Storage Manager Utility Screen]

b. Use the <Up Arrow>, <Down Arrow> keys to highlight the RAID set drive to reset and press <Space> to select.

c. Press <Enter> to reset the RAID set drive. A Warning message displays.

d. Press "Y" to reset the drive, or type "N" to go back to the main menu.

Exiting the Intel Matrix Storage Manager Utility:

a. From the main menu, select item4-Exit, and press <Enter>. A warning message will appear.

b. Press "Y" to reset the drive, or type "N" to go back to the main menu.
C-2 Installing the Windows XP/2000/2003 for systems with RAID Functions

Installing a New Operating System-the Windows XP/2000/2003 OS

a. Insert Microsoft's Windows XP/2000/2003 Setup CD in the CD Driver, and the system will start booting up from CD.

b. Press the <F6> key when the message-"Press F6 if you need to install a third party SCSI or RAID driver" displays.

c. When the Windows XP/2000/2003 Setup screen appears, press "S" to specify additional device(s).

d. Insert the driver diskette-"Intel AA RAID XP/2000/2003 Driver for ICH7R into Drive A: and press the <Enter> key.

e. Choose the Intel(R)82801GR/GH SATA RAID Controller from the list indicated in the XP/2000/2003 Setup Screen, and press the <Enter> key.

f. Press the <Enter> key to continue the installation process. (If you need to specify any additional devices to be installed, do it at this time.) Once all devices are specified, press the <Enter> key to continue with the installation.


h. After the Windows XP/2000/2003 Installation is completed, the system will automatically reboot.

i. Insert Supermicro's CD that came with the package into the CD Drive during system reboot, and the following screen will appear:

*Note: the current version of the ICH7R SATA RAID Utility can only support the Windows XP/2000/2003 Operating System.)
*Note*: Click the icons showing a hand writing on the paper to view the readme files for each item. Click the computer icons to the right of these items to install each item (from top to the bottom) one at a time. After installing each item, you must re-boot the system before moving on to the next item on the list. The bottom icon with a CD on it allows you to view the entire contents of the CD.

C-3 Installing Intel Application Accelerator Utility

a. When the above screen appears, click on the icon marked "Application Accelerator RAID Edition" on the screen, and the following screen will appear:
b. When the above screen appears, click on the icon marked "Next" on the screen, and the following screen will appear:
Appendix C: Software Installation

c. After reading the License Agreement, click on the icon marked "Yes" on the screen, and the following screen will appear:

d. Specify the folder that you want the program to be installed in and then, click on the icon marked "Next" to begin the installation process.

e. Specify a program folder where you want the Setup to add the program icon as shown in the following screen and click on the icon marked "Next".
f. The following screen will appear to display the status of the Intel Application Accelerator RAID Edition Installation.

![Image of Setup Status screen](image)

g. Once the Application Accelerator RAID Edition installation is completed, the following screen will appear and the system will start to re-boot.

![Image of InstallShield Complete screen](image)

*Note: Once the XP/2000/2003 Operating System is installed, please read the "Readme text files" for the instructions to use the SATA RAID Utility in the Windows XP/2000/2003 OS environment.
C-4 Installing the Operating System and other Software Programs

After all the hardware has been installed, you must first install the operating system, and then, other software drivers. The necessary drivers are all included on the Supermicro CDs that came packaged with your motherboard. *Note: for the Windows 2003 OS, please refer to Page C-14.)*

Driver/Tool Installation Display Screen

*Note: Click the icons showing a hand writing on the paper to view the readme files for each item. Click the computer icons on the right of these items to install each item (from top to the bottom) one at a time. After installing each item, you must re-boot the system before moving on to the next item on the list. The bottom icon with a CD on it allows you to view the entire contents of the CD.*
**Supero Doctor III**

The Supero Doctor III program is a web-base management tool that supports remote management capability. It includes Remote and Local Management tools. The local management is called the SD III Client. The Supero Doctor III program included on the CDROM that came with your motherboard allows you to monitor the environment and operations of your system. Supero Doctor III displays crucial system information such as CPU temperature, system voltages and fan status. See the Figure below for a display of the Supero Doctor III interface.

*Note 1:* The default password and user name are ADMIN.

*Note 2:* In the Windows OS environment, the Supero Doctor III settings take precedence over the BIOS settings. When first installed, Supero Doctor III adopts the temperature threshold settings previously set in the BIOS. Any subsequent changes to these thresholds must be made within Supero Doctor, since the SD III settings override the BIOS settings. For the Windows OS to adopt the BIOS temperature threshold settings, please change the SDIII settings to be the same as those set in the BIOS.

**Supero Doctor III Interface Display Screen-I (Health Information)**
Supero Doctor III Interface Display Screen-II (Remote Control)

Graceful power control

Supero Doctor III allows a user to inform the OS to reboot or shut down within a specified time (the default is 30 seconds). Before the system reboots or shuts down, it's allowed to cancel the action.

Requirements

Keep Supero SD3Service Daemon running at all times on this system.
Provide TCP/IP connectivity.

Power control

*Note: SD III Software Revision 1.0 can be downloaded from our Website at: ftp://ftp.supermicro.com/utility/Supero_Doctor_III/. You can also download SDIII User's Guide at: http://www.supermicro.com/PRODUCT/Manuals/SDIII/UserGuide.pdf. For Linux, we will still recommend Supero Doctor II.
The products sold by Supermicro are not intended for and will not be used in life support systems, medical equipment, nuclear facilities or systems, aircraft, aircraft devices, aircraft/emergency communication devices or other critical systems whose failure to perform be reasonably expected to result in significant injury or loss of life or catastrophic property damage. Accordingly, Supermicro disclaims any and all liability, and should buyer use or sell such products for use in such ultra-hazardous applications, it does so entirely at its own risk. Furthermore, buyer agrees to fully indemnify, defend and hold Supermicro harmless for and against any and all claims, demands, actions, litigation, and proceedings of any kind arising out of or related to such ultra-hazardous use or sale.