Switch CLI Reference Guide for

SSE-X3348S
SSE-X3348SR
SSE-X3348T
SSE-X3348TR
Contents
1 Introduction ... 22
 1.1 Purpose ... 22
 1.2 Scope ... 22
 1.3 Document Conventions ... 23
 1.4 Key Conventions .. 23
 1.4.1 Keyboard shortcuts .. 23
 1.4.2 Others ... 23
2 Command Line Interface .. 24
 2.1 CLI Command Modes ... 24
 2.2 User EXEC Mode .. 26
 2.3 Privileged EXEC Mode .. 26
 2.4 Global Configuration Mode .. 26
 2.5 Interface Configuration Mode .. 26
 2.5.1 Physical Interface Mode ... 26
 2.5.2 Port Channel Interface Mode .. 26
 2.5.3 VLAN Interface Mode .. 26
 2.6 Config-VLAN Mode .. 26
 2.7 Line Configuration Mode .. 26
 2.8 Slave Configuration .. 27
 2.9 Config-CEE-Map Mode .. 27
 2.10 Protocol Specific Modes .. 27
 2.10.1 MSTP Configuration mode ... 27
 2.10.2 DiffSrv ClassMap Configuration mode ... 27
 2.10.3 DiffSrv Policy-Map Configuration Mode .. 27
 2.10.4 DiffSrv Policy-Map Class Configuration Mode 28
 2.10.5 DHCP Pool Configuration Mode .. 28
 2.10.6 ACL Standard Access List Configuration Mode 28
 2.10.7 ACL Extended Access List Configuration Mode 28
 2.10.8 ACL MAC Configuration Mode ... 29
 2.11 Command Privileges .. 29
3 System Features ... 30
 3.1 ip address dhcp ... 38
 3.2 ip address .. 39
 3.3 ip gateway ... 40
 3.4 login authentication ... 41
 3.5 username ... 42
 3.6 listuser ... 43
 3.7 show users .. 44
 3.8 show privilege ... 45
 3.9 enable password ... 46
 3.10 enable .. 47
 3.11 disable ... 48
 3.12 logout .. 49
3.13 lock ... 50
3.14 ip http port ... 51
3.15 set ip http ... 52
3.16 web session-timeout .. 53
3.17 show http server status ... 54
3.18 authorized-manager ip-source ... 55
3.19 show authorized-managers ... 56
3.20 debug nm .. 57
3.21 configure terminal... 58
3.22 exit .. 59
3.23 end ... 60
3.24 show running-config .. 61
3.25 alias ... 63
3.26 help ... 64
3.27 show history .. 65
3.28 clear screen ... 66
3.29 exec-timeout .. 67
3.30 run script ... 68
3.31 show aliases ... 69
3.32 show line ... 70
3.33 line ... 71
3.34 cli pagination .. 72
3.35 firmware upgrade ... 73
3.36 ntp key .. 74
3.37 ntp broadcast .. 75
3.38 ntp server ... 76
3.39 ntp enable ... 77
3.40 ntp disable .. 78
3.41 tz offset ... 79
3.42 show ntp ... 80
3.43 clock set ... 81
3.44 show clock ... 82
3.45 rtc sync ... 83
3.46 write .. 84
3.47 set startup-config .. 85
3.48 copy ... 86
3.49 copy mtdoops .. 87
3.50 copy startup-config .. 88
3.51 copy-file ... 89
3.52 erase .. 90
3.53 list files .. 91
3.54 show file ... 92
3.55 show startup-config .. 93
3.56 show stored-config ... 94
3.57 interface ... 95
<table>
<thead>
<tr>
<th>Page</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.58</td>
<td>interface range</td>
</tr>
<tr>
<td>3.59</td>
<td>description</td>
</tr>
<tr>
<td>3.60</td>
<td>switchport</td>
</tr>
<tr>
<td>3.61</td>
<td>ip address</td>
</tr>
<tr>
<td>3.62</td>
<td>ip address dynamic</td>
</tr>
<tr>
<td>3.63</td>
<td>mtu frame size</td>
</tr>
<tr>
<td>3.64</td>
<td>system mtu frame size</td>
</tr>
<tr>
<td>3.65</td>
<td>flowcontrol</td>
</tr>
<tr>
<td>3.66</td>
<td>pfc</td>
</tr>
<tr>
<td>3.67</td>
<td>shutdown - physical/VLAN/port-channel Interface</td>
</tr>
<tr>
<td>3.68</td>
<td>negotiation</td>
</tr>
<tr>
<td>3.69</td>
<td>capabilities</td>
</tr>
<tr>
<td>3.70</td>
<td>speed</td>
</tr>
<tr>
<td>3.71</td>
<td>duplex</td>
</tr>
<tr>
<td>3.72</td>
<td>Energy Efficient Ethernet (SSE-X3348T/R only)</td>
</tr>
<tr>
<td>3.73</td>
<td>monitor session</td>
</tr>
<tr>
<td>3.74</td>
<td>hol blocking prevention</td>
</tr>
<tr>
<td>3.75</td>
<td>storm-control</td>
</tr>
<tr>
<td>3.76</td>
<td>rate-limit</td>
</tr>
<tr>
<td>3.77</td>
<td>snmp trap link-status</td>
</tr>
<tr>
<td>3.78</td>
<td>reset interface statistics</td>
</tr>
<tr>
<td>3.79</td>
<td>reset interface cpu statistics</td>
</tr>
<tr>
<td>3.80</td>
<td>single-blade-slot-num</td>
</tr>
<tr>
<td>3.81</td>
<td>split40g</td>
</tr>
<tr>
<td>3.82</td>
<td>show single-blade-slot-num</td>
</tr>
<tr>
<td>3.83</td>
<td>show split40g</td>
</tr>
<tr>
<td>3.84</td>
<td>show ip interface</td>
</tr>
<tr>
<td>3.85</td>
<td>show interfaces</td>
</tr>
<tr>
<td>3.86</td>
<td>show interfaces - counters</td>
</tr>
<tr>
<td>3.87</td>
<td>show interfaces loopback</td>
</tr>
<tr>
<td>3.88</td>
<td>show interfaces cpu counters</td>
</tr>
<tr>
<td>3.89</td>
<td>show interface mtu</td>
</tr>
<tr>
<td>3.90</td>
<td>show conf</td>
</tr>
<tr>
<td>3.91</td>
<td>show port-monitoring</td>
</tr>
<tr>
<td>3.92</td>
<td>show flow-control</td>
</tr>
<tr>
<td>3.93</td>
<td>show transceiver</td>
</tr>
<tr>
<td>3.94</td>
<td>show transceiver diagnostics</td>
</tr>
<tr>
<td>3.95</td>
<td>show meminfo</td>
</tr>
<tr>
<td>3.96</td>
<td>device name</td>
</tr>
<tr>
<td>3.97</td>
<td>system location</td>
</tr>
<tr>
<td>3.98</td>
<td>system contact</td>
</tr>
<tr>
<td>3.99</td>
<td>set boot-up</td>
</tr>
<tr>
<td>3.100</td>
<td>reload</td>
</tr>
<tr>
<td>3.101</td>
<td>reset-to-factory-defaults</td>
</tr>
<tr>
<td>3.102</td>
<td>mac-address-table aging-time</td>
</tr>
<tr>
<td>Section</td>
<td>Command</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>3.102</td>
<td>copy debug-logging</td>
</tr>
<tr>
<td>3.103</td>
<td>debug-logging</td>
</tr>
<tr>
<td>3.104</td>
<td>no startup-config</td>
</tr>
<tr>
<td>3.105</td>
<td>show system information</td>
</tr>
<tr>
<td>3.106</td>
<td>show version</td>
</tr>
<tr>
<td>3.107</td>
<td>show debug-logging</td>
</tr>
<tr>
<td>3.108</td>
<td>show debugging</td>
</tr>
<tr>
<td>3.109</td>
<td>show system acknowledgement</td>
</tr>
<tr>
<td>3.110</td>
<td>show system environment</td>
</tr>
<tr>
<td>3.111</td>
<td>show tech-support</td>
</tr>
<tr>
<td>4</td>
<td>Stacking</td>
</tr>
<tr>
<td>4.1</td>
<td>Stack</td>
</tr>
<tr>
<td>4.2</td>
<td>Show stack brief</td>
</tr>
<tr>
<td>4.3</td>
<td>Show stack details</td>
</tr>
<tr>
<td>4.4</td>
<td>Show stack counters</td>
</tr>
<tr>
<td>4.5</td>
<td>Show stack switchid</td>
</tr>
<tr>
<td>4.6</td>
<td>Show stack link status</td>
</tr>
<tr>
<td>5</td>
<td>Syslog</td>
</tr>
<tr>
<td>5.1</td>
<td>logging enable</td>
</tr>
<tr>
<td>5.2</td>
<td>logging disable</td>
</tr>
<tr>
<td>5.3</td>
<td>logging ip</td>
</tr>
<tr>
<td>5.4</td>
<td>logging buffered</td>
</tr>
<tr>
<td>5.5</td>
<td>logging console</td>
</tr>
<tr>
<td>5.6</td>
<td>logging facility</td>
</tr>
<tr>
<td>5.7</td>
<td>logging trap</td>
</tr>
<tr>
<td>5.8</td>
<td>logging file</td>
</tr>
<tr>
<td>5.9</td>
<td>cmdbufbs</td>
</tr>
<tr>
<td>5.10</td>
<td>service timestamps</td>
</tr>
<tr>
<td>5.11</td>
<td>clear log buffer</td>
</tr>
<tr>
<td>5.12</td>
<td>clear log file</td>
</tr>
<tr>
<td>5.13</td>
<td>show logging</td>
</tr>
<tr>
<td>5.14</td>
<td>show logging file</td>
</tr>
<tr>
<td>6</td>
<td>SSH</td>
</tr>
<tr>
<td>6.1</td>
<td>ip ssh</td>
</tr>
<tr>
<td>6.2</td>
<td>debug ssh</td>
</tr>
<tr>
<td>6.3</td>
<td>show ip ssh</td>
</tr>
<tr>
<td>7</td>
<td>SSL</td>
</tr>
<tr>
<td>7.1</td>
<td>ip http secure</td>
</tr>
<tr>
<td>7.2</td>
<td>ssl gen cert-req algo rsa sn</td>
</tr>
<tr>
<td>7.3</td>
<td>ssl server-cert</td>
</tr>
<tr>
<td>7.4</td>
<td>debug ssl</td>
</tr>
<tr>
<td>7.5</td>
<td>show ssl server-cert</td>
</tr>
<tr>
<td>7.6</td>
<td>show ip http secure server status</td>
</tr>
<tr>
<td>8</td>
<td>RMON</td>
</tr>
<tr>
<td>8.1</td>
<td>set rmon</td>
</tr>
</tbody>
</table>
8.2 rmon event .. 195
8.3 rmon alarm ... 196
8.4 rmon collection history .. 198
8.5 rmon collection stats .. 199
8.6 show rmon .. 200
9 STP ... 204
 9.1 spanning-tree mode .. 206
 9.2 spanning-tree .. 207
 9.3 spanning-tree compatibility .. 208
 9.4 spanning-tree timers .. 209
 9.5 spanning-tree transit hold-count .. 211
 9.6 spanning-tree mst max-hops ... 212
 9.7 spanning-tree priority ... 213
 9.8 spanning-tree pathcost method ... 214
 9.9 spanning-tree mst configuration ... 215
 9.10 name ... 216
 9.11 revision ... 217
 9.12 instance ... 218
 9.13 spanning-tree auto-edge ... 219
 9.14 spanning-tree - Properties of an interface ... 220
 9.15 spanning-tree restricted-role ... 222
 9.16 spanning-tree restricted-tcn .. 223
 9.17 spanning-tree mst- Properties of an interface for MSTP............................. 224
 9.18 spanning-tree mst hello-time .. 226
 9.19 clear spanning-tree counters ... 227
 9.20 spanning-tree pathcost dynamic ... 228
 9.21 clear spanning-tree detected protocols ... 229
 9.22 debug spanning-tree ... 230
 9.23 show spanning-tree - Summary, Blockedports, Pathcost 232
 9.24 show spanning-tree - Detail ... 236
 9.25 show spanning-tree - Active ... 239
 9.26 show spanning-tree interface .. 241
 9.27 show spanning-tree root ... 245
 9.28 show spanning-tree bridge .. 248
 9.29 show spanning-tree mst - CIST or specified mst Instance 251
 9.30 show spanning-tree mst configuration ... 253
 9.31 show spanning-tree mst - Port Specific Configuration 255
10 PNAC .. 257
 10.1 dot1x system-auth-control .. 258
 10.2 aaa authentication dot1x default ... 259
 10.3 dot1x local-database ... 260
 10.4 set nas-id .. 262
 10.5 dot1x default ... 263
 10.6 dot1x max req ... 264
 10.7 dot1x max start ... 265
10.8 dot1x reauthentication ... 266
10.9 dot1x timeout ... 267
10.10 dot1x port-control ... 269
10.11 dot1x access-control .. 270
10.12 dot1x control-direction .. 271
10.13 dot1x re-authenticate ... 272
10.14 shutdown dot1x ... 273
10.15 debug dot1x ... 274
10.16 show dot1x ... 275
11 RADIUS .. 280
11.1 radius-server host ... 281
11.2 debug radius ... 282
11.3 show radius server ... 283
11.4 show radius statistics .. 284
12 TACACS .. 285
12.1 tacacs-server host ... 286
12.2 tacacs use-server address .. 287
12.3 tacacs-server retransmit .. 288
12.4 aaa authentication tacacs .. 289
12.5 aaa authorization group tacacs .. 290
12.6 debug tacacs ... 291
12.7 show tacacs ... 292
13 Link Aggregation (LA) .. 294
13.1 set port-channel ... 295
13.2 lACP system-priority .. 296
13.3 port-channel load-balance .. 297
13.4 lACP port-priority ... 299
13.5 channel-group ... 300
13.6 lACP wait-time ... 301
13.7 lACP allow-zero-partner-key ... 302
13.8 lACP timeout ... 303
13.9 show etherchannel .. 304
13.10 show interfaces ... 309
13.11 show lACP ... 312
13.12 debug la ... 314
14 IGMP Snooping ... 315
14.1 ip igmp snooping ... 317
14.2 ip igmp snooping proxy-reporting ... 318
14.3 snooping multicast-forwarding-mode ... 319
14.4 ip igmp snooping mrouter-time-out ... 320
14.5 ip igmp snooping port-purge-interval ... 321
14.6 ip igmp snooping report-suppression interval 322
14.7 ip igmp snooping retry-count ... 323
14.8 ip igmp snooping group-query-interval ... 324
14.9 ip igmp snooping report-forward .. 325
14.10 ip igmp snooping version ... 326
14.11 ip igmp snooping fast-leave.. 327
14.12 ip igmp snooping querier ... 328
14.13 ip igmp snooping query-interval ... 329
14.14 ip igmp snooping mrouter ... 330
14.15 ip igmp snooping send-query ... 331
14.16 ip igmp snooping clear counters ... 332
14.17 shutdown snooping ... 333
14.18 debug ip igmp snooping ... 334
14.19 show ip igmp snooping mrouter ... 335
14.20 show ip igmp snooping globals ... 336
14.21 show ip igmp snooping ... 339
14.22 show ip igmp snooping groups ... 341
14.23 show ip igmp snooping forwarding-database 344
14.24 show ip igmp snooping statistics ... 346

15 VLAN ... 350
15.1 vlan ... 352
15.2 protocol-vlan .. 353
15.3 map protocol .. 354
15.4 set gvrp .. 355
15.5 set port gvrp ... 356
15.6 set gmrp ... 357
15.7 set port gmrp ... 358
15.8 mac-vlan .. 359
15.9 mac-address-table static unicast ... 360
15.10 mac-address-table static multicast .. 362
15.11 mac-address-table aging-time ... 364
15.12 wildcard mac-address .. 365
15.13 ports ... 366
15.14 name ... 367
15.15 switchport pvid ... 368
15.16 switchport access vlan .. 369
15.17 Switchport trunk native vlan .. 370
15.18 switchport trunk allowed vlan .. 371
15.19 switchport acceptable-frame-type ... 372
15.20 switchport ingress-filter .. 373
15.21 port protocol-vlan .. 374
15.22 switchport map protocols-group .. 375
15.23 switchport priority default .. 376
15.24 switchport mode .. 377
15.25 switchport protected .. 378
15.26 set garp timer .. 379
15.27 vlan restricted .. 380
15.28 group restricted ... 381
15.29 vlan map-priority .. 382
15.30 shutdown garp ... 383
15.31 debug vlan ... 384
15.32 debug garp ... 385
15.33 show vlan ... 386
15.34 show vlan device info .. 389
15.35 show vlan device capabilities .. 392
15.36 show vlan traffic-classes .. 394
15.37 show garp timer ... 395
15.38 show vlan port config .. 397
15.39 show vlan protocols-group ... 399
15.40 show switchport protected ... 401
15.41 show protocol-vlan ... 402
15.42 show mac-vlan ... 403
15.43 show mac-address-table .. 404
15.44 show mac-address-table count 406
15.45 show mac-address-table static unicast 408
15.46 show mac-address-table static multicast 410
15.47 show mac-address-table dynamic unicast 412
15.48 show mac-address-table dynamic multicast 414
15.49 show mac-address-table aging-time 416
15.50 show wildcard .. 417

16 DHCP ... 418
16.1 DHCP Client ... 421
16.1.1 release ... 421
16.1.2 renew ... 423
16.1.3 debug ip dhcp client .. 424
16.1.4 show ip dhcp client stats ... 425
16.2 DHCP Relay ... 426
16.2.1 service dhcp-relay .. 426
16.2.2 ip dhcp server .. 427
16.2.3 ip dhcp relay information option 428
16.2.4 ip dhcp relay circuit-id .. 429
16.2.5 ip dhcp relay remote-id 430
16.2.6 debug ip dhcp relay .. 431
16.2.7 show ip dhcp relay information 432
16.2.8 show dhcp server .. 433
16.3 DHCP Server ... 434
16.3.1 service dhcp-server ... 434
16.3.2 ip dhcp pool .. 435
16.3.3 ip dhcp next-server .. 437
16.3.4 ip dhcp bootfile .. 438
16.3.5 ip dhcp .. 439
16.3.6 ip dhcp option .. 440
16.3.7 network ... 442
16.3.8 excluded-address .. 443
<table>
<thead>
<tr>
<th>Section</th>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.3.9</td>
<td>domain-name</td>
<td>444</td>
</tr>
<tr>
<td>16.3.10</td>
<td>dns-server</td>
<td>445</td>
</tr>
<tr>
<td>16.3.11</td>
<td>netbios-name-server</td>
<td>446</td>
</tr>
<tr>
<td>16.3.12</td>
<td>netbios-node-type</td>
<td>447</td>
</tr>
<tr>
<td>16.3.13</td>
<td>default-router</td>
<td>448</td>
</tr>
<tr>
<td>16.3.14</td>
<td>option</td>
<td>449</td>
</tr>
<tr>
<td>16.3.15</td>
<td>lease</td>
<td>451</td>
</tr>
<tr>
<td>16.3.16</td>
<td>utilization threshold</td>
<td>452</td>
</tr>
<tr>
<td>16.3.17</td>
<td>host hardware-type</td>
<td>453</td>
</tr>
<tr>
<td>16.3.18</td>
<td>host hardware-type mac binding</td>
<td>454</td>
</tr>
<tr>
<td>16.3.19</td>
<td>interface ip binding</td>
<td>455</td>
</tr>
<tr>
<td>16.3.20</td>
<td>debug ip dhcp server</td>
<td>456</td>
</tr>
<tr>
<td>16.3.21</td>
<td>show ip dhcp server information</td>
<td>457</td>
</tr>
<tr>
<td>16.3.22</td>
<td>show ip dhcp server pools</td>
<td>458</td>
</tr>
<tr>
<td>16.3.23</td>
<td>show ip dhcp server binding</td>
<td>459</td>
</tr>
<tr>
<td>16.3.24</td>
<td>show ip dhcp server statistics</td>
<td>460</td>
</tr>
<tr>
<td>17</td>
<td>SNMPv3</td>
<td>461</td>
</tr>
<tr>
<td>17.1</td>
<td>snmp community index</td>
<td>463</td>
</tr>
<tr>
<td>17.2</td>
<td>snmp group</td>
<td>465</td>
</tr>
<tr>
<td>17.3</td>
<td>snmp access</td>
<td>466</td>
</tr>
<tr>
<td>17.4</td>
<td>snmp engineid</td>
<td>468</td>
</tr>
<tr>
<td>17.5</td>
<td>snmp view</td>
<td>469</td>
</tr>
<tr>
<td>17.6</td>
<td>snmp targetaddr</td>
<td>471</td>
</tr>
<tr>
<td>17.7</td>
<td>snmp targetparams</td>
<td>473</td>
</tr>
<tr>
<td>17.8</td>
<td>snmp user</td>
<td>475</td>
</tr>
<tr>
<td>17.9</td>
<td>snmp notify</td>
<td>476</td>
</tr>
<tr>
<td>17.10</td>
<td>snmp-server enable traps snmp authentication</td>
<td>477</td>
</tr>
<tr>
<td>17.11</td>
<td>snmp-server trap udp-port</td>
<td>478</td>
</tr>
<tr>
<td>17.12</td>
<td>enable snmpagent</td>
<td>479</td>
</tr>
<tr>
<td>17.13</td>
<td>disable snmpagent</td>
<td>480</td>
</tr>
<tr>
<td>17.14</td>
<td>enable snmpsuseragent</td>
<td>481</td>
</tr>
<tr>
<td>17.15</td>
<td>disable snmpsuseragent</td>
<td>482</td>
</tr>
<tr>
<td>17.16</td>
<td>show snmp agentx information</td>
<td>483</td>
</tr>
<tr>
<td>17.17</td>
<td>show snmp agentx statistics</td>
<td>484</td>
</tr>
<tr>
<td>17.18</td>
<td>show snmp</td>
<td>486</td>
</tr>
<tr>
<td>17.19</td>
<td>show snmp community</td>
<td>487</td>
</tr>
<tr>
<td>17.20</td>
<td>show snmp group</td>
<td>488</td>
</tr>
<tr>
<td>17.21</td>
<td>show snmp group access</td>
<td>490</td>
</tr>
<tr>
<td>17.22</td>
<td>show snmp engineID</td>
<td>492</td>
</tr>
<tr>
<td>17.23</td>
<td>show snmp viewtree</td>
<td>493</td>
</tr>
<tr>
<td>17.24</td>
<td>show snmp targetaddr</td>
<td>494</td>
</tr>
<tr>
<td>17.25</td>
<td>show snmp targetparam</td>
<td>495</td>
</tr>
<tr>
<td>17.26</td>
<td>show snmp targetparam</td>
<td>496</td>
</tr>
<tr>
<td>17.27</td>
<td>show snmp notif</td>
<td>497</td>
</tr>
<tr>
<td>17.28</td>
<td>show snmp inform statistics</td>
<td>498</td>
</tr>
</tbody>
</table>
17.29 show snmp-server traps ... 499
17.30 debug ip snmp ... 500
18 IP .. 501
 18.1 show ip information ... 502
 18.2 ping ... 503
 18.3 ip route ... 504
 18.4 ip routing .. 506
 18.6 ip default-ttl .. 507
 18.7 arp timeout .. 508
 18.8 arp – ip address ... 509
 18.9 ip arp max-retries ... 510
 18.10 show ip traffic ... 511
 18.11 show ip route .. 512
 18.12 show ip arp .. 514
19 IGMP ... 516
 19.1 set ip igmp .. 517
 19.2 set ip igmp .. 518
 19.3 ip igmp immediate-leave ... 519
 19.4 ip igmp version ... 520
 19.5 ip igmp query-interval .. 521
 19.6 ip igmp query-max-response-time .. 522
 19.7 ip igmp robustness .. 523
 19.8 ip igmp last-member-query-interval 524
 19.9 ip igmp static-group ... 525
 19.10 no ip igmp interface ... 526
 19.11 debug ip igmp ... 527
 19.12 show ip igmp global-config .. 528
 19.13 show ip igmp interface .. 529
 19.14 show ip igmp groups .. 531
 19.15 show ip igmp sources ... 532
 19.16 show ip igmp statistics .. 533
20 RRD .. 535
 20.1 as-num ... 536
 20.2 router-id ... 537
 20.3 export ospf ... 538
 20.4 redistribute-policy ... 539
 20.5 default redistribute-policy ... 541
 20.6 show ip protocols .. 542
 20.7 show redistribute-policy ... 544
 20.8 show redistribute information .. 545
21 DVMRP .. 546
 21.1 set ip dvmrp .. 547
 21.2 ip dvmrp prune-life-time ... 548
 21.3 set ip dvmrp - interface .. 549
 21.4 debug ip dvmrp ... 550
<table>
<thead>
<tr>
<th>Section</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.5</td>
<td>show ip dvmrp</td>
</tr>
<tr>
<td>22</td>
<td>PIM</td>
</tr>
<tr>
<td>22.1</td>
<td>set ip pim</td>
</tr>
<tr>
<td>22.2</td>
<td>set ip pim threshold</td>
</tr>
<tr>
<td>22.3</td>
<td>set ip pim spt-switchperiod</td>
</tr>
<tr>
<td>22.4</td>
<td>set ip pim rp-threshold</td>
</tr>
<tr>
<td>22.5</td>
<td>set ip pim rp-switchperiod</td>
</tr>
<tr>
<td>22.6</td>
<td>set ip pim regstop-ratelimit-period</td>
</tr>
<tr>
<td>22.7</td>
<td>set ip pim pmbr</td>
</tr>
<tr>
<td>22.8</td>
<td>ip pim component</td>
</tr>
<tr>
<td>22.9</td>
<td>set ip pim static-rp</td>
</tr>
<tr>
<td>22.10</td>
<td>set mode</td>
</tr>
<tr>
<td>22.11</td>
<td>rp-candidate rp-address</td>
</tr>
<tr>
<td>22.12</td>
<td>rp-candidate holdtime</td>
</tr>
<tr>
<td>22.13</td>
<td>rp-static rp-address</td>
</tr>
<tr>
<td>22.14</td>
<td>ip pim query-interval</td>
</tr>
<tr>
<td>22.15</td>
<td>ip pim message-interval</td>
</tr>
<tr>
<td>22.16</td>
<td>ip pim bsr-candidate</td>
</tr>
<tr>
<td>22.17</td>
<td>ip pim componentId</td>
</tr>
<tr>
<td>22.18</td>
<td>ip pim hello-holdtime</td>
</tr>
<tr>
<td>22.19</td>
<td>ip pim dr-priority</td>
</tr>
<tr>
<td>22.20</td>
<td>ip pim override-interval</td>
</tr>
<tr>
<td>22.21</td>
<td>ip pim lan-delay</td>
</tr>
<tr>
<td>22.22</td>
<td>set ip pim lan-prune-delay</td>
</tr>
<tr>
<td>22.23</td>
<td>no ip pim interface</td>
</tr>
<tr>
<td>22.24</td>
<td>debug ip pim</td>
</tr>
<tr>
<td>22.25</td>
<td>show ip pim interface</td>
</tr>
<tr>
<td>22.26</td>
<td>show ip pim neighbor</td>
</tr>
<tr>
<td>22.27</td>
<td>show ip pim rp-candidate</td>
</tr>
<tr>
<td>22.28</td>
<td>show ip pim rp-set</td>
</tr>
<tr>
<td>22.29</td>
<td>show ip pim bsr</td>
</tr>
<tr>
<td>22.30</td>
<td>show ip pim rp-static</td>
</tr>
<tr>
<td>22.31</td>
<td>show ip pim component</td>
</tr>
<tr>
<td>22.32</td>
<td>show ip pim thresholds</td>
</tr>
<tr>
<td>22.33</td>
<td>show ip pim mrouting</td>
</tr>
<tr>
<td>23</td>
<td>PIMv6</td>
</tr>
<tr>
<td>23.1</td>
<td>set ipv6 pim</td>
</tr>
<tr>
<td>23.2</td>
<td>set ip pim threshold</td>
</tr>
<tr>
<td>23.3</td>
<td>set ip pim spt-switchperiod</td>
</tr>
<tr>
<td>23.4</td>
<td>set ip pim rp-threshold</td>
</tr>
<tr>
<td>23.5</td>
<td>set ip pim rp-switchperiod</td>
</tr>
<tr>
<td>23.6</td>
<td>set ip pim regstop-ratelimit-period</td>
</tr>
<tr>
<td>23.7</td>
<td>set ip pim pmbr</td>
</tr>
<tr>
<td>23.8</td>
<td>set ip pim static-rp</td>
</tr>
<tr>
<td>23.9</td>
<td>ip pim component</td>
</tr>
<tr>
<td>Section</td>
<td>Command</td>
</tr>
<tr>
<td>---------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>23.10</td>
<td>ipv6 pim rp-candidate rp-address</td>
</tr>
<tr>
<td>23.11</td>
<td>ipv6 pim rp-static rp-address</td>
</tr>
<tr>
<td>23.12</td>
<td>ipv6 pim query-interval</td>
</tr>
<tr>
<td>23.13</td>
<td>ipv6 pim message-interval</td>
</tr>
<tr>
<td>23.14</td>
<td>ipv6 pim bsr-candidate</td>
</tr>
<tr>
<td>23.15</td>
<td>ipv6 pim componentld</td>
</tr>
<tr>
<td>23.16</td>
<td>ipv6 pim hello-holdtime</td>
</tr>
<tr>
<td>23.17</td>
<td>ipv6 pim dr-priority</td>
</tr>
<tr>
<td>23.18</td>
<td>ipv6 pim override-interval</td>
</tr>
<tr>
<td>23.19</td>
<td>ipv6 pim lan-delay</td>
</tr>
<tr>
<td>23.20</td>
<td>set ipv6 pim lan-prune-delay</td>
</tr>
<tr>
<td>23.21</td>
<td>no ipv6 pim interface</td>
</tr>
<tr>
<td>23.22</td>
<td>debug ipv6 pim</td>
</tr>
<tr>
<td>23.23</td>
<td>show ipv6 pim interface</td>
</tr>
<tr>
<td>23.24</td>
<td>show ipv6 pim neighbor</td>
</tr>
<tr>
<td>23.25</td>
<td>show ipv6 pim rp-candidate</td>
</tr>
<tr>
<td>23.26</td>
<td>show ipv6 pim rp-set</td>
</tr>
<tr>
<td>23.27</td>
<td>show ipv6 pim bsr</td>
</tr>
<tr>
<td>23.28</td>
<td>show ipv6 pim rp-static</td>
</tr>
<tr>
<td>23.29</td>
<td>show ipv6 pim component</td>
</tr>
<tr>
<td>23.30</td>
<td>show ipv6 pim thresholds</td>
</tr>
<tr>
<td>23.31</td>
<td>show ipv6 pim mroute</td>
</tr>
<tr>
<td>24</td>
<td>VRRP</td>
</tr>
<tr>
<td>24.1</td>
<td>router vrrp</td>
</tr>
<tr>
<td>24.2</td>
<td>interface vlan</td>
</tr>
<tr>
<td>24.3</td>
<td>vrrp - ip address</td>
</tr>
<tr>
<td>24.4</td>
<td>vrrp - priority</td>
</tr>
<tr>
<td>24.5</td>
<td>vrrp - preempt</td>
</tr>
<tr>
<td>24.6</td>
<td>vrrp - text-authentication</td>
</tr>
<tr>
<td>24.7</td>
<td>vrrp - interval</td>
</tr>
<tr>
<td>24.8</td>
<td>show vrrp</td>
</tr>
<tr>
<td>24.9</td>
<td>show vrrp interface</td>
</tr>
<tr>
<td>24.10</td>
<td>debug vrrp</td>
</tr>
<tr>
<td>25</td>
<td>RIP</td>
</tr>
<tr>
<td>25.1</td>
<td>router rip</td>
</tr>
<tr>
<td>25.2</td>
<td>ip rip security</td>
</tr>
<tr>
<td>25.3</td>
<td>ip rip retransmission</td>
</tr>
<tr>
<td>25.4</td>
<td>network</td>
</tr>
<tr>
<td>25.5</td>
<td>neighbor</td>
</tr>
<tr>
<td>25.6</td>
<td>passive-interface vlan</td>
</tr>
<tr>
<td>25.7</td>
<td>output-delay</td>
</tr>
<tr>
<td>25.8</td>
<td>redistribute</td>
</tr>
<tr>
<td>25.9</td>
<td>default-metric</td>
</tr>
<tr>
<td>25.10</td>
<td>route-tag</td>
</tr>
<tr>
<td>25.11</td>
<td>auto-summary</td>
</tr>
</tbody>
</table>
25.12 ip rip default route originate .. 658
25.13 ip rip summary-address ... 659
25.14 ip rip default route install ... 660
25.15 ip rip send version .. 661
25.16 ip rip receive version ... 662
25.17 ip rip authentication mode ... 663
25.18 timers basic .. 664
25.19 ip split-horizon ... 665
25.20 debug ip rip .. 666
25.21 show ip rip ... 667
26 OSPF ... 669
 26.1 router ospf ... 672
 26.2 router-id .. 673
 26.3 area - Stability interval ... 674
 26.4 area - translation-role .. 675
 26.5 compatible rfc1583 ... 676
 26.6 abr-type ... 677
 26.7 neighbor .. 678
 26.8 area-default cost ... 679
 26.9 area- nssa ... 681
 26.10 area-stub ... 683
 26.11 default-information originate always 684
 26.12 area - virtual-link ... 686
 26.13 ASBR Router ... 688
 26.14 area - range .. 689
 26.15 summary-address ... 691
 26.16 redistribute ... 693
 26.17 redist-config ... 694
 26.18 network .. 696
 26.19 set nssa asbr-default-route translator 697
 26.20 passive-interface vlan .. 698
 26.21 passive-interface default ... 699
 26.22 ip ospf demand-circuit ... 700
 26.23 ip ospf retransmit-interval ... 701
 26.24 ip ospf transmit-delay .. 702
 26.25 ip ospf priority .. 703
 26.26 ip ospf hello-interval ... 704
 26.27 ip ospf dead-interval ... 705
 26.28 ip ospf cost .. 706
 26.29 ip ospf network ... 707
 26.30 ip ospf authentication-key .. 708
 26.31 ip ospf authentication .. 709
 26.32 ip ospf message-digest-key .. 711
 26.33 debug ip ospf ... 712
 26.34 show ip ospf interface ... 714
26.35 show ip ospf neighbor ... 716
26.36 show ip ospf request-list .. 717
26.37 show ip ospf retransmission-list .. 718
26.38 show ip ospf virtual-links .. 719
26.39 show ip ospf border-routers ... 720
26.40 show ip ospf - summary address ... 721
26.41 show ip ospf info ... 722
26.42 show ip ospf route .. 723
26.43 show ip ospf - database summary ... 724
26.44 show ip ospf - database .. 727
27 BGP ... 729
 27.1 router bgp ... 732
 27.2 ip bgp dampening ... 735
 27.3 ip bgp overlap-policy ... 737
 27.4 ip bgp synchronization ... 738
 27.5 clear ip bgp - Flap-Statistics ... 739
 27.6 bgp router-id .. 740
 27.7 bgp default local-preference .. 741
 27.8 neighbor - remote-as ... 742
 27.9 neighbor - ebgp-multihop .. 743
 27.10 neighbor - next-hop-self .. 744
 27.11 neighbor - interval ... 745
 27.12 neighbor - timers ... 746
 27.13 neighbor - shutdown ... 747
 27.14 neighbor - send-community .. 748
 27.15 bgp nonbgp-advertise ... 749
 27.16 redistribute .. 750
 27.17 bgp always-compare-med .. 751
 27.18 default-metric ... 752
 27.19 bgp med .. 753
 27.20 bgp local-preference ... 755
 27.21 bgp update-filter ... 757
 27.22 aggregate-address index ... 759
 27.23 bgp cluster-id .. 760
 27.24 bgp client-to-client reflection ... 761
 27.25 neighbor - route-reflector-client ... 762
 27.26 bgp comm-route .. 763
 27.27 bgp comm-peer .. 764
 27.28 bgp comm-filter .. 765
 27.29 bgp comm-policy ... 766
 27.30 bgp ecomm-route ... 767
 27.31 bgp ecomm-peer ... 769
 27.32 bgp ecomm-filter ... 770
 27.33 bgp ecomm-policy .. 771
 27.34 bgp confederation identifier .. 772
IPv6

27.35 bgp confederation peers
27.36 bgp bestpath med confed
27.37 neighbor - password
27.38 clear ip bgp
27.39 shutdown ip bgp
27.40 debug ip bgp
27.41 show bgp-version
27.42 show ip bgp
27.43 show ip bgp community - routes
27.44 show ip bgp extcommunity - routes
27.45 show ip bgp summary
27.46 show ip bgp filters
27.47 show ip bgp aggregate
27.48 show ip bgp med
27.49 show ip bgp dampening
27.50 show ip bgp local-pref
27.51 show ip bgp timers
27.52 show ip bgp info
27.53 show ip bgp rfi info
27.54 show ip bgp confed info
27.55 show ip bgp community
27.56 show ip bgp extcommunity
27.57 show ip bgp dampened-paths
27.58 show ip bgp flap-statistics
28 IPv6
28.1 ipv6 enable
28.2 ipv6 unicast-routing
28.3 ipv6 - address
28.4 ipv6 - link local address
28.5 ipv6 - static routes
28.6 ipv6 - neighbor
28.7 ipv6 nd suppress-ra
28.8 ipv6 nd managed-config flag
28.9 ipv6 nd other-config flag
28.10 ipv6 hop-limit
28.11 ipv6 nd ra-lifetime
28.12 ipv6 nd dad attempts
28.13 ipv6 nd reachable-time
28.14 ipv6 nd retrans-time
28.15 ipv6 nd ra-interval
28.16 ipv6 nd prefix
28.17 ping ipv6
28.18 debug ipv6
28.19 traceroute
28.20 clear ipv6 neighbors
28.21 clear ipv6 traffic... 826
28.22 clear ipv6 route ... 827
28.23 show ipv6 interface... 828
28.24 show ipv6 route ... 830
28.25 show ipv6 route summary ... 831
28.26 show ipv6 neighbors .. 832
28.27 show ipv6 traffic.. 833
29 RRD6 .. 835
 29.1 export ospfv3 ... 836
 29.2 redistribute-policy ... 837
 29.3 default redistribute-policy ... 839
 29.4 throt ... 840
 29.5 show redistribute-policy ipv6 841
 29.6 show redistribute information ipv6 842
30 RIPv6 .. 843
 30.1 ipv6 router rip ... 844
 30.2 ipv6 split-horizon ... 845
 30.3 ipv6 rip enable ... 846
 30.4 ipv6 poison reverse ... 847
 30.5 ipv6 rip default-information originate 848
 30.6 ipv6 rip metric-offset ... 849
 30.7 redistribute ... 850
 30.8 distribute prefix .. 851
 30.9 debug ipv6 rip ... 852
 30.10 show ipv6 rip database ... 853
 30.11 show ipv6 rip stats .. 854
 30.12 show ipv6 rip filter .. 855
31 OSPFv3 .. 856
 31.1 ipv6 router ospf .. 859
 31.2 router-id ... 860
 31.3 area - stub/nssa .. 861
 31.4 area - stability-interval .. 862
 31.5 area - translation-role .. 863
 31.6 timers spf ... 864
 31.7 abr-type ... 865
 31.8 area - default-metric value ... 866
 31.9 area - default-metric type ... 867
 31.10 area - virtual-link .. 868
 31.11 ASBR Router .. 870
 31.12 area - range .. 871
 31.13 area - external summary address 873
 31.14 redistribute ... 875
 31.15 passive-interface ... 876
 31.16 host - metric/area-id ... 877
 31.17 no area ... 878
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31.18</td>
<td>nssaAsbrDfRtTrans</td>
</tr>
<tr>
<td>31.19</td>
<td>redist-config</td>
</tr>
<tr>
<td>31.20</td>
<td>as-external lsdb-limit</td>
</tr>
<tr>
<td>31.21</td>
<td>exit-overflow-interval</td>
</tr>
<tr>
<td>31.22</td>
<td>demand-extensions</td>
</tr>
<tr>
<td>31.23</td>
<td>reference-bandwidth</td>
</tr>
<tr>
<td>31.24</td>
<td>ipv6 ospf area</td>
</tr>
<tr>
<td>31.25</td>
<td>ipv6 ospf demand-circuit</td>
</tr>
<tr>
<td>31.26</td>
<td>ipv6 ospf retransmit-interval</td>
</tr>
<tr>
<td>31.27</td>
<td>ipv6 ospf transmit-delay</td>
</tr>
<tr>
<td>31.28</td>
<td>ipv6 ospf priority</td>
</tr>
<tr>
<td>31.29</td>
<td>ipv6 ospf hello-interval</td>
</tr>
<tr>
<td>31.30</td>
<td>ipv6 ospf dead-interval</td>
</tr>
<tr>
<td>31.31</td>
<td>ipv6 ospf poll-interval</td>
</tr>
<tr>
<td>31.32</td>
<td>ipv6 ospf metric</td>
</tr>
<tr>
<td>31.33</td>
<td>ipv6 ospf network</td>
</tr>
<tr>
<td>31.34</td>
<td>ipv6 ospf neighbor</td>
</tr>
<tr>
<td>31.35</td>
<td>ipv6 ospf passive-interface</td>
</tr>
<tr>
<td>31.36</td>
<td>ipv6 ospf neighbor probing</td>
</tr>
<tr>
<td>31.37</td>
<td>ipv6 ospf neighbor-probe retransmit-limit</td>
</tr>
<tr>
<td>31.38</td>
<td>ipv6 ospf neighbor-probe interval</td>
</tr>
<tr>
<td>31.39</td>
<td>debug ipv6 ospf</td>
</tr>
<tr>
<td>31.40</td>
<td>show ipv6 ospf interface</td>
</tr>
<tr>
<td>31.41</td>
<td>show ipv6 ospf neighbor</td>
</tr>
<tr>
<td>31.42</td>
<td>show ipv6 ospf - request/retrans-list</td>
</tr>
<tr>
<td>31.43</td>
<td>show ipv6 ospf virtual-links</td>
</tr>
<tr>
<td>31.44</td>
<td>show ipv6 ospf border-routers</td>
</tr>
<tr>
<td>31.45</td>
<td>show ipv6 ospf - area-range / summary-prefix</td>
</tr>
<tr>
<td>31.46</td>
<td>show ipv6 ospf - General Information</td>
</tr>
<tr>
<td>31.47</td>
<td>show ipv6 ospf - LSA Database</td>
</tr>
<tr>
<td>31.48</td>
<td>show ipv6 ospf route</td>
</tr>
<tr>
<td>31.49</td>
<td>show ipv6 ospf areas</td>
</tr>
<tr>
<td>31.50</td>
<td>show ipv6 ospf host</td>
</tr>
<tr>
<td>31.51</td>
<td>show ipv6 ospf redist-config</td>
</tr>
<tr>
<td>32</td>
<td>DiffServ (Differentiated Services)</td>
</tr>
<tr>
<td>32.1</td>
<td>set qos</td>
</tr>
<tr>
<td>32.2</td>
<td>class-map</td>
</tr>
<tr>
<td>32.3</td>
<td>policy-map</td>
</tr>
<tr>
<td>32.4</td>
<td>match</td>
</tr>
<tr>
<td>32.5</td>
<td>class</td>
</tr>
<tr>
<td>32.6</td>
<td>set cos</td>
</tr>
<tr>
<td>32.7</td>
<td>police</td>
</tr>
<tr>
<td>32.8</td>
<td>cosq scheduling algorithm</td>
</tr>
<tr>
<td>32.9</td>
<td>traffic class</td>
</tr>
<tr>
<td>32.10</td>
<td>show policy-map</td>
</tr>
</tbody>
</table>
32.11 show class-map.. 933
32.12 show cosq algorithm ... 934
32.13 show cosq weights-bw ... 935
33 ACL (Access Control Lists) .. 936
 33.1 ip access-list ... 938
 33.2 mac access-list extended ... 940
 33.3 permit - standard mode ... 941
 33.4 deny - standard mode ... 942
 33.5 redirect - standard mode ... 943
 33.6 permit- ip/ospf/pim/protocol type ... 944
 33.7 deny - ip/ospf/pim/protocol type .. 946
 33.8 redirect - ip/ospf/pim/protocol type ... 948
 33.9 permit tcp ... 950
 33.10 deny tcp .. 952
 33.11 redirect tcp .. 954
 33.12 permit udp ... 956
 33.13 deny udp ... 958
 33.14 redirect udp .. 960
 33.15 permit icmp .. 962
 33.16 deny icmp .. 965
 33.17 redirect icmp .. 967
 33.18 ip access-group .. 970
 33.19 mac access-group .. 971
 33.20 permit .. 972
 33.21 deny .. 974
 33.22 redirect ... 976
 33.23 show access-lists ... 978
34 Loop protection .. 980
 34.1 loop-protect .. 981
 34.2 loop-protect - interface ... 982
 34.3 loop-protect disable-period .. 983
 34.4 loop-protect receive-action .. 984
 34.5 loop-protect transmit-interval ... 985
 34.6 show loop-protect ... 986
35 Link Status Tracking ... 987
 35.1 link-status-tracking .. 988
 35.2 link-status-tracking group ... 989
 35.3 link-status-tracking group - interface .. 990
 35.4 show link-status-tracking .. 991
36 Data Center Bridging ... 993
 36.1 group .. 994
 36.2 group-bandwidth .. 995
 36.3 pfc priority .. 996
 36.4 pri2pg ... 998
 36.5 pfc group ... 1000
36.6 pfc priority .. 1002
36.7 cee ... 1004
36.8 dcbx cee .. 1005
37 LLDP ... 1006
37.1 set lldp .. 1008
37.2 lldp chassis-id-subtype .. 1009
37.3 lldp holdtime-multiplier ... 1011
37.4 lldp notification interval ... 1012
37.5 lldp reinitialization-delay 1013
37.6 lldp transmit-interval .. 1014
37.7 lldp tx-delay .. 1015
37.8 clear lldp counters ... 1016
37.9 clear lldp table ... 1017
37.10 lldp notification .. 1018
37.11 lldp port-id-subtype ... 1019
37.12 lldp tlv-select basic-tlv .. 1020
37.13 lldp tlv-select dcbx-cee-pfc 1021
37.14 lldp tlv-select dcbx-cee-pg 1022
37.15 lldp tlv-select dot1tlv ... 1023
37.16 lldp tlv-select dot3tlv ... 1024
37.17 lldp transmit | receive .. 1025
37.18 debug lldp ... 1026
37.19 show lldp .. 1028
37.20 show lldp dcbx ... 1029
37.21 show lldp errors .. 1030
37.22 show lldp interface ... 1031
37.23 show lldp local ... 1032
37.24 show lldp neighbors ... 1033
37.25 show lldp statistics ... 1034
37.26 show lldp traffic .. 1035
1 Introduction

1.1 Purpose

The **SSE-3348S/R, and SSE-X3348T/R standalone switches** are 1U rackmount Ethernet switches – also part the Supermicro Intelligent Switch product line, and are standalone units.

All of these switches are managed Layer2/Layer 3 switches that share a common switching and protocol support code base, and provide wire speed switching on each of their 1 Gig and 10 Gig Ethernet ports.

SMIS provides the basic switching functionality and also offers advanced features such as link aggregation, GVRP/GMRP, IGMP Snooping, layer 3 unicast and multicast routing for both IPv4 and IPv6.

This guide details the Command Line Interface (CLI) configurations for the features supported in **SMIS**. For specific details about any of the Blade switches or the standalone switches, please refer to their corresponding user guides.

1.2 Scope

The scope of this document is limited to the following **Super Micro Intelligent Switch** products:

- SSE-3348S
- SSE-3348SR
- SSE-X3348T
- SSE-X3348TR

Other switch products may be added to these product lines from time to time. It is anticipated that all will use this base of CLI commands unless otherwise noted.
1.3 Document Conventions

- The syntax of the CLI command is given in Courier New 10 bold.
- Elements in (< >) indicate the field required as input along with a CLI command, for Example:,
- `< integer (100-1000)>`.
- Elements in square brackets ([]) indicate optional fields for a command.
- Text in {} refers to ‘either-or’ group for the tokens given inside separated by a | symbol.
- The CLI command usage is given in Courier New 10 regular.
- Outputs and messages for CLI commands are given in Courier New 10 regular.
- The no form of the command resets a particular configuration to its default value or revokes the effect. This is explicitly explained in the description of the commands for which it is applicable.

1.4 Key Conventions

1.4.1 Keyboard shortcuts

<table>
<thead>
<tr>
<th>Keys</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up Arrow / Down Arrow</td>
<td>Displays the previously executed command</td>
</tr>
<tr>
<td>Ctrl + A</td>
<td>Moves the cursor to the previous command line</td>
</tr>
<tr>
<td>Ctrl + C</td>
<td>Exits from the SMIS prompt</td>
</tr>
<tr>
<td>Backspace / Ctrl + H</td>
<td>Removes a single character</td>
</tr>
<tr>
<td>TAB</td>
<td>Completes a command without typing the full word</td>
</tr>
<tr>
<td>Left Arrow / Right Arrow</td>
<td>Traverses the current line</td>
</tr>
</tbody>
</table>

1.4.2 Others

<table>
<thead>
<tr>
<th>Keys</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>?</td>
<td>Helps to list the available commands</td>
</tr>
<tr>
<td>Q</td>
<td>Exits the output display if display is more than one page and returns to the SMIS prompt</td>
</tr>
<tr>
<td>show history</td>
<td>Displays the command history list</td>
</tr>
</tbody>
</table>
2 Command Line Interface

This section describes the configuration of SMIS using the Command Line Interface.

The Command Line Interface (CLI) can be used to configure the Intelligent Switch Solution from a console attached to the serial port of the switch or from a remote terminal using TELNET.

The SMIS CLI supports a simple login authentication mechanism. The authentication is based on a user name and password provided by the user during login.

When SMIS is started, the user name and password must be given at the login prompt to access the CLI shell. The default password for the user ID 'ADMIN' is unique for each switch that are shipped after 1st January, 2020 and the password can be found on the label stuck on the switch. For the older switches that were shipped before 1st January, 2020, the default password for user ID 'ADMIN' is 'ADMIN'.

The "user-exec" mode is now available to the user. CLI Command Modes provide a detailed description of the various modes available.

The command prompt always displays the current mode.

- CLI commands need not be fully typed. The abbreviated forms of CLI commands are also accepted by the SMIS CLI. For Example:, commands like "show ip global config" can be typed as "sh ip gl co".
- CLI commands are case insensitive.
- CLI commands will be successful only if the dependencies are satisfied for a particular command that is issued. Appropriate error messages will be displayed if the dependencies are not satisfied

2.1 CLI Command Modes
<table>
<thead>
<tr>
<th>Command Mode</th>
<th>Access Method</th>
<th>Prompt</th>
<th>Exit method</th>
</tr>
</thead>
<tbody>
<tr>
<td>User EXEC</td>
<td>This is the initial mode to start a session.</td>
<td>smis></td>
<td>The logout method is used.</td>
</tr>
<tr>
<td>Privileged EXEC</td>
<td>The User EXEC mode command <code>enable</code>, is used to enter the Privileged EXEC mode.</td>
<td>SMIS#</td>
<td>To return from the Privileged EXEC mode the <code>disable</code> command is used.</td>
</tr>
<tr>
<td>Global Configuration</td>
<td>The Privileged EXEC mode command <code>configure terminal</code>, is used to enter the Global Configuration mode</td>
<td>SMIS(config)#</td>
<td>To exit to the Global Configuration mode the <code>exit</code> command is used and to exit to the Privileged EXEC mode the <code>end</code> command is used.</td>
</tr>
<tr>
<td>Interface configuration</td>
<td>The Global Configuration mode command <code>interface <interfacetype><interfaceid></code> is used to enter the Interface configuration mode</td>
<td>SMIS(config-if)#</td>
<td>To exit to the Global Configuration mode the <code>exit</code> command is used and to exit to the Privileged EXEC mode the <code>end</code> command is used.</td>
</tr>
<tr>
<td>Config-VLAN</td>
<td>The global configuration mode command <code>vlan vlan-id</code>, is used to enter the Config-VLAN mode.</td>
<td>SMIS(config-vlan)#</td>
<td>To exit to the Global Configuration mode the <code>exit</code> command is used and to exit to the privileged EXEC mode the <code>end</code> command is used.</td>
</tr>
<tr>
<td>Line Configuration</td>
<td>The global configuration mode command <code>line</code> is used to enter the Line Configuration mode.</td>
<td>SMIS(config-line)#</td>
<td>To exit to the Global Configuration mode the <code>exit</code> command is used and to exit to the privileged EXEC mode the <code>end</code> command is used.</td>
</tr>
<tr>
<td>Slave Configuration</td>
<td>This is the initial mode to start SMIS in slave session.</td>
<td>smis-boot></td>
<td>The <code>reload</code> command is used to restart the switch.</td>
</tr>
<tr>
<td>Config-CEE-Map</td>
<td>The global configuration mode command <code>cee-map Cee-map-id</code>, is used to enter the Config-CEE-Map mode.</td>
<td>smis(config-cee-map)#</td>
<td>To exit to the Global Configuration mode the <code>exit</code> command is used and to exit to the privileged EXEC mode the <code>end</code> command is used.</td>
</tr>
</tbody>
</table>
2.2 User EXEC Mode

After logging into the device, the user is automatically in the User EXEC mode. In general, the User EXEC commands are used to temporarily change terminal settings, perform basic tests and list system information.

2.3 Privileged EXEC Mode

Since many of the privileged commands set operating parameters, privileged access is password protected in order to prevent unauthorized use. The password is not displayed on the screen and is case sensitive. The Privileged EXEC mode prompt is the device name followed by the pound (#) sign.

2.4 Global Configuration Mode

Global Configuration commands apply to features that affect the system as a whole, to any specific interface.

2.5 Interface Configuration Mode

2.5.1 Physical Interface Mode

The Physical Interface mode is used to perform interface specific operations. To return to the global configuration mode the exit command is used.

2.5.2 Port Channel Interface Mode

The Port Channel Interface mode is used to perform port-channel specific operations. To return to the global configuration mode the exit command is used.

2.5.3 VLAN Interface Mode

The VLAN Interface mode is used to perform L3-IPVLAN specific operations. To return to the global configuration mode the exit command is used.

2.6 Config-VLAN Mode

This mode is used to perform VLAN specific operations. To return to the global configuration mode the exit command is used.

2.7 Line Configuration Mode
Line configuration commands modify the operations of a terminal line.

2.8 Slave Configuration

This mode is used to generate the Slot information (module type). The `reload` command is used to restart the switch.

2.9 Config-CEE-Map Mode

The `cee-map` global configuration command creates a CEE-Map to declare a set of DCBX (CEE standard) settings, including:

- the mappings of priority and Priority Groups (PGs),
- bandwidth allocation for each PG, and
- PFC setting for each priority and PG.

The Global configuration mode command `cee-map <cee-map-number(1-4)>` is used to create/enter the CEE-Map Configuration mode and the prompt seen at this mode is `SMIS(config-cee-map)#`. To return to the global configuration mode the `exit` command is used.

2.10 Protocol Specific Modes

2.10.1 MSTP Configuration mode

This mode is used to configure the MSTP specific parameters for the switch. The Global configuration mode command `spanning tree mst configuration` is used to enter the MSTP Configuration mode and the prompt seen at this mode is `SMIS(config-mst)#`. To return to the global configuration mode the `exit` command is used.

2.10.2 DiffSrv ClassMap Configuration mode

The `class-map` global configuration command creates a class map to be used for matching the packets to the class whose index is specified and to enter the class-map configuration mode. The Global configuration mode command `class-map <short(1-65535)>` is used to enter the DiffSrv ClassMap Configuration mode and the prompt seen at this mode is `SMIS(config-cmap)#`. To return to the global configuration mode the `exit` command is used.

2.10.3 DiffSrv Policy-Map Configuration Mode
In the Policy-Map Configuration mode the user can create or modify a policy map. The Global configuration mode command `policy-map <short (1-65535)>` is used to enter the DiffSrv PolicyMap Configuration mode and the prompt seen at this mode is `smis (config-pmap)#`.

To return to the global configuration mode the `exit` command is used.

2.10.4 DiffSrv Policy-Map Class Configuration Mode

The Policy-Map Class Configuration command defines a traffic classification for the policy to act on. The class-map-num that is specified in the policy map ties the characteristics for that class and its match criteria as configured by using the `class-map` global configuration command to the class map. Once the `class` command is entered, the switch enters policy-map class configuration mode. The DiffSrv Policy mode command `policy-map <short (1-65535)>` is used to enter the DiffSrv Policy-Map Class Configuration mode and the prompt seen at this mode is `smis (config-pmap-c)#`.

To return to the global configuration mode the `exit` command is used.

2.10.5 DHCP Pool Configuration Mode

This mode is used to configure the network pool / host configurations of a subnet pool. The Global configuration mode command `ip dhcp pool <integer (1-2147483647)>` creates a DHCP server address pool and places the user in DHCP pool configuration mode. The prompt seen at this mode is `SMIS(dhcp-config)#`.

To return to the global configuration mode the `exit` command is used.

2.10.6 ACL Standard Access List Configuration Mode

Standard accesses lists create filters based on IP address and network mask only (L3 filters only).

The Global configuration mode command `ip access-list standard <(1-1000)>` creates IP ACLs and is used to enter the ACL Standard Access List Configuration mode. The prompt seen at this mode is `SMIS(config-std-nacl)#`.

To return to the global configuration mode the `exit` command is used.

2.10.7 ACL Extended Access List Configuration Mode

The Extended Access lists enables to specify filters based on the type of protocol, range of TCP/UDP ports as well as IP address and network mask (Layer 4 filters).

The Global configuration mode command `ip access-list extended <(1001-65535)>` is used to enter the ACL Extended Access List Configuration mode and the prompt seen at this mode is `SMIS(config-ext-nacl)#`.
To return to the global configuration mode the `exit` command is used.

2.10.8 ACL MAC Configuration Mode

The MAC access-list global configuration command creates Layer 2 MAC ACLs, and returns the MACAccess list configuration mode to the user.

The Global configuration mode command `mac access-list extended <(1-65535)>` is used to enter the ACL MAC Configuration mode and the prompt seen at this mode is `SMIS(config-extmacl)#`.

To return to the global configuration mode the `exit` command is used.

2.11 Command Privileges

CLI commands are associated with a privilege. Similarly user accounts are also associated with a privilege level. Users can execute commands with privilege level same or lower than their privilege level.

Though switch supports privilege level 1 to 15, by default all the CLI commands are associated with either level 1 or 15. All the show commands and similar display commands are associated with privilege level 1. And all the configuration change commands are associated with level 15.
3 System Features

SMIS offers a rich set of system features to a user, such as, login services, copying/writing facilities, duplex/negotiation support, and many other capabilities. Some features might have special hardware requirements and others might have special design considerations. The related command links provide overview descriptions of the features and includes specific information to consider when using these features.

Management IP Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip address dhcp</td>
<td>This command configures the mode by which the default interface acquires its IP address.</td>
</tr>
<tr>
<td>ip address</td>
<td>This command configures the IP address and subnet mask for the default interface.</td>
</tr>
<tr>
<td>ip gateway</td>
<td>This command configures the gateway IP address for the default management interface.</td>
</tr>
</tbody>
</table>

Management Access Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>login authentication</td>
<td>This command sets the authentication method for user logins and the no form of the command sets the authentication method for user logins to default values.</td>
</tr>
<tr>
<td>username</td>
<td>This command creates a user and sets the enable password for that user with the privilege level. The no form of the command deletes a user and disables the enable password for that user.</td>
</tr>
<tr>
<td>listuser</td>
<td>This command lists all valid users, along with their permissible mode.</td>
</tr>
<tr>
<td>show users</td>
<td>This command displays information about terminal lines.</td>
</tr>
<tr>
<td>show privilege</td>
<td>This command shows current user privilege level.</td>
</tr>
<tr>
<td>enable password</td>
<td>This command modifies enable password</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------</td>
<td>--</td>
</tr>
<tr>
<td>enable</td>
<td>This command turns on privileged commands.</td>
</tr>
<tr>
<td>disable</td>
<td>This command turns off privileged commands.</td>
</tr>
<tr>
<td>logout</td>
<td>This command exits from Privileged EXEC/User EXEC mode to ISS Login Prompt in case of console session.</td>
</tr>
<tr>
<td>lock</td>
<td>This command locks the CLI console. It allows the user/system administrator to lock the console to prevent unauthorized users from gaining access to the CLI command shell.</td>
</tr>
<tr>
<td>ip http port</td>
<td>This command sets the HTTP port and the no form of the command resets the HTTP port.</td>
</tr>
<tr>
<td>set ip http</td>
<td>This command enables/disables HTTP.</td>
</tr>
<tr>
<td>web session-timeout</td>
<td>This command configures the idle timeout value for web management sessions.</td>
</tr>
<tr>
<td>show http server status</td>
<td>This command displays the http server status.</td>
</tr>
<tr>
<td>authorized-manager ip-source</td>
<td>This command configures an IP authorized manager and the no form of the command removes manager from authorized managers list.</td>
</tr>
<tr>
<td>show authorized-managers</td>
<td>This command displays the configured authorized managers.</td>
</tr>
<tr>
<td>debug nm</td>
<td>This command enables the display of debug messages for web interface module.</td>
</tr>
</tbody>
</table>

CLI Helping Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>This command enters the configuration mode.</td>
</tr>
<tr>
<td>exit</td>
<td>This command exits the current configuration mode to the next highest configuration mode in the CLI.</td>
</tr>
<tr>
<td>end</td>
<td>This command exits from Configuration mode.</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>----------------------</td>
<td>---</td>
</tr>
<tr>
<td>show running-config</td>
<td>This command displays the current operating configuration in the system. This command is common for both Single Instance and Multiple Instance.</td>
</tr>
<tr>
<td>alias</td>
<td>This command replaces the given token by the given string and the no form of the command removes the alias created for the given string.</td>
</tr>
<tr>
<td>help</td>
<td>This command displays help for a particular command.</td>
</tr>
<tr>
<td>show history</td>
<td>This command displays command list history.</td>
</tr>
<tr>
<td>clear screen</td>
<td>This command clears the screen.</td>
</tr>
<tr>
<td>exec-timeout</td>
<td>This command sets EXEC timeout (in seconds) for line disconnection and the no form of the command clears EXEC timeout for line disconnection.</td>
</tr>
<tr>
<td>run script</td>
<td>This command runs CLI commands from the specified script file.</td>
</tr>
<tr>
<td>show aliases</td>
<td>This command displays the aliases.</td>
</tr>
<tr>
<td>show line</td>
<td>This command displays TTY line information.</td>
</tr>
<tr>
<td>line</td>
<td>This command configures a console/virtual terminal line.</td>
</tr>
<tr>
<td>cli pagination</td>
<td>This command helps to enable and disable the paginated display.</td>
</tr>
</tbody>
</table>

Firmware Upgrade Command

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>firmware upgrade</td>
<td></td>
</tr>
</tbody>
</table>

Time management Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ntp key</td>
<td>This command configures a trusted key.</td>
</tr>
<tr>
<td>ntp server</td>
<td>This command configures the SNTP server IP.</td>
</tr>
</tbody>
</table>
ntp broadcast
This command enables the SNTP broadcast client. This is used to enable SNTP client to accept SNTP traffic from any broadcast server.

ntp enable
This command enables SNTP.

ntp disable
This command disables SNTP.

tz offset
This command configures the time zone offset with respect to coordinated universal time (UTC).

show ntp
This command displays SNTP configurations.

clock set
This command manages the system clock.

show clock
This command displays the system date and time.

Configuration File Management Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>write</td>
<td>Stores running configuration as startup configuration or into given file name in flash.</td>
</tr>
<tr>
<td>set startup-config</td>
<td>This command configures the default restoration file.</td>
</tr>
<tr>
<td>copy</td>
<td>Copies flash files or remote files to flash.</td>
</tr>
<tr>
<td>copy startup-config</td>
<td>Copies startup configuration to other flash file or remote flash file.</td>
</tr>
<tr>
<td>copy-file</td>
<td>Copies files from flash to remote vice versa.</td>
</tr>
<tr>
<td>erase</td>
<td>Deletes startup configuration file or any flash file.</td>
</tr>
<tr>
<td>list files</td>
<td>Lists all the configuration files stored in flash.</td>
</tr>
<tr>
<td>show file</td>
<td>Displays the file contents</td>
</tr>
<tr>
<td>show startup-config</td>
<td>Displays the startup config file contents</td>
</tr>
<tr>
<td>show stored-config</td>
<td>Displays the given configuration file contents</td>
</tr>
</tbody>
</table>

Interface Commands
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>interface</td>
<td>This command selects an interface to configure, which can be a physical interface or a port-channel interface or a VLAN interface or OOB (Out of Band) interface. The no form of the command is used to delete a VLAN / port-channel interface. On execution of this command, the user enters the interface configuration mode for that interface.</td>
</tr>
<tr>
<td>description</td>
<td>This command configures the description string to the port interfaces.</td>
</tr>
<tr>
<td>switchport</td>
<td>This command configures the port as switch port. The no form of the command configures the port as router port.</td>
</tr>
<tr>
<td>ip address</td>
<td>This command sets the IP address of an interface. The no form of the command resets the IP Address for the given Interface.</td>
</tr>
<tr>
<td>ip address dynamic</td>
<td>This command configures the current VLAN interface to dynamically acquire an IP address from the RARP/DHCP Server. The no form of the command resets the IP Address for the Interface</td>
</tr>
<tr>
<td>mtu frame size</td>
<td>This command configures the maximum transmission unit frame size for the interface.</td>
</tr>
<tr>
<td>system mtu frame size</td>
<td>This command configures the maximum transmission unit frame size for all the interfaces on the switch.</td>
</tr>
<tr>
<td>flowcontrol</td>
<td>This command is used to set the send or receive flow-control value for an interface.</td>
</tr>
<tr>
<td>shutdown - physical/VLAN/port-channel</td>
<td>This command disables a physical interface/VLAN interface/port-channel interface</td>
</tr>
<tr>
<td>negotiation</td>
<td>This command enables auto-negotiation on the interface and the no form of the command disables auto negotiation on the interface.</td>
</tr>
<tr>
<td>capabilities</td>
<td>This command configures the auto negotiation capabilities.</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---</td>
</tr>
<tr>
<td>speed</td>
<td>This command sets the speed of the interface and the no form of the command sets the speed of the interface to its default value.</td>
</tr>
<tr>
<td>duplex</td>
<td>This command configures the duplex operation and the no form of the command configures the duplex operation to the default value.</td>
</tr>
<tr>
<td>monitor session</td>
<td>This command enables port-mirroring in the switch and the no form of the command disables port mirroring in the switch.</td>
</tr>
<tr>
<td>hol blocking prevention</td>
<td>This command enables the Head-Of-Line blocking prevention on the interface and the no form of the command disables the same.</td>
</tr>
<tr>
<td>storm-control</td>
<td>This command sets the storm control rate for broadcast, multicast and DLF packets and the no form of the command sets storm control rate for broadcast, multicast and DLF packets to the default value.</td>
</tr>
<tr>
<td>rate-limit</td>
<td>This command configures the output rate limiting for the interfaces.</td>
</tr>
<tr>
<td>snmp trap link-status</td>
<td>This command enables trap generation on either the physical interface or the port-channel interface.</td>
</tr>
<tr>
<td>reset interface statistics</td>
<td>This command clears interface counters.</td>
</tr>
<tr>
<td>reset interface cpu statistics</td>
<td>This command clears CPU counters.</td>
</tr>
<tr>
<td>show ip interface</td>
<td>This command displays the IP interface configuration.</td>
</tr>
<tr>
<td>show interfaces</td>
<td>This command displays the interface status and configuration.</td>
</tr>
<tr>
<td>show interfaces - counters</td>
<td>This command displays the interface statistics for each port.</td>
</tr>
<tr>
<td>show interfaces cpu counters</td>
<td>This command displays the CPU statistics for each port.</td>
</tr>
<tr>
<td>show interface mtu</td>
<td>This command shows the Maximum Transmission Unit (MTU) of ports in the switch.</td>
</tr>
<tr>
<td>show conf</td>
<td>This command displays the interface specific</td>
</tr>
</tbody>
</table>
System Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>device name</td>
<td>This command configures the switch name string.</td>
</tr>
<tr>
<td>system location</td>
<td>This command configures the switch location information string.</td>
</tr>
<tr>
<td>system contact</td>
<td>This command configures the switch contact information.</td>
</tr>
<tr>
<td>set boot-up</td>
<td>This command configures the next bootup firmware image selection.</td>
</tr>
<tr>
<td>reload</td>
<td>This command restarts the switch.</td>
</tr>
<tr>
<td>reset-to-factory-defaults</td>
<td>This command resets the switch to factory defaults configuration.</td>
</tr>
<tr>
<td>mac-address-table aging-time</td>
<td>This command sets the maximum age of a dynamically learnt entry in the MAC address table.</td>
</tr>
<tr>
<td>copy debugg-logging</td>
<td>This command writes the debug logs to a remote site or to external USB memory.</td>
</tr>
<tr>
<td>debug-logging</td>
<td>This command configures where debug logs are to be displayed and the no form of the command displays debug logs in the console.</td>
</tr>
<tr>
<td>no startup-config</td>
<td>This command makes no configuration file will be loaded in next reboots of the switch.</td>
</tr>
<tr>
<td>show system information</td>
<td>This command displays system information.</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--</td>
</tr>
<tr>
<td><code>show version</code></td>
<td>This command displays hardware and firmware version numbers.</td>
</tr>
<tr>
<td><code>show debug-logging</code></td>
<td>This command displays the debug logs stored in file.</td>
</tr>
<tr>
<td><code>show debugging</code></td>
<td>This command displays state of each debugging option.</td>
</tr>
<tr>
<td><code>show system acknowledgement</code></td>
<td>This command displays the acknowledgement text describing the open source components used on the switch software.</td>
</tr>
<tr>
<td><code>show system environment</code></td>
<td>This command displays the temperature, fan status and power supply status information.</td>
</tr>
<tr>
<td><code>show tech-support</code></td>
<td>This command displays various information that are useful for troubleshooting.</td>
</tr>
<tr>
<td><code>single-blade-slot-num</code></td>
<td>This command configures the single blade server slots in SBM-XEM-X10SM switches.</td>
</tr>
<tr>
<td><code>show single-blade-slot-num</code></td>
<td>This command displayes the single blade server slots configuration in SBM-XEM-X10SM switches.</td>
</tr>
<tr>
<td><code>split40g</code></td>
<td>This command splits the 40Gig ports as 10Gig ports in SSE-X3348S(R) and SSE-X3348T(R) switches.</td>
</tr>
<tr>
<td><code>show split40g</code></td>
<td>This command displays the split configuration of 40Gig ports as 10Gig ports in SSE-X3348S(R) and SSE-X3348T(R) switches.</td>
</tr>
</tbody>
</table>
3.1 ip address dhcp

This command configures the default management interface to get IP address through DHCP.

The no form of this command configures the default management interface to use static IP address.

```
ip address dhcp
```

```
no ip address dhcp
```

Mode
Global Configuration Mode

Defaults
Static IP

Example:
```
SMIS(config)# ip address dhcp
```

Related Commands
`show ip int` – Displays the management interface IP information.
3.2 ip address
This command configures the IP address and subnet mask for the default interface.

```
ip address [ip-address | ip-address/prefix-length] [subnet-mask]
```

```
no ip address
```

Syntax Description
- **ip address** - IP address
- **subnet-mask** - Subnet Mask
- **prefix-length** – Subnet mask as a prefix number

Mode
Global Configuration Mode

Defaults
ip address – 192.168.100.2
subnet-mask - 255.255.255.0

Example:
```
SMIS(config)# ip address 20.0.0.1/8
```

Related Command
- **show ip int** - Displays the management interface IP information.
3.3 ip gateway

This command configures the gateway IP address for the management interface. The "no" form of this command will remove the configure gateway IP.

This command works only for the following blade switch models.
SBM-GEM-X2C
SBM-GEM-X2C+
SBM-GEM-X3S+
SBM-GEM-X10SM

- For other switch models, use the "ip route" command to configure the required routing entries with the desired gateway addresses.

```
ip gateway <ip-address>

no ip gateway
```

Syntax Description

- `ip address` – Gateway IP address

Mode
Global Configuration Mode

Defaults
0.0.0.0

Example:
```
SMIS(config)# ip gateway 20.0.0.1
```

Related Command

- `show ip int` - Displays the management interface IP and gateway information.
3.4 login authentication

This command sets the authentication method for user logins and the no form of the command sets the authentication method for user logins to default values.

```
login authentication { local | radius | tacacs}
```

```
no login authentication
```

Syntax Description

- `local` - Local username database for authentication
- `radius` - List of all RADIUS servers for authentication
- `tacacs` - Terminal Access Controller Access Control System

Mode

Global Configuration Mode

Defaults

Local

Example:

```
SMIS(config)# login authentication radius
```

Changing login authentication from default to another value may disconnect the telnet session.

TACACS is an authentication program used on UNIX / Linux systems, few network routers and other network equipment that allows access to a server or a managing computer to determine if the user attempting to log in has the proper rights or is in the user database.

Related Commands

- `username` - Creates a user and sets the enable password for that user with the privilege level
- `no enable password` - Deletes a user and disables enable password parameters
- `show system information` - Displays system information
3.5 username

This command creates a user and sets the enable password for that user with the privilege level. The no form of the command deletes a user and disables the enable password for that user.

```
username <user-name> [password <passwd>] [privilege <1-15>] [admin]
```

```
no username < user-name >
```

Syntax Description

- **user-name** - User Name
- **password** - Password
- **privilege** - Privilege Level
- **admin** – This keyword indicates this given user will be the default administrative user. The default administrative user cannot be deleted.

Mode

Global Configuration Mode

Related Command

enable password - Modifies enable password parameters

Note:

1. Users with privilege level 1 can execute show or similar display commands only, they cannot execute any configuration change commands. Users with privilege level 15 only can execute configuration change commands.
2. The default ADMIN user can be deleted only after any other active user configured with “admin” keyword.
3.6 listuser

This command lists all valid users, along with their permissible mode.

```
listuser
```

Mode

Privileged EXEC Mode

The command lists the user, mode and groups.

Related Command

- `show users` - Displays information about terminal lines
3.7 show users

This command displays information about terminal lines.

show users

Mode
Privileged EXEC Mode

Example:
```
SMIS# show users
Line User Peer-Address
0 con root Local Peer
```

Related Command
listuser - Lists all valid users, along with their permissible mode
3.8 show privilege

This command shows current user privilege level.

`show privilege`

Mode
Privileged EXEC Mode

Example:
```
SMIS# show privilege
Current privilege level is 15
```

Note: Users with privilege level 1 can execute show or similar display commands only, they cannot execute any configuration change commands. Users with privilege level 15 only can execute configuration change commands.
3.9 enable password

This command modifies enable password parameters and the no form of the command disables enable password parameters.

```
enable password [level (1-15)] <LINE 'enable' password>
```

```
no enable password [level (1-15)]
```

Syntax Description

- **Level** - Privilege Level

Mode

Global Configuration Mode

- The enable password command is used to set the password for a particular privilege Level.

- When this command is configured, the switch prompts for the password, whenever user wants to move from lower privilege level to higher privilege level using enable command

Related Command

- **username** - Creates a user and sets the enable password for that user with the privilege level
3.10 enable

This command turns on privileged commands.

`enable [Enable Level <0-15>]`

Syntax Description

Enable Level - Level to enter the system

Mode

User EXEC Mode

Level 0 is the most restricted level. User created with level 0 has access only to the following commands:

- disable
- enable
- exit
- help
- logout

Level 1 includes all user-level commands at the smis> prompt.

Level 15 is the least restricted level and included all commands

It is possible to configure additional access levels (from level 2 to 14) to meet the needs of the users while protecting the system from unauthorized access.

After a user logs in with a username that has privileges, the full set of CLI commands, including those in User mode can be accessed

Default Privileged level is assigned by the user

Related Commands

`disable` - Turns off privileged commands

`enable password` - Modifies enable password parameters
3.11 disable

This command turns off privileged commands.

disable privilege [Privilege level to go to <0-15>]

Mode
User EXEC Mode

Example:
In User mode the user can monitor and display ISS parameters, but not change them.

Related Command
enable - Turns on privileged commands
3.12 logout

This command exits from Privileged EXEC/ User EXEC mode to ISS Login Prompt in case of console session.

logout

Mode
User EXEC Mode

In case of a telnet session this command terminates the session.

Related Command
slot-modtype - Associates card module type information for a slot
3.13 lock

This command locks the CLI console. It allows the user/system administrator to lock the console to prevent unauthorized users from gaining access to the CLI command shell.

lock

Mode
Privileged EXEC Mode

The login password has to be reentered by the user to release the console lock and access the CLI command shell.
3.14 ip http port

This command sets the HTTP port and the no form of the command resets the HTTP port.

```
ip http port <port(1-65535)>
```

```
no ip http port
```

Mode
Global Configuration Mode

Defaults
80

Example:
```
SMIS(config)# ip http port 90
```

- HTTP port number will take effect only when HTTP is disabled and enabled again.

Related commands
```
set ip http - Enables/disables HTTP
```
3.15 set ip http

This command enables/disables HTTP.

set ip http {enable | disable}

Syntax Description
enable - Enables HTTP status in the system
disable - Disables HTTP status in the system

Mode
Global Configuration Mode

Defaults
enable

Example:
SMIS(config)# set ip http disable

Related Commands
ip http port - Sets the HTTP port
show http server status - Displays the http server status
3.16 web session-timeout

This command configures the idle timeout value for web management sessions. The default value is 600 seconds.

web session-timeout <timeoutvalue>

Syntax Description

timeoutvalue - Any integer number from 1 to 9999 seconds

Mode
Global Configuration Mode

Defaults
600

Example:
SMIS(config)# web session-timeout 300
3.17 show http server status

This command displays the http server status.

show http server status

Mode
Privileged EXEC Mode

Example:
SMIS# show http server status
HTTP server status : enabled
HTTP port is : 90

Related Commands
- ip http port – Sets the HTTP port
- set ip http – Enables/disables HTTP
3.18 authorized-manager ip-source

This command configures an IP authorized manager and the no form of the command removes manager from authorized managers list.

`authorized-manager ip-source <ip-address> [{<subnet-mask> | / <prefixlength(1-32)>}] [interface [<interface-type <0/a-b, 0/c, ...>]] [<interface-type <0/a-b, 0/c, ...>]] [vlan <a,b or a-b or a,b,c-d>] [cpu0] [service [snmp] [telnet] [http] [https] [ssh]]`

`no authorized-manager ip-source <ip-address> [{<subnet-mask> | / <prefixlength(1-32)>}]`

Syntax Description
- `ip-address` - Specifies either the Network or Host address
- `subnet-mask` - IP address mask to be applied
- `prefix-length` - Prefix Length
- `interface` - Valid interfaces include physical ports (including type, slot, and port number)
- `vlan` - The VLANs in which the IP authorized manager can reside
- `cpu0` - Out of Band Management Interface
- `service` - Indicates service type. Can be one of the following: telnet, ssh, http, https or snmp

Mode
- Global Configuration Mode

Defaults
- All services are allowed for the configured manager

Example:
```
SMIS(config)# authorized-manager ip-source 10.203.113.5 255.255.255.255 interface gigabitethernet 0/1 vlan 1 service snmp
```

> An address 0.0.0.0 indicates 'Any Manager'.

Related Command
- `show authorized-managers` - Displays the configured authorized managers
3.19 show authorized-managers

This command displays the configured authorized managers.

\texttt{show authorized-managers [ip-source < ip-address >]}

\textbf{Syntax Description}

\texttt{ip-source} - Specifies either the Network or Host address

\textbf{Mode}

Privileged EXEC Mode

\textbf{Example:}

\texttt{SMIS\# show authorized-managers}

\texttt{Ip Authorized Manager Table}

\texttt{-----------------------------}
\texttt{Ip Address : 10.0.0.4}
\texttt{Ip Mask : 255.255.255.255}
\texttt{Services allowed : SSH}
\texttt{Ports allowed : Gi0/1}
\texttt{Vlans allowed : 2}

\textbf{Related Command}

authorized-manager ip-source – Configures an IP authorized manager
3.20 debug nm

This command enables the display of debug messages for web module. The no form of this command disables the debug messages for web interface module.

`debug nm [{all | info | errors | mgmt | data}]`

`no debug nm [{all | info | errors | mgmt | data}]`

Syntax Description
- `all` – Enables all the available debug messages of web module
- `info` – Enables only the informative debug messages of web module
- `errors` – Enables only the error messages of web module
- `mgmt` – Enables only the management control debug messages of web module
- `data` – Enables only the packet data related debug messages of web module

Mode
Privileged EXEC Mode

Example:

```
SMIS# debug nm all
```

Related Command
3.21 configure terminal

This command enters the configuration mode.

configure terminal

Mode
Privileged EXEC Mode

Related Commands
end - Exits from Configuration mode
exit - Exits the current configuration mode to the next highest configuration mode
3.22 exit

This command exits the current configuration mode to the next highest configuration mode in the CLI.

exit

Mode
All modes

The login name and password has to be reentered by the User to gain access to the CLI command shell.

Related Command
end - Exits from Configuration mode
3.23 end

This command exits from Configuration mode.

end

Mode
All modes

This command can be executed from any mode but it reverts back to Privileged Exec mode

Related Command
exit - Exits the current configuration mode to the next highest configuration mode
3.24 show running-config

This command displays the current operating configuration in the system. This command is common for both Single Instance and Multiple Instance.

```
show running-config [{ syslog | dhcp | dvmrp | qos | stp | la | pnac | igs | | vlan <vlan-id(1-4069)> | interface { port-channel <port-channel-id(1-65535)> | <interfacetype> <interfacenum> | vlan <vlan-id(1-4069)> } | ospf | rip | bgp | ipv6 | rip6 | ssh | ssl | acl | ip | pim | pimv6 | vrrp | snmp | radius | rmon | rm | mbsm | ospf3 | igmp | igmp-proxy }]
```

Syntax Description

- **Syslog** - Syslog Module
- **Dhcp** - DHCP Module
- **dvmrp** - DVMRP Module
- **qos** - Quality of Service Module
- **stp** - STP Module
- **la** - LA Module
- **pnac** - PNAC Module
- **igs** - IGS Module
- **mlds** - MLD Snooping Module
- **vlan** - VLAN Module

interface - Port-channel/Physical/VLAN Interface

- **ospf** - OSPF Module
- **rip** - RIP Module
- **bgp** - BGP Module
- **ipv6** - IPv6 Module
- **rip6** - RIP6 Module
- **ssh** - SSH Module
- **ssl** - SSL Module
- **acl** - ACL Module
- **ip** - IP Module
- **pim** - PIM Module
- **vrrp** - VRRP Module
- **snmp** - SNMP Module
radius - RADIUS Module
rmon - RMON Module
rm - RM Module
mbsm - MBSM Module
ospf3 - OSPFv3 Module
igmp - IGMP Module
pimv6 - PIMv6 Module
igmp-proxy - IGMP Proxy Module

Mode
Privileged EXEC Mode

Example:
SMIS# show running-config
Building configuration...
Switch ID Hardware Version Firmware Version
0 SSE-G48-TG4 (P2-01) 1.0.13-7

ip address dhcp
interface port-channel 1
exit

vlan 1
 ports gi 0/11-19 untagged
 ports gi 0/41-48 untagged
 ports ex 0/2 untagged
exit
vlan 10
 ports gi 0/1-10 untagged
 ports gi 0/20-40 untagged
 ports po 1 untagged
exit
vlan 20,30
exit

interface vlan 1
 ip address dhcp
exit
3.25 alias

This command replaces the given token by the given string and the no form of the command removes the alias created for the given string.

`alias <replacement string> <token to be replaced>`

`no alias <alias>`

Syntax Description

- **Replacement string** - Replacement string
- **token to be replaced** - Abbreviated/short form of the replacement string

Mode

Global Configuration Mode

- The purpose of such a replacement string is that commands can be executed using their abbreviated/short form.

Related Command

`show aliases` - Displays the aliases
3.26 help

This command displays help for a particular command.

```
help [ command ]
```

Syntax Description

- **Command** - The privileged command

Mode

All modes

- "?" can be used as an alternative for the word "help". When "help" or "?" is typed in the specific mode all commands present in that mode as well as all general commands will be listed.

- When a keyword is typed, all possible commands starting with that keyword are displayed
3.27 show history

This command displays command list history.

show history

Mode
Privileged EXEC Mode

Example:
SMIS# show history
1 show ip int
2 show debug-logging
3 show users
4 show line
5 show line console
6 c s
7 show aliases
8 show privilege
9 listuser
10 show users
11 show history

- The commands are listed from the first to the latest command. The buffer is kept unchanged when entering to configuration mode and returning.
3.28 clear screen

This command clears the screen.

clear screen

Mode
All Modes
3.29 exec-timeout

This command sets EXEC timeout (in seconds) for line disconnection and the no form of the command clears EXEC timeout for line disconnection.

exec-timeout <integer (1-18000)>

no exec-timeout

Mode
Line Configuration Mode

Defaults
1800 seconds

Related Command
line - Configures a console/virtual terminal line
3.30 run script

This command runs CLI commands from the specified script file.

run script <script file> [<output file>]

Syntax Description
script file - The script file to be executed
output file - The output file

Mode
Privileged EXEC Mode
3.31 show aliases

This command displays the aliases.

show aliases

Mode
Privileged EXEC Mode

Example:
SMIS# show aliases
show -> sh
previlege -> pr

The show aliases command displays the alias commands and associated CLI commands for the current mode.

Related Command
alias - Replaces the given token by the given string
3.32 show line

This command displays TTY line information.

```
show line {console | vty <line>}
```

Syntax Description

- **Console** - Console
- **Vty** - Virtual terminal line

Mode

Privileged EXEC Mode

Example:

```
SMIS# show line console
Current Session Timeout (in secs) = 1800
```

➢ The command-line history buffer stores CLI commands that are previously entered.

Related Command

- **line** - Configures a console/virtual terminal line
3.33 line

This command configures a console/virtual terminal line.

```plaintext
line {console | vty}
```

Syntax Description

Console - Console

Vty - Virtual terminal line

Mode

Global Configuration Mode

Related Commands

- `end` - Exits from Configuration mode
- `exit` - Exits the current configuration mode to the next highest configuration mode
- `show line` - TTY line information
3.34 cli pagination

This command enables the paginated display. When switch displays large texts on CLI, it breaks the output as multiple pages for better view. This is enabled by default.

The no form of this command disables the pagination. When the pagination is disabled, switch displays the large texts continuously without page breaks.

cli pagination

no cli pagination

Syntax Description

Mode
Privileged EXEC Mode

Related Commands
3.35 firmware upgrade

This command performs an image download operation using TFTP from a remote location.

`firmware upgrade { tftp://ip-address/filename usb:filename } { flash:filename | flash:fallback }`

Syntax Description

- `tftp://ipaddress/ filename` - Source URL alias for a network (tftp) file system
- `flash: normal` - To write into normal flash area.
- `flash: fallback` - To write into fallback flash area.
- `usb: filename` - Firmware image file name in external USB memory

Mode

Privileged EXEC Mode

Example:

```
SMIS# firmware upgrade tftp://20.0.0.1/SWITCH_FIRMWARE_1.0.13-10.bin flash: normal
```

The TFTP protocol is used for getting the image from the remote-site.
In case of stacking, firmware upgrade in master, automatically will upgrade firmware in all slave switches connected in stack. On successful completion of firmware upgrade in slave switches, a message will be displayed.
3.36 ntp key

This command is used to add a key to a trusted key list. This command takes key text along with key identifier.

The no form of this command removes the configured key referred by the given key identifier.

```
ntp key <key_number (1-65535)> <key_text>
```

```
no ntp key <integer(1-65535)>
```

Syntax Description

- **key_number** - Any number between 1 to 65535 to identify the key string
- **key_text** – Any string up to 32 characters to be used as key to handshake with NTP servers.

Mode

Global Configuration Mode

Example:

SMIS(config)# ntp key 1 abcd

Related Command

- **ntp broadcast** - enables NTP broadcast with authentication
- **ntp enable** – Enables NTP
3.37 ntp broadcast
This command enables the switch to accept NTP broadcast messages sent by NTP broadcast servers. This command also enables the authentication for the received NTP broadcast messages if authentication option is given.

The no form of this command configures the switch not to accept NTP broadcast messages.

ntp broadcast [authentication]

no ntp broadcast

Syntax Description
authentication – Accepts NTP broadcasts from NTP servers after the authentication

Mode
Global Configuration Mode

Example:
SMIS(config)# ntp broadcast authentication

Related Command
ntp server - Configures NTP server IP address, key, interval and preference
ntp enable – Enables NTP
3.38 ntp server
This command configures the SNTP server information.

The no form of this command removes the given NTP server configuration.

ntp server <ip-address> [key(1-65535)] [interval(6-17)] [prefer]

no ntp server <ip_address>

Syntax Description
ip-address – IP address of NTP sever.
key – key number to add into a trusted key list
interval – exchange message delay for server
prefer – tells which server should have to be more preferable

Mode
Global Configuration Mode

Example:
SMIS(config)# ntp server 10.10.1.100 10 prefer

Related Command
ntp broadcast - enables NTP broadcast with authentication
ntp enable – Enables NTP
3.39 ntp enable

This command enables the NTP

ntp enable

Mode
Global Configuration Mode

Example:
SMIS(config)# ntp enable

Related Command
ntp broadcast -- enables NTP broadcast with authentication
ntp disable -- Disables NTP
3.40 ntp disable

This command disables the NTP

ntp disable

Mode
Global Configuration Mode

Example:
```
SMIS(config)# ntp disable
```

Related Command
- `ntp broadcast` - enables NTP broadcast with authentication
- `ntp enable` - Enables NTP
3.41 tz offset

This command configures the time zone offset with respect to coordinated universal time (UTC).

```
tz offset <HH>:<MM>
```

Syntax Description

- **HH** – Hour difference from UTC.
- **MM** – Minutes difference from UTC.

Mode

Global Configuration Mode

Example:

```
SMIS(config)# tz offset 08:00
```

Related Command

- `ntp server` - Configures SNTP server IP address
- `ntp broadcast` - Enables SNTP broadcast client
3.42 show ntp
This command displays ntp configuration details.

show ntp

Syntax Description

Mode
Global Configuration Mode

Example:
SMIS(config)# show ntp

Related Command
ntp server - Configures SNTP server IP address
ntp broadcast - Enables SNTP broadcast client
3.43 clock set

This command manages the system clock.

clock set hh:mm:ss day month year

Mode
Privileged EXEC Mode

Example:
SMIS# clock set 18:04:10 18 Oct 2005

The date is configured in the Switch in the format,
- Hours:minutes:Seconds Date Month Year
- The format for the month is Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec
- The format for the year is yyyy

Related Command
show clock - Displays the system clock
3.44 show clock

This command displays the system date and time.

show clock

Mode
Privileged EXEC Mode

Example:
SMIS# show clock
Tue Oct 18 18:04:11 2005

Related Command
clock set - Manages the system clock
3.45 rtc sync

This command is to sync real time clock from system time.

This command is supported only on the following switch models and specified hardware reversion:
- SSE-X2C+ (B2-01 R.3.0)
- SSE-X3S+ (B4-01 R.3.0)
- SSE-X24S
- SSE-X24SR
- SSE-X3348S
- SSE-X3348SR
- SSE-X3348T
- SSE-X3348TR
- SSE-XEM-X10SM (B3-01 R.1.04 and B5-01 R.1.04)

rtc sync

Mode
Privileged EXEC Mode

Example:
SMIS# rtc sync

Related Command
clock set - Manages the system clock
3.46 write

This command writes the running-config to a flash file, startup-configuration file or to a remote site.

```
write { flash:filename | startup-config | tftp://ip-address/filename | usb:filename }
```

Syntax Description

- `flash:filename` – File name to be written in to flash memory
- `startup-config` - Startup Configuration. If this option is chosen, then the switch will start with the saved configuration on reboot
- `tftp` - Copies a file to a TFTP server
- `ip-address` - the IP address or host name of the server to receive the file
- `filename` - the name assigned to the file on the server
- `usb:filename` – File name to be written in to external usb memory

Mode

Privileged EXEC Mode

Example:

```
SMIS# write startup-config
```

A startup-config contains configuration information that the ISS uses when it reboots

TFTP is a simplified version of FTP that allows files to be transferred from one computer to another over a network, usually without the use of client authentication (for Example:., username and password)

Related Commands

- `show nvram` - Displays the current information stored in the NVRAM
- `show system information` - Displays system information
3.47 set startup-config

This command configures the default restoration file.

set startup-config <filename>

Mode
Global Configuration Mode

Defaults
iss.conf

Example:

```
SMIS(config)# set startup-config /home/iss/restore.conf
```

The file path mentioned in the `<filename>` must exist.

Related Commands
show nvram – Displays the current information stored in the NVRAM.
3.48 copy

This command copies the given configuration file as startup configuration file.

```
copy { tftp://ip-address/ filename startup-config | flash: filename startupconfig | usb:filename startup-config }
```

Syntax Description
- `tftp://ip-address/ filename startup-config` - File in remote location to be copied
- `flash: filename startup-config` - File in flash to be copied
- `usb:filename` - File name to be copied in to external usb memory

Mode
Privileged EXEC Mode

Example:
```
SMIS# copy flash:clcliser startup-config
```

Filenames and directory names are case sensitive.

For copying a file to a new directory, the directory must already exist

A startup-config contains configuration information that the ISS uses when it reboots

TFTP is a simplified version of FTP that allows files to be transferred from one computer to another over a network, usually without the use of client authentication (for Example:, username and password)
3.49 copy mtdoops

This command is to copy crash dump content to a local file or remote file.

This command is supported only on the following switch models
SSE-X2C
SSE-X2C+
SSE-X3S+
SSE-G24-TG4
SSE-G48-TG4

copy mtdoops[{{flash: filename | tftp://ip-address/filename}}]

Syntax Description
 tftp://ipaddress/filename - File to be copied to remote location
 flash:filename – File name to be copied to local flash memory

Mode
Privileged EXEC Mode

Example:
SMIS# copy mtdoops flash:mtdoops.txt
SMIS# copy mtdoops tftp://192.168.100.1/mtdoops.txt

Filenames and directory names are case sensitive.

For copying a file to a new directory, the directory must already exist

TFTP is a simplified version of FTP that allows files to be transferred from one computer to another over a network, usually without the use of client authentication (for Example:, username and password)
3.50 copy startup-config

This command takes a backup of the initial configuration in flash or at a remote location.

```
copy startup-config {flash: filename | tftp://ip-address/filename
usb:filename }
```

Syntax Description
- `flash: filename` - Flash or remote site
- `tftp` - Copies a file to a TFTP server
- `ip-address` - the IP address or host name of the server to receive the file
- `filename` - the name assigned to the file on the server
- `usb:filename` - File name to be copied in to external usb memory

Mode
Privileged EXEC Mode

Example:
```
SMIS# copy startup-config flash:clcliser
```

A startup-config contains configuration information that the ISS uses when it reboots.

TFTP is a simplified version of FTP that allows files to be transferred from one computer to another over a network, usually without the use of client authentication (for example, username and password)
3.51 copy-file

This command copies a file from a source remote site /flash / usb to a destination remote site /flash /usb.

```
copy { tftp://ip-address/filename | flash: filename | usb:filename}{
tftp://ipaddress/filename | flash: filename | usb:filename}
```

Syntax Description

- **tftp** - Copies a log file to a TFTP server
- **ip-address** - IP address or host name of the TFTP server to receive the file
- **filename** - the name assigned to the file on the server
- **flash: filename** - Flash or remote site
- **usb:filename** – File name to be used in external usb memory

Mode

Privileged EXEC Mode

Example:

```
SMIS# copy tftp://12.0.0.2/clclirel flash:clcliser
```

The filename must be an unquoted text string with the appropriate capitalization, no spaces, and a maximum length of 32 characters.

The entire copying process may take several minutes and differs from protocol to protocol and from network to network.
3.52 erase

This command deletes the given file.

erase {startup-config | flash:filename | usb:filename}

Syntax Description

startup-config - Startup Configuration file
flash:filename - Local system flash file name
usb:filename - File name in external usb memory

Mode
Privileged EXEC Mode

Example:
SMIS# erase startup-config

Related Commands
show system information - Displays system information
3.53 list files

This command lists all the configuration and log files stored in the flash memory. If “usb:” option given it lists the files stored in the external USB memory.

For every files it displays the file name, file size and last modified time.

list files [usb:path]

Syntax Description

Mode
Privileged EXEC Mode

Example:
smis #list files
3.54 show file
This command displays the file contents. This can be used to display the files in flash.

show file <filename>

Syntax Description
<filename> - File name

Mode
Privileged EXEC Mode

Example:
smis #show file iss.conf
3.55 show startup-config
This command displays the startup configuration file contents.

show startup-config

Syntax Description

Mode
Privileged EXEC Mode

Example:
smis #show startup-config
3.56 show stored-config
This command displays the given configuration file contents.

 show stored-config <filename>

Syntax Description
<filename> - configuration file name

Mode
Privileged EXEC Mode

Example:
smis #show stored-config iss.conf
3.57 interface

This command selects an interface to configure, which can be a physical interface or a port-channel interface or a VLAN interface or loopback interface. The no form of this command is used to delete a VLAN / port-channel or loopback interface. On execution of this command, the user enters the interface configuration mode for that interface.

```
interface {vlan <vlan-id (1-4069)> | port-channel <port-channel-id (1-65535)> | <interface-type> <interface-id> | loopback <interface-id (1-100)> }
```

```
no interface { vlan <vlan-id (1-4069)> | port-channel <port-channel-id (1-65535)> | <interface-type> <interface-id> | loopback <interface-id (1-100)> }
```

Syntax Description

- **vlan** - VLAN Identifier any nymber between 1 to 4069
- **port-channel** - Port Channel Identifier any nymber between 1 to 65535
- **interface-type** - Interface type, can either be a gigabit Ethernet or extreme Ethernet (10Gig) or qx Ethernet (40Gig) interface.
- **interface-id** - Physical interface ID including slot and port number.
- **loopback** - Loopback interface ID any nymber between 1 to 100

Mode

Global Configuration Mode

Defaults

Vlan - 1
interface-type - eth0

Example:

For VLAN Interface: SMIS(config)# interface Vlan 2

No port-channels are created by default

Related Command

show interfaces - Displays the interface status and configuration
3.58 interface range

This command selects multiple interfaces to configure, which can be a physical interfaces or port-channel interfaces or a VLAN interfaces or loopback interfaces. The no form of this command is used to delete multiple VLAN / port-channel or loopback interfaces. On execution of this command, the user enters the interface configuration mode.

interface range <iflist_string>

no interface range <iflist_string>

Syntax Description
iflist_string – List of one or more interface ranges. To provide a range use a hypen (-) between the start and end interface numbers.
E.g.: int range gi 0/1-10
To provide multiple interfaces or ranges, use separate with a comma (,).
E.g.: int range gi 0/1-10, gi 0/20

Mode
Global Configuration Mode

Related Command
show interfaces - Displays the interface status and configuration
3.59 **description**

This command configures the description string to port interfaces.

```
description <string>
```

Syntax

- `<string>` - Any alphanumeric string up to 64 characters length

Mode

Interface Configuration Mode

Example:

```
SMIS(config-if)# description strg_lnk1
```

Related Commands

- `show interface description` - Displays the interface description strings.
3.60 switchport

This command configures the port as switch port. The no form of the command configures the port as router port.

switchport

no switchport

Mode
Interface Configuration Mode

Defaults
switchport

Example:
SMIS(config-if)# switchport

Related Commands
show ip interface - Displays the IP interface statistics and configuration
3.61 **ip address**

This command sets the IP address of an interface. The no form of the command resets the IP Address for the given Interface.

```plaintext
ip address <ip-address> <subnet-mask> [secondary]
```

```plaintext
no ip address [<ip_addr>]
```

Syntax Description

- **ip-address** - IP address
- **subnet-mask** - Subnet mask for the associated IP subnet
- **secondary** - Additional IP address that can be configured for the Interface

Mode

Interface Configuration Mode

- This command is applicable in Physical Interface Mode / VLAN Interface Mode/OOB Interface Mode

Defaults

IP Address specified in issnvram.txt is taken as default.

Example:

```
SMIS(config-if)# ip address 10.0.0.3 255.255.255.0 secondary
```

If the user deletes / modifies the IP interface that he is connected on, then the connection to the switch is lost.

When the `no ip address` command is executed without the optional parameter `<ip_addr>`, all the IP addresses configured over the interface are deleted.

Related Command

- `show ip interface` - Displays the IP interface statistics and configuration
3.62 ip address dynamic

This command configures the current VLAN/OOB interface to dynamically acquire an IP address from the RARP/DHCP Server. The no form of the command resets the IP Address for the Interface.

```
ip address { dhcp | rarp}
```

```
no ip address
```

Syntax Description

- **rarp** - RARP Server
- **dhcp** - DHCP Server

Mode

Interface Configuration Mode

This command is applicable in VLAN Interface Mode.

Defaults

- dhcp

Example:

```
SMIS(config-if)# ip address dhcp
```

Related Commands

- `show ip dhcp client stats` - Displays the DHCP client statistics information
- `release` - Releases the DHCP lease on the interface specified
- `renew` - Renews the DHCP lease for the interface specified
3.63 mtu frame size

This command configures the maximum transmission unit frame size for the interface.

The no form of this command removes the configured MTU value and resets it to the default value 1500.

mtu <frame-size(1500-9216)>

no mtu

Mode
Interface Configuration Mode

Defaults
1500

Example:
SMIS(config-if)# mtu 9000

Related Commands
show interfaces - Displays the interface status and configuration
show interface mtu - Displays the global maximum transmission unit
3.64 system mtu frame size

This command configures the maximum transmission unit frame size for all the interfaces in the system.

The no form of this command removes the configured MTU value on all the interfaces and resets it to the default value 1500.

```
system mtu <frame-size(1500-9216)>
```

```
no system mtu
```

Mode

Interface Configuration Mode

Defaults

1500

Example:

```
SMIS(config-if)# mtu 9000
```

Related Commands

- **show interfaces** - Displays the interface status and configuration
- **show interface mtu** - Displays the global maximum transmission unit
3.65 flowcontrol

This command is used to set the send or receive flow-control value for an interface. If flow control send is on for a device, and if it detects any congestion at its end, then it will notify the link partner or the remote device of the congestion by sending a pause frame.

If flowcontrol receive is on for the remote device and it receives a pause frame, then it stops sending any data packets. This prevents any loss of data packets during the congestion period. You can use both the `receive off` and `send off` keywords to disable flow control.

For PFC and DCBX capable switch products, please note that you must not turn on flowcontrol while PFC or DCBX is operating. Please set both the flowcontrol send and receive to off, prior to enabling PFC or DCBX.

```
flowcontrol { send | receive} { on | off }
```

Syntax Description
- **send**: Interface to send flow control packets to a remote device
- **receive**: Interface to receive flow control packets from a remote device
- **on**: If used with receive allows an interface to operate with the attached device to send flow control packets. If used with send the interface sends flowcontrol packets to a remote device if the device supports it
- **off**: Turns-off the attached devices’ (when used with receive) or the local ports’ (when used with send) ability to send flow-control packets to an interface or to a remote device respectively

Mode

Interface Configuration Mode

Defaults

The default flow control for the interfaces are `flowcontrol receive off`, `flowcontrol send off`

Example:

```
SMIS(config-if)# flowcontrol send on
```

Related Commands

- `show interfaces` - Displays the interface status and configuration
- `show flow-control` - Displays the flowcontrol information
3.66 pfc

This command configures the PFC (Priority-based Flow Control) function of an interface for all priorities (0 to 7). This command provides a way to directly enable the PFC to achieve the lossless ethernet with a PFC-enabled peer.

Note that the PFC function must not be enabled in conjunction with CEE-MAP and link-level flow control (IEEE 802.3x).

This feature is supported only on the following switch models:
SBM-XEM-X10SM
SSE-X24S/R

```
pfc {enable|disable}
```

Syntax Description
- enable - Enable transmission and receipt of PFC frames, for all priorities.
- disable - Disable transmission and receipt of PFC frames, for all priorities.

Mode
Interface configuration mode.

Defaults
The PFC function is disabled by default.

Related Commands
- flowcontrol - Configures the 802.3x flow control.
- cee-map - Create, modify, or delete a cee-map.
- lldp tlv-select dcbx-cee-pfc - Configures the PFC feature sub-TLV.
3.67 shutdown - physical/VLAN/port-channel Interface

This command disables a physical interface/VLAN interface/port-channel interface. The no form of the command enables a physical interface/VLAN interface/port-channel interface.

`shutdown`

`no shutdown`

Mode

Interface Configuration Mode for physical interface / port-channel/OOB Interface

VLAN Interface Mode for VLAN interface

Defaults

The Physical Interface eth0 is enabled by default.

The interface VLAN 1 is enabled by default for a VLAN interface.

The Port-channel interface is disabled by default.

Example:

```
SMIS(config-if)# shutdown
```

All functions on the specified interface are disabled by the shutdown command.

By default, if OOB interface is enabled, then the Physical Interface eth0 is disabled.

Related Commands

- `interface` - Configures an interface, which can be a physical interface or a port-channel interface or a VLAN interface.
- `show interfaces` - Displays the interface status and configuration.
3.68 negotiation

This command enables auto-negotiation on the interface and the no form of the command disables auto negotiation on the interface.

negotiation

no negotiation

Mode
Interface Configuration Mode

Example:
SMIS(config-if)# negotiation

If set as no negotiation, the configured values for interface speed, duplex mode and flow control will be effective
This command configures the auto negotiation capabilities on the given port. By default the switch auto negotiates for all the supported speeds. This includes 1000 full (duplex), 100 full, 100 half, 10 full and 10 half. User can choose the speed setting that can be advertised during auto negotiation process. The "no" form of this command configures the capabilities for all the supported speeds.

```
capabilities [speed-1000full] [speed-100full] [speed 100-half] [speed-10full] [speed-10half]
```

```
no capabilities [speed-1000full] [speed-100full] [speed 100-half] [speed-10full] [speed-10half]
```

Mode

Interface Configuration Mode

Example:

```
SMIS(config-if)# capabilities speed-1000full speed-100full
```

Note:

This command is supported only for 1Gbps Ethernet interfaces on the following switch models SSE-G24-TG4, SSE-G48-TG4, SBM-GEM-X2C+ and SBM-GEM-X3S+. On blade switches the internal ports are fixed speed 1Gbps ports, hence capabilities configuration is not supported on those internal ports as well.
3.70 speed

This command sets the speed of the interface and the no form of the command sets the speed of the interface to its default value.

```
speed { 10 | 100 | 1000 | 10000 | auto }
```

no speed

Syntax Description
- **10** - Port runs at 10Mbps
- **100** - Port runs at 100Mbps
- **1000** - Port runs at 1000Mbps
- **10000** - Port runs at 10000Mbps
- **Auto** - Port automatically detects the speed it must run on based on the peer switch.

Mode
Interface Configuration Mode

Defaults
auto

Example:
```
SMIS(config-if)# speed 100
```

The Gigabit Ethernet port speed can be configured to 10, 100, or 1000 Mbps. If the speed is set to auto, the switch negotiates with the device at the other end of the link for the speed setting and then forces the speed setting to the negotiated value.

This parameter cannot be set if the port is automatically negotiating the link parameters with its peer. In that case, use the command "no-negotiation" to be able to set speed of the link and indicate whether it is full or half duplex.

Related Commands
- **negotiation** - Enables auto-negotiation on the interface
- **duplex** - Configures the duplex operation
3.71 duplex

This command configures the duplex operation and the no form of the command configures the duplex operation to the default value.

duplex { full | half }

no duplex

Syntax Description
full - Port is in full-duplex mode
half - Port is in half-duplex mode

Mode
Interface Configuration Mode

Defaults
full

Example:
SMIS(config-if)# duplex half

Certain ports can be configured to be either full duplex or half duplex. Applicability of this command depends on the device to which the switch is attached.

Related Commands
negotiation - Enables auto-negotiation on the interface
speed - Sets the speed of the interface
3.72 Energy Efficient Ethernet (SSE-X3348T/R only)

IEEE 802.3 defines the Ethernet standard and subsequent power requirements based on cable connections operating at 100 meters. Enabling power saving mode can reduce power used for cable lengths of 60 meters or less, with more significant reduction for cables of 20 meters or less, and continue to ensure signal integrity. IEEE 802.3az specifies a mechanism for reducing power consumption when a link is idle. It is known as “Energy Efficient Ethernet (EEE).”

The power-saving methods provided by this switch include this EEE power saving feature when there is no activity on a link: Under normal operation, the switch continuously auto-negotiates to find a link partner, keeping the MAC interface powered up even if no link connection exists. When using power-savings mode, the switch checks for energy on the circuit to determine if there is a link partner. If none is detected, the switch automatically turns off the transmitter, and most of the receive circuitry (entering Sleep Mode). In this mode, the low-power energy-detection circuit continuously checks for energy on the cable. If none is detected, the MAC interface is also powered down to save additional energy. If energy is detected, the switch immediately turns on both the transmitter and receiver functions, and powers up the MAC interface.

This feature is “Off” by default. To enable the feature on a particular port use the following command:

```
input “interface ex <interface-id>”.
SMIS(config)# interface ex 0/1
input “EEE mode” and then input “exit”.
SMIS(config-if)# EEE mode
SMIS(config-if)# exit
```

To confirm that the port is configured for EEE:

```
input “show interface ex <interface-id>”.
SMIS(config)# show interface ex 0/1
```

To disable this feature:

```
input “interface ex <interface-id>”.
SMIS(config)# interface ex 0/1
input ”no EEE mode” and then input ”exit”.
SMIS(config-if)# no EEE mode
SMIS(config-if)# exit
```

To confirm that EEE is disabled on the port:

```
input “show interface ex <interface-id>”.
```
SMIS(config)# show interface ex 0/1
3.73 monitor session

This command enables port-mirroring in the switch and the no form of the command disables port mirroring in the switch.

```
monitor session [session_number 1-1] { destination interface <interface-type> <interface-id> | source interface <interface-type> <interface-id> [{ rx | tx | both }] } }

no monitor session [session_number:1] [{ source interface <interface-type> <interface-id> |destination interface <interface-type><interface-id> }]
```

Syntax Description
- `session_number 1-1` - Specifies the session number identified with the session
- `destination interface` - Specifies the destination interface or the mirror-to port. Valid interfaces are physical ports. There can only be one mirror-to port per switch.
- `source interface` - Specifies the interface for the traffic that is to be mirrored. Valid interfaces include physical ports.
- `Rx` - Received traffic is mirrored
- `Tx` - Transmitted traffic is mirrored
- `Both` - Specifies the traffic direction to monitor. If the traffic direction is not specified, both transmitted and received traffic is mirrored.

Mode
Global Configuration Mode

Defaults
Port Mirroring is disabled

Example:
```
SMIS(config)# monitor session source interface gigabitEthernet 0/2
```

A port that is a member of a port-channel cannot be a mirror-to port.

Related Command
- `show port-monitoring` - Displays port-monitoring information
3.74 hol blocking prevention

This command enables the Head-Of-Line blocking prevention on the interface and the no form of the command disables the same.

hol blocking prevention

no hol blocking prevention

Mode
Interface Configuration Mode

Defaults
Enabled

Example:
SMIS(config-if)#hol blocking prevention
3.75 storm-control

This command sets the storm control rate for broadcast, multicast and DLF packets and the no form of the command sets storm control rate for broadcast, multicast and DLF packets to the default value.

```
storm-control { broadcast | multicast | dlf } level <rate-value>
```

```
no storm-control { broadcast | multicast | dlf } level
```

Syntax Description

- **broadcast** - Broadcast packets
- **multicast** - Multicast packets
- **dlf** - Unicast packets
- **level** - Storm-control suppression level as a total number of packets per second.

Mode

Interface Configuration Mode

Defaults

Broadcast, multicast, and dlf storm control are disabled.

Example:

```
SMIS(config-if)# storm-control broadcast level 1000
```

- The rate must be specified in terms of packets per second.
- Storm control is supported only on physical interfaces

Related Command

- **show interfaces** - Displays the interface status and configuration
3.76 rate-limit
This command configures the egress rate limiting and burst size for the physical interfaces. The given rate and burst size values are adjusted to the closest possible value supported by the hardware. The no form of this command disables the rate limiting on the interface.

```
rate-limit output <rate-value-kbps (1-10000000)> <burst-value-kbits (1-10000000)>
```

```
no rate-limit output
```

Syntax Description

- **rate-value-kbps** – Any number between 1 to 10000000 in kbps.
- **burst-value-kbits** - Any number between 1 to 10000000 in kbits

Mode
Interface Configuration Mode

Defaults
Disabled

Example:
```
SMIS(config-if)# rate-limit output 10000000 10000
```

Related Command

- **show interfaces** - Displays the interface status and configuration
3.77 **snmp trap link-status**

This command enables trap generation on either the physical interface or the port-channel interface. The no form of this command disables trap generation on the respective interface.

```
snmp trap link-status

no snmp trap link-status
```

Mode
Interface Configuration Mode

Defaults
SNMP trap link status is enabled by default

Example:
```
SMIS(config-if)# snmp trap link-status
```

Related Command
- `show interfaces` - Displays the interface status and configuration
3.78 reset interface statistics

This command resets the interface counters to zero for the given interface. If no interface given, it resets the counters for all the interfaces.

`reset interfaces [<interface-type> <interface-id>] statistics`

Syntax Description

- **interface-type** - Interface type (gigabit-ethernet, extreme-ethernet, qx-ethernet)
- **interface-id** - Physical interface ID including slot and port number

Mode

Privileged EXEC Mode

Example:

```
SMIS# reset interfaces statistics
```

Related Command

- `show interfaces counters` - Displays the interface counters
3.79 reset interface cpu statistics
This command resets the CPU counters to zero for the given interface. If no interface given, it resets the CPU counters for all the interfaces.

reset interfaces [<interface-type> <interface-id>] cpu statistics

Syntax Description
interface-type - Interface type (gigabit-ethernet, extreme-ethernet, qx-ethernet)
interface-id - Physical interface ID including slot and port number

Mode
Privileged EXEC Mode

Example:
SMIS# reset interfaces cpu statistics

Related Command
show interfaces cpu counters - Displays the CPU counters
3.80 single-blade-slot-num

This command configures the given slot numbers as the single blade servers in SBM-XEM-X10S software. This helps the switch software to correct port numbers internally to display correct port names.

By default all the slots are considered as twin server blade slots in the SBM-XEM-X10S switch software. The User must configure the slot numbers that are used for single server blades in SBM-XEM-X10S software using this command.

The “no” form of this command configures the given slots back to default twin blade server slot types.

single-blade-slot-num <slot number (1-10)>

no single-blade-slot-num <slot number (1-10)>

Syntax Description

slot number – One or more values between 1 and 10.
The slot number could be a single slot number like 2 or 3.
Or it could be a range like 2-5.
Or it could be multiples separated by commands like 2,3,8-9

Mode

Global Configuration Mode

Example:

SMIS# single-blade-slot-num 1-3

Related Command

show single-blade-slot-num – Displays the single blade server slots configuration.

Note:

1. After configuring this command, the user must save the configuration using the “write startup-config” command and reload the switch.

2. Whenever the user moves the servers across different slots, or adds or removes servers, the user must make sure that the switch configuration for single blade servers is correct. If needed, the user must configure the single blade server slots correctly in the switch using this command.
The `split40g` command configures the split of 40Gbps QX ports. The command syntax is given below.

```
split40g mode <number>
```

Syntax Description

- **number** – The number of QX ports to be split. The possible values are explained below.

- **0** - The default value is 0. It means “no split, all QX ports operated in 40Gig speed”. To remove an existing split configuration, the user can use 0 as a parameter.
- **1** – This will configure a split of the QX1 port as four 10Gbps ports.
- **2** – In the X3348S or X3348SR models, this will configure a split of the QX1 and QX2 ports as 10Gbps ports. In the X3348T or X3348TR models, this will configure a split of QX1 and QX3 ports as 10Gbps ports.
- **3** – In the X3348S or X3348SR models, this will configure a split of the QX1, QX2 and QX3 ports as 10Gbps ports. In the X3348T or X3348TR models, this will configure a split of QX1, QX3 and QX4 ports as 10Gbps ports.

Mode

- Privileged EXEC Mode

Defaults

- **0** – No split

Example:

To split the QX1 port into four 10Gbps ports:

```
SMIS# split40g mode 1
```

Related Command

- `show split40g mode` - Displays split configuration information
- `show system information` - Displays split configuration information

Note:

1. This command is supported only in SSE-X3348S(R) and SSE-X3348T(R) model switches.
2. This command will be effective only after saving the configuration and reloading the switch.
3.82 show single-blade-slot-num

This command displays the single blade slots configuration in the SBM-XEM-X10SM switch.

show single-blade-slot-num

Syntax Description

Mode
Privileged EXEC Mode

Related Commands
single-blade-slot-num - Configures the single blade slot numbers in SBM-XEM-X10SM switch.
3.83 **show split40g**

This command displays the 40Gbps ports split configuration in the SSE-X3348S(R) and SSE-X3348T(R) switches.

show split40g

Syntax Description

Mode
Privileged EXEC Mode

Related Commands
split40g - Configures the split of 40Gbps QX ports as 10Gbps ports.
show ip interface

This command displays the IP interface configuration.

```
show ip interface [Vlan <vlan-id(1-4069)>] [interface-type <interface-id>] [loopback <loopback-id(1-100)>]
```

Syntax Description

- **Vlan** - VLAN Identifier any number between 1 to 4069
- **interface-type** - Interface type, can either be a gigabit Ethernet or extreme Ethernet (10Gig) or qx Ethernet (40Gig) interface.
- **interface-id** - Physical interface ID including slot and port number.
- **loopback** - Loopback interface ID any number between 1 to 100

Mode

Privileged EXEC Mode

Example:

```
SMIS# show ip interface
vlan1 is up, line protocol is up
Internet Address is 12.0.0.2/8
Broadcast Address 12.255.255.255
Secondary Address 12.0.0.10/8
Secondary Address 13.0.0.10/
```

If executed without the optional parameters this command displays the IP interface statistics and configuration for all the available interfaces.

Related Commands

- **interface** - Configures an interface, which can be a physical interface or a port-channel interface or a VLAN interface
- **show interfaces** - Displays the interface status and configuration
3.84 show interfaces

This command displays the interface status and configuration.

```
show interfaces [{ [ <interface-type> <interface-id>] [{ description | stormcontrol | flowcontrol | status }] | vlan <vlan-id(1-4096)> | port-channel <port-channel-id (1-65535)> }]
```

Syntax Description
- **interface-type** - Can be gigabit Ethernet (gi) or extreme Ethernet (ex) or qx-ethernet (qx)
- **interface-id** - Physical interface ID including slot and port number
- **description** - Description about the interface
- **storm-control** - Broadcast, multicast, and unicast storm control suppression levels for an interface
- **flowcontrol** - Receive or send flow control value for an interface
- **status** - Status of the interface
- **vlan** - VLAN Identifier
- **port-channel** - Port Channel Identifier

Mode
Privileged EXEC Mode

Example:
```
SMIS# show interfaces gigabitethernet 0/2
Gi0/2 up, line protocol is up (connected)
Hardware Address is 00:01:02:03:04:22
RARP Client is enabled
MTU 1500 bytes, Full duplex, 100 Mbps, Auto-Negotiation
Input flow-control is off, output flow-control is off
Link Up/Down Trap is enabled
Reception Counters
Octets : 739284
Unicast Packets : 0
Non Unicast Packets : 5963
Discarded Packets : 0
Error Packets : 0
```
Unknown Protocol : 5963
Transmission Counters
Octets : 741775
Unicast Packets : 0
Non Unicast Packets : 5985
Discarded Packets : 0
Error Packets : 0

SMIS# show interfaces description
Interface Status Protocol Description

Gi0/1 up up
Gi0/2 up up

SMIS# show interfaces gigabitethernet 0/2 storm-control
Gi0/2
DLF Storm Control : Disabled
DLF Storm Control Limit : 0
Broadcast Storm Control : Enabled
Broadcast Storm Control Limit : 0
Multicast Storm Control : Enabled
Multicast Storm Control Limit : 0

SMIS# show interfaces gigabitethernet 0/2 flow-control
Port Tx FlowControl Rx FlowControl Tx Pause Rx Pause
---- ----------------- ----------------- ------- -------
Gi0/2 off off 0 0

SMIS# show interfaces vlan 1
vlan1 up, line protocol is up (connected)

SMIS# show interfaces port-channel 2
po2 up, line protocol is up (connected)

If executed without the optional parameters this command displays the IP interface
statistics and configuration for all the available interfaces.
Related Commands

storm-control - Sets storm control rate for broadcast, multicast and DLF packets
interface - Configures an interface which can be a physical interface or a port-channel interface or a vlan interface
flowcontrol - Enables flow-control
show flow-control - Displays the flow-control information
3.85 show interfaces - counters

This command displays the interface statistics for each port.

```
show interfaces [{ <interface-type> <interface-id>}] counters
```

Syntax Description

- **interface-type** - Can be gigabit Ethernet (gi) or extreme Ethernet (ex) or qx-ethernet (qx)
- **interface-id** - Physical interface ID including slot and port number
- **counters** - Various counters for the switch or for the specific interface

Mode

Privileged EXEC Mode

Example:

```
SMIS# show interfaces counters
Port InOctet InUcast InNUcast InDiscard InErrs
----- ------ ------ ------- ------- ------- ------
Gi0/1 943141 0 10910 0 0 Gi0/2 743996 0 6001 0 0
vlan1 54987 0 8002 0 0
```

- If executed without the optional parameters this command displays the counters for all the available interfaces.

Related Command

- **show interfaces** - Displays the interface status and configuration
3.86 show interfaces loopback
This command displays the loopback interface status and configuration.

show interfaces loopback <1-100>

Syntax Description
loopback - Loopback interface ID

Mode
Privileged EXEC Mode

Example:
SMIS# show interfaces loopback 10

Related Command
show interfaces - Displays the interface status and configuration
3.87 show interfaces cpu counters
This command displays the statistics of CPU traffic.

show interfaces [<interface-type> <interface-id>] cpu counters

Syntax Description

interface-type - Can be gigabit Ethernet (gi) or extreme Ethernet (ex)
or qx-ethernet (qx)

interface-id - Physical interface ID including slot and port number

Mode

Privileged EXEC Mode

Example:

SMIS# show interfaces cpu counters

Related Command

show interfaces counters - Displays the physical interface counters
3.88 show interface mtu

This command shows the Maximum Transmission Unit (MTU) of ports in the switch.

`show interface mtu [{ Vlan <vlan-id (1-4069)> | port-channel <port-channel-id (1-65535)> | <interface-type> <interface-id> }]`

Syntax Description

- **Vlan** - VLAN Identifier
- **port-channel** - Port Channel Identifier
- **interface-type** - Can be gigabit Ethernet (gi) or extreme Ethernet (ex) or qx-ethernet (qx)
- **interface-id** - Physical interface ID including slot and port number

Mode

Privileged EXEC Mode

Example:

SMIS# show interface mtu Vlan 1
`vlan1 MTU size is 1500`

Related Command

- **mtu frame size** - Configures the maximum transmission unit frame size for the interface
3.89 **show conf**
This command shows the interface specific running configuration details

```
show conf
```

Mode
Interface Configuration Mode

Example:
```
SMIS(config-if)# show conf
```

Related Command
```
show running-config  – Displays the running configuration
```
3.90 show port-monitoring

This command displays port-monitoring information.

show port-monitoring

Mode
Privileged EXEC Mode

Example:
SMIS# show port-monitoring
Port Monitoring is enabled
Monitor Port : Gi0/2
Port Ingress-Monitoring Egress-Monitoring
Gi0/1 Disabled Disabled
Gi0/2 Enabled Enabled
Gi0/3 Disabled Disabled
Gi0/4 Disabled Disabled
Gi0/5 Disabled Disabled
Gi0/6 Disabled Disabled

Related Command
monitor session - Enables port-mirroring in the switch
3.91 show flow-control

This command displays the flow-control information.

show flow-control [interface <interface-type> <interface-id>]

Syntax Description
interface-type - Can be gigabit Ethernet (gi) or extreme Ethernet (ex) or qx-ethernet (qx)
interface-id - Physical interface ID including slot and port number

Mode
Privileged EXEC Mode

Example:
SMIS# show flow-control interface gigabitethernet 0/2
Port Tx FlowControl Rx FlowControl Tx Pause RxPause
---- -------------- -------------- -------- ------
G10/2 off off 0 0

If this command is executed without the optional parameter it displays the flow control information of the SMIS router. Otherwise it displays the flow control information of the specified interface.

Related Commands
show interfaces - Displays interface status and configuration
flowcontrol - Enables flowcontrol on an interface
3.92 show transceiver

This command displays the information about fiber optic transceiver modules.

This command is supported only on the following switch models:
SSE-X24S
SSE-X24SR
SSE-X3348S
SSE-X3348SR
SSE-X3348T
SSE-X3348TR

show transceiver [interface <interface-type> <interface-id>]

Syntax Description

interface-type - Interface type, e.g: ex.
interface-id - Physical interface ID including slot and port number.

Mode
Privileged EXEC Mode

Example:
SMIS# show transceiver interface ex 0/1
3.93 show transceiver diagnostics

This command displays the information about fiber optic transceiver modules.

This command is supported only on the following switch models:
SSE-X2C
SSE-X2C+
SSE-X3S+
SSE-X24S
SSE-X24SR
SSE-X3348S
SSE-X3348SR
SSE-X3348T
SSE-X3348TR

```
show transceiver diagnostics [interface <interface-type> <interface-id>]
```

Syntax Description

- **interface-type** - Interface type, e.g: ex.
- **interface-id** - Physical interface ID including slot and port number.

Mode
Privileged EXEC Mode

Example:

```
SMIS# show transceiver diagnostics
SMIS# show transceiver diagnostics interface ex 0/1
```
3.94 **show meminfo**

This command displays the memory status and utilization on the switch.

```
show meminfo
```

Mode

Privileged EXEC Mode

Example:

```
SMIS# show meminfo
```
3.95 **device name**
This command configures the switch name string. The default device name is SMIS.

```
device name <devname>
```

Syntax Description

<devname> - Any string up to 15 characters length.

Mode

Global Configuration Mode

Default

SMIS

Example:

```
SMIS(config)# device name san_sw_1
san_sw_1(config)#
```

Related commands

show system information - Displays the switch name along with other system parameters.
3.96 system location

This command configures the switch location information string. The default device name is Supermicro.

system location <location name>

Syntax Description
<location name> - Any string up to 255 characters length.

Mode
Global Configuration Mode

Default
Supermicro

Example:
SMIS(config)# system location dc1_2ndfloor

Related commands
show system information - Displays the switch location along with other system parameters.
3.97 system contact

This command configures the switch contact information. The default contact information is http://www.supermicro.com/support.

```
system contact <contact name>
```

Syntax Description

- `<contact name>` - Any string up to 255 characters length.

Mode

Global Configuration Mode

Default

http://www.supermicro.com/support

Example:

SMIS(config)# system contact Michael

Related commands

show system information – Displays the switch location along with other system parameters.
3.98 set boot-up

This command configures the next bootup firmware image selection. The default bootup image selection is normal image. User can use this command to boot the switch from fallback image on next reboot.

set boot-up {normal | fallback}

Syntax Description

normal - Switch boots using normal firmware image on next reboot
fallback - Switch boots using fallback firmware image on next reboot

Mode

Global Configuration Mode

Default

normal

Example:

SMIS(config)# set boot-up fallback

Related commands

show system information - Displays the next boot image selection information along with other system parameters.
3.99 reload

This command restarts the switch.

`reload [<switch-id] | all] [force]

Syntax Description
<switch-id> - In stacking, the required particular switch can be restarted by specifying switch id.
all - Use this option to restart all switches in stacking.
force - Use this option for a forced restart. When you are trying to restart right after a firmware upgrade of write startup config in stacking environment, you will be prompted to wait to restart the switch until the files are transferred to all slave switches in stacking. To overwrite this waiting and restart forcefully, this option is used.

Mode
Privileged EXEC Mode

Example:
SMIS# reload
3.100 reset-to-factory-defaults

This command clears all the configurations on the switch and resets the switch to factory defaults configurations.

- This command will reboot the switch.

reset-to-factory-defaults [switch <switch-id] | all]

Syntax Description
<switch-id> - In stacking, the required particular switch can be reset to factory defaults by specifying the switch id.
all - Use this option to restart all switches in stacking to factory defaults

Mode
Global Configuration Mode

Example:
SMIS(config)# reset-to-factory-defaults
3.101 mac-address-table aging-time

This command sets the maximum age of a dynamically learnt entry in the MAC address table. The no form of the command sets the maximum age of an entry in the MAC address table to its default value.

mac-address-table aging-time <1-1000000 seconds>

no mac-address-table aging-time

Mode
Global Configuration Mode

Defaults
300

Example:
SMIS(config)# mac-address-table aging-time 100

If traffic on an interface is not very frequent, then the aging time must be increased to record the dynamic entries for a longer time. Increasing the time can reduce the possibility of flooding.

Related Command
show mac-address-table aging-time - Displays the MAC address-table ageing time
3.102 copy debug-logging

This command writes the debug logs to a remote site or to external USB memory.

```
copy debug-logging { tftp://ip-address/filename | usb:filename }
```

Syntax Description

- `tftp` - Copies a log file to a TFTP server
- `ip-address` - the IP address or host name of the TFTP server to receive the file
- `filename` - the name assigned to the file on the server
- `usb:filename` - Copies the log file to this file name in external usb memory.

Mode

Privileged EXEC Mode

Example:

```
SMIS# copy debug-logging tftp://10.0.0.10/clcliser
```
3.103 debug-logging

This command configures where debug logs are to be displayed and the no form of the command displays debug logs in the console.

```
debug-logging { console | file }
```

```
no debug-logging
```

Syntax Description

- **console** - Debug logs are displayed in the Console
- **file** - Debug logs are displayed in the file

Mode

Global Configuration Mode

Example:

```
SMIS(config)# debug-logging console
```

Debug logs are directed to the console screen or to a buffer file, which can later be uploaded, based on the input.

Related Commands

- `show debug-logging` - Displays the debug logs stored in file
- `show debugging` - Displays state of each debugging option
3.104 no startup-config
This command makes no configuration file will be loaded in next reboots of the switch.

no startup-config

Mode
Global Configuration Mode

Example:
SMIS(config)# no startup-config

Related Commands
set startup-config <file name> - Set the file which will be restored on next reboot of the switch.
3.105 show system information

This command displays system information.

show system information

Mode
Privileged EXEC Mode

Example:
SMIS# show system information

Switch Name : SMIS
Serial Number : MD29S00189
Switch Base MAC Address : 00:30:48:90:00:e2
Default IP Address : 10.0.0.1
Default Subnet Mask : 255.0.0.0
Default IP Address Config Mode : Manual
Default IP Address Allocation Protocol : DHCP
SNMP EngineID : 80.00.08.1c.04.46.53
System Contact : support@supermicro.com
System Location : SUPERMICRO
Logging Option : Console Logging
Login Authentication Mode : Local
PIM Mode : Dense Mode
Snoop Forward Mode : MAC based
Config Restore Status : Successful
Config Restore Option : Restore
Config Restore Filename : iss1.conf
Config Save IP Address : 0.0.0.0
NTP Broadcast Mode : No

Related Commands
write - Writes the running-config to a file in flash, startup-configuration file or to a remote site
erase - Clears the contents of the startup configuration or sets parameters in NVRAM to default values
3.106 show version

This command displays hardware and firmware versions.

In stacking mode, this command displays the version numbers for all the switches connected in the stack.

show version

Mode:
Privileged EXEC Mode

Example::

SMIS# show version

<table>
<thead>
<tr>
<th>Switch ID</th>
<th>Hardware Version</th>
<th>Firmware Version</th>
<th>OS Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>P1-01</td>
<td>1.0.17-3</td>
<td>1019</td>
</tr>
</tbody>
</table>

SMIS#
3.107 show debug-logging
This command displays the debug logs stored in file.

```
show debug-logging
```

Mode:
Privileged EXEC Mode

Example::
```
SMIS(config)# debug-logging file
SMIS(config)# exit
SMIS# debug spanning-tree events

SMIS# show debug-logging
AST: MSG: Timer Expiry Event processed...
AST: MSG: Completed processing the event(s).
AST: MSG: Timer Expiry Event processed...
AST: MSG: Completed processing the event(s).
AST: MSG: Timer Expiry Event processed...
AST: MSG: Completed processing the event(s).
AST: MSG: Timer Expiry Event processed...
AST: MSG: Completed processing the event(s).
AST: MSG: Timer Expiry Event processed...
AST: MSG: Completed processing the event(s).
AST: MSG: Timer Expiry Event processed...
AST: MSG: Completed processing the event(s).
AST: MSG: Timer Expiry Event processed...
AST: MSG: Completed processing the event(s).
AST: MSG: Timer Expiry Event processed...
AST: MSG: Completed processing the event(s).
AST: MSG: Timer Expiry Event processed...
AST: MSG: Completed processing the event(s).
AST: MSG: Timer Expiry Event processed...
AST: MSG: Completed processing the event(s).
AST: MSG: Timer Expiry Event processed...
AST: MSG: Completed processing the event(s).
```

Related Command:
```
debug-logging  - Configures where debug logs are to be displayed
```
3.108 show debugging

This command displays state of each debugging option.

```
show debugging
```

Mode:
Privileged EXEC Mode

Example::
```
SMIS# show debugging
```
```
Spanning Tree :
Spanning tree timers related debugging is on
```

Related Commands
- `debug spanning-tree` - Provides spanning tree debugging support
- `debug dot1x` - Enables debugging of dot1x module
- `debug radius` - Enables RADIUS debugging options
- `debug ip igmp snooping` - Specifies the debug levels for the IGMP snooping module
- `debug ssh` - Sets the given trace levels for SSH
- `debug ssl` - Sets the given debug levels for SSL
- `debug vlan` - Enables module-wise debug traces for VLAN
- `debug garp` - Enables module-wise debug traces for GARP
- `debug ip dhcp client` - Sets the debug level for tracing the DHCP client module
- `debug ip dhcp relay` - Enables the debug level for tracing the DHCP Relay Module
- `debug ip dhcp server` - Enables the debug level for tracing the DHCP server Module
- `debug ethernet-oam` - Enables/displays the debug level for the EOAM Module
3.109 show system acknowledgement

This command displays the acknowledgement text for the open source components used on the switch software.

show system acknowledgement

Mode

Privileged EXEC Mode

Example:

SMIS# show system acknowledgement
3.110 show system environment
This command displays the temperature, fan status and power supply status information.

This command is supported only on the following switch models
SSE-X24S
SSE-X24SR
SSE-X3348S
SSE-X3348SR
SSE-X3348T
SSE-X3348TR

show system environment [{temperature | fan | power}]

Syntax Description
 temperature – Displays temperature readings from temperature sensors
 fan – Displays fan status
 fan – Displays power supply status

Mode
Privileged EXEC Mode

Example:
SMIS# show system environment temperature
3.111 **show tech-support**
This command displays various information that are useful for troubleshooting.

```
show tech-support
```

Syntax Description

Mode
Privileged EXEC Mode

Example:
```
SMIS# show tech-support
```
4 Stacking

Stacking is supported on only the following Super Micro Intelligent units:

- SBM-GEM-X2C
- SBM-GEM-X2C+
- SSE-G24-TG4
- SSE-G48-TG4

Stacking is not supported on the 10G Ethernet switches:

- SBM-XEM-X10SM
- SSE-X24S
- SSE-X24SR
- SSE-3348S
- SSE-3348SR
- SSE-3348T
- SSE-3348TR

Switch stacking is created by connecting switches in a daisy chain. One of the stacked switches is selected as the “Master” based on configuration. The Master switch provides management support for the entire stack. Other switches in the stack are referred to as “Slave” switches.

- Make sure all stacked switches run the same version of firmware.

The Master Switch manages the control plane traffic for all stacked switches. When a current Master Switch fails, the backup Master is selected as the current Master. The Master selection algorithm is based on a priority configuration. If two switches have the same priority the switch with the lowest MAC address gets selected as the Master Switch.

Stacking Cabling

Stacking is supported with CX-4 cables only. Use only CX4 cables from Supermicro: CBL-0474L for 1-meter and CBL-0389L-01 for 3-meter. The CX-4 cable used for stacking should be no more than 3M in length. This is because stacking internally runs at 12Gbps and therefore requires a more robust signal than longer cable lengths might provide reliably. The industry standard stacking cable length is 3M.

Note: For stacking ports, you do not need to configure CX4 cable length. It is fixed as “short” for stacking ports.

Warning: Use of CX4 cables from suppliers other than Supermicro for stacking is not supported by Supermicro.
When used for 10G Ethernet uplinks, the CX-4 ports can be from 1M to 12M in length; the maximum CX-4 cable length supported on Supermicro switches is 12M.

It is acceptable to use a 1M stacking cable for port 1 and a 12M uplink cable for port 2. You will only need to configure the long cable preference for port 2. The way to configure this is:

```
SMIS# config term
SMIS(config)# int ex 0/2
SMIS(config-if)# cx4-cable-length long
```

This configuration is done on an individual port basis. Thus, you can use “short” for one port and “long” for the other port. Alternatively you might use both “short” or, if neither port is used for stacking, both can be “long” cables.

Enabling Stacking

Super Micro switches by default act as stand alone switches. This standalone default facilitates using 10G Ethernet ports as Extreme Ethernet ports for uplinks. When stacking is enabled the stacking ports are dedicated for stacking purpose.

Stacking can be enabled by using the command “stack” with a switch identifier and a priority. The detailed command syntax is explained below:

- When stacking is enabled, the switch needs to be rebooted to take it effective.

- When a switch is acting as a stand-alone switch with stacking disabled, all physical interfaces are numbered as 0/1 to 0/n. When the switch is in stacking mode, the interfaces are numbered as <switch id>/1 to <switch id> / n. In non-stacking mode, the switch id is considered to be 0.

- In the stacking mode, any firmware upgrade in the Master Switch will automatically initiate a firmware upgrade to all attached stack member switches. Firmware upgrade confirmation from stack member switches will be displayed in the Master Switch management interface.

- In the stacking mode, the user can reload all stacked switches or any selected stack member switch from the master management interface.

The interface numbers change between stacking and non stacking cases due to the switch id. Hence configurations saved for stacking are not valid for non stacking cases and vice versa.

- If the user chooses stacking using the “stack” command while the switch is in a non-stacking state and if the configurations are already saved for restoring; the switch will rename the configuration file by adding a suffix _nonstack and will not restore this file when the switch reboots with stacking enabled.
Similarly if the user chooses non-stacking using the “no stack” command while the switch is in a stacking state and if the configurations are already saved for restoring; the switch will rename the configuration file by adding a suffix _stack and will not restore this file when the switch reboots with stacking disabled.
Adding Stacking Members
Connect the stacked switches using stacking cables. For better redundancy, connect the switches as a daisy chain as shown in the diagram below. This chain connectivity helps to maintain stacking in the case of a single link or switch failure.

Before connecting switches in stacking make sure stacking is enabled in all switches and that switch identifiers and priorities are configured properly.

There is no specific configuration required to add stack switches. If two stacking enabled switches connected through stacking cables, they form the stack.

- Do not use the same switch id for multiple switches on the stack.

![Diagram of stacked switches]

- Only one master switch user is allowed to configure a stack. The slave switches will not allow you to configure anything except stacking disabled. To login to slave switches, use a login name such as “stackuser” and a password like “stack123”.

Removing a stacked switch

To remove a switch from stacking follow the below recommended procedure:

1. Disconnect stacking cables.
2. Reboot the removed switch as a stand-alone switch.
3. Execute “no stack” command.
4. Reboot the switch again to operate as regular stand-alone switch.

When a switch is moved from stacking to stand-alone mode, the saved stacking configurations cannot be loaded in stand-alone mode. When the “no stack” command is issued, the switch software will rename the existing configuration file to avoid automatic restoration of stacking configurations on a stand-alone switch.
4.1 Stack

This command enables stacking and helps configuring stacking ports, priority and switch identifier.

```
stack { priority {PM | BM | PS} } {switchId <NodeId (1-16)>} {ports <xg1,xg2,...>}
```

```
no stack
```

Syntax Description

Priority – Priority of the switch to decide the master among stacked switches. PM denotes preferred master. BM denotes backup master. PS denotes preferred slave.

switchId - Unique number to identify switches. Make sure to use different switch identifier for stack member switches.

ports – The list of stacking ports as xg1, xg2..... It is recommended to use two ports for stacking to connect all stacking switches in daisy chain.

Mode

Privileged EXEC Mode

Defaults

Stacking is disabled.

Example:

```
SMIS# stack priority PM switched 1 ports xg3, xg4.
```

Related Commands

- `show stackbrief` – Displays summarized stack information
- `show stack details` - Displays stack details
- `show stack counters` - Displays stack port statistics
- `show stack switchid` - Displays stack details for particular switch.
- `show stack link status` – Displays the stacking interface link status.
4.2 Show stack brief

This command displays the following stacking information:
Switch Id
Stack Ports
Switch Priority
Switch State
Also Switch ID and Status for all connected stack peer switches.

show stack brief

Syntax Description

Mode
Privileged EXEC Mode

Defaults
Stacking is disabled.

Example:
SMIS# show stack brief

Related Commands
stack – Configures switch identifier, priority and stacking ports.
show stack details - Displays stack details
show stack counters - Displays stack port statistics
show stack switchid - Displays stack details for particular switch.
show stack link status – Displays the stacking interface link status.
4.3 Show stack details

This command displays the stacking details.

`show stack details`

Syntax Description

Mode
Privileged EXEC Mode

Defaults
Stacking is disabled.

Example:
SMIS# show stack details

Related Commands
- `stack` – Configures switch identifier, priority and stacking ports.
- `show stack brief` – Displays summarized stack information
- `show stack counters` - Displays stack port statistics
- `show stack switchid` - Displays stack details for particular switch.
- `show stack link status` – Displays the stacking interface link status.
4.4 Show stack counters

This command shows the port counter statistics for stacking ports.

```
show stack counters
```

Syntax Description

Mode
Privileged EXEC Mode

Defaults
Stacking is disabled.

Example:
```
SMIS# show stack counters
```

Related Commands

- `stack` – Configures switch identifier, priority and stacking ports.
- `show stack brief` – Displays summarized stack information
- `show stack details` - Displays stack details
- `show stack switchid` - Displays stack details for particular switch.
- `show stack link status` – Displays the stacking interface link status.
4.5 Show stack switchid

This command displays the details of particular switch stacking member.

`show stack switched <id>`

Syntax Description

id – switch identifier

Mode

Privileged EXEC Mode

Defaults

Stacking is disabled.

Example:

SMIS# show stack switchid

Related Commands

* stack – Configures switch identifier, priority and stacking ports.
* show stack brief – Displays summarized stack information
* show stack details - Displays stack details
* show stack counters - Displays stack port statistics
* show stack link status – Displays the stacking interface link status.
4.6 Show stack link status

This command displays the stack interface link status.

```
show stack link status
```

Syntax Description

Mode

Privileged EXEC Mode

Defaults

Stacking is disabled.

Example:

```
SMIS# show stack link status
```

Related Commands

- `stack` – Configures switch identifier, priority and stacking ports.
- `show stack brief` – Displays summarized stack information
- `show stack details` - Displays stack details
- `show stack counters` - Displays stack port statistics
- `show stack switchid` - Displays stack details for particular switch.
5 Syslog

Syslog is a protocol used for capturing log information for devices on a network. The syslog protocol provides a transport to allow a machine to send event notification messages across IP networks to event message collectors, also known as syslog servers. The protocol is simply designed to transport the event messages.

One of the fundamental tenets of the syslog protocol and process is its simplicity. The transmission of syslog messages may be started on a device without a receiver being configured, or even actually physically present. This simplicity has greatly aided the acceptance and deployment of syslog.

The list of CLI commands for the configuration of Syslog is as follows:

- `logging enable`
- `logging disable`
- `logging ip`
- `logging buffered`
- `logging console`
- `logging facility`
- `logging trap`
- `logging file`
- `cmdbuffs`
- `service timestamps`
- `clear logs`
- `show logging`
- `show logging file`
5.1 logging enable

This command enables the syslog feature.

Syslog feature is enabled by default.

logging enable

Mode
Global Configuration Mode

Defaults
enable

Example:
SMIS(config)# logging enable

Related Commands
show logging - Displays Logging status and configuration information
5.2 logging disable

This command disables the syslog feature.

Syslog feature is enabled by default.

```
logging disable
```

Mode
Global Configuration Mode

Defaults
enable

Example:
```
SMIS(config)# logging disable
```

Related Commands
```
show logging  - Displays Logging status and configuration information
```
5.3 logging ip

This command enables Syslog server and configures the Syslog Server IP address.
The no form of the command disables Syslog server and re-sets the configured Syslog server IP address

logging <ip-address>

no logging <ip-address>

Syntax Description
ip-address - Host IP address used as a Syslog server

Mode
Global Configuration Mode

Defaults
Logging - on
IP address - None

Example:
SMIS(config)# logging 12.0.0.2

Related Command
show logging - Displays Logging status and configuration information
5.4 logging buffered

This command enables logging to syslog buffers and configures the number of buffers to be used to store syslog messages.

The no form of the command resets the number of buffers to its default value 50.

logging buffered <size (1-200)>

no logging buffered buffer-size

Syntax Description
buffered - Limits Syslog messages displayed from an internal buffer

Mode
Global Configuration Mode

Defaults
buffers - 50

Example:
SMIS(config)# logging buffered 100

Related Command
show logging - Displays Logging status and configuration information
5.5 logging console
This command enables the display of syslog messages in to console terminal.

The no form of the command disables the console logging.

```
logging console

no logging console
```

Syntax Description
- `console` - Enables syslog messages logged to the console

Mode
Global Configuration Mode

Defaults
Console - disabled

Example:
```
SMIS(config)# logging console
```

Related Command
- `show logging` - Displays Logging status and configuration information
5.6 logging facility

This command configures the syslog facility sent on syslog messages. The \texttt{no} form of this command configures the syslog facility to the default value \texttt{local0}.

\texttt{logging \ facility \ {local0 | local1 | local2 | local3 | local4 | local5 | local6 | local7 | user}}

\texttt{no \ logging \ { \ <ip-address> \ | \ buffered \ | \ console \ | \ facility \ | \ trap \ | \ on \}}

\textbf{Syntax Description}

\texttt{facility} - The facility that is indicated in the message. This can be one of the following values: \texttt{local0}, \texttt{local1}, \texttt{local2}, \texttt{local3}, \texttt{local4}, \texttt{local5}, \texttt{local6}, \texttt{local7} or \texttt{user}.

\textbf{Mode}

Global Configuration Mode

\textbf{Defaults}

\texttt{facility} – \texttt{local0}

\textbf{Example:}

\texttt{SMIS(config)# logging facility local1}

\textbf{Related Command}

\texttt{show logging} - Displays Logging status and configuration information
5.7 logging trap
This command configures the syslog trap level. The no form of this command resets the syslog trap level to its default value critical.

logging trap [{ <level (0-7)> | alerts | critical | debugging | emergencies | errors | informational | notification | warnings }]

no logging trap

Syntax Description
trap - Trap messages

Mode
Global Configuration Mode

Defaults
Trap - critical

Example:
SMIS(config)# logging trap informational

Related Command
show logging - Displays Logging status and configuration information
5.8 logging file

This command enables logging of syslog messages into a file. The no form of the command disables file logging.

The log file is stored in ASCII text format.

`logging file <filename> max-entries <short (1-8000)>`

`no logging file`

Syntax Description

- **filename** - Name of the file to which syslog messages are written
- **max-entries** - Maximum number of syslog messages that can be written on the file. Once this number is reached the file wrapped to overwrite the oldest entries.

Mode

Global Configuration Mode

Defaults

File logging is not enabled.

Example:

SMIS(config)# logging file swl_log max-entries 5000

Related Command

- `show logging` - Displays Logging status and configuration information
- `show logging file` - Displays syslog messages stored on the file
5.9 cmdbuffs
This command configures the number of syslog buffers for a particular user.

`cmdbuffs <user name> <no. of buffers (1-200)>`

Syntax Description

- **user name**: User Name
- **no. of buffers**: Number of log buffers to be allocated in the system

Mode
Global Configuration Mode

Defaults
50

Example:
SMIS(config)#cmdbuffs supermicro 50

CLI related events like commands given by the user, login/logout etc can be logged on to the Syslog Server.

Related Commands

- `logging`: Enables Syslog Server and configures the Syslog Server IP address, the log-level and other Syslog related parameter
- `show logging`: Displays Logging status and configuration information
5.10 service timestamps

This command enables timestamp option for logged messages and the no form of the command disables timestamp option for logged messages.

service timestamps

no service timestamps

Mode
Global Configuration Mode

Defaults
Enabled

Example:
```
SMIS(config)#service timestamps
```

When enabled, the messages (log and email alert messages) will hold the time stamp information.

When disabled, the time stamp information will not be carried with the messages sent to the log and mail servers

Related Commands
- `logging` - Enables Syslog Server and configures the Syslog Server IP address, the log-level and other Syslog related parameter
- `show logging` - Displays Logging status and configuration information
5.11 clear log buffer
This command clears the system syslog buffers.

clear log buffer

Mode
Global Configuration Mode

Example:
SMIS(config)# clear log buffer

Related Commands
cmdbuf - Configures the number of Syslog buffers for a particular user
clogging - Enables Syslog Server and configures the Syslog Server IP address, the log-level and other Syslog related parameter
show logging - Displays Logging status and configuration information
5.12 clear log file

This command clears all the syslog messages from the syslog file.

```
clear log file
```

Mode
Global Configuration Mode

Example:
```
SMIS(config)# clear log file
```

Related Commands
- `cmdbuffs` - Configures the number of Syslog buffers for a particular user
- `logging` - Enables Syslog Server and configures the Syslog Server IP address, the log-level and other Syslog related parameter
- `show logging` - Displays Logging status and configuration information
5.13 show logging

This command displays logging status and configuration information.

```
show logging
```

Mode

Privileged EXEC Mode

Example:

```
SMIS# show logging
System Log Information
----------------------
Syslog logging : enabled
Console logging : enabled
TimeStamp option : enabled
Trap logging : Critical
Log server IP : 10.0.0.1
Facility : Default (Mail)
Buffered size : 100
```

Related Commands

- `logging` - Enables Syslog Server and configures the Syslog Server IP address, the log-level and other Syslog related parameter
- `service timestamps` - Enables timestamp option for logged messages
5.14 show logging file

This command displays syslog messages from syslog file.

show logging file

Mode
Privileged EXEC Mode

Example:
SMIS# show logging file
LogFile(4 Entries)
<134> Nov 17 17:01:59 2012:CLI-6:User logged out
<134> Nov 17 17:02:08 2012:CLI-6/Login failed : Login incorrect AA
<134> Nov 17 17:02:10 2012:CLI-6/Login failed : Login incorrect BB
<134> Nov 17 17:02:13 2012:CLI-6:User ADMIN logged in

Related Commands
logging file - Enables writing syslog messages into a log file
6 SSH

SSH is a protocol for secure remote login and other secure network services over an insecure network. It consists of three major components:

- The Transport Layer Protocol provides server authentication, confidentiality, and integrity.
- The User Authentication Protocol authenticates the client-side user to the server. It runs over the transport layer protocol.
- The Connection Protocol multiplexes the encrypted tunnel into several logical channels. It runs over the user authentication protocol.

The client sends a service request once a secure transport layer connection has been established. A second service request is sent after user authentication is complete. This allows new protocols to be defined and coexist with these protocols.

The list of CLI commands for the configuration of SSH is as follows:

- `ip ssh`
- `debug ssh`
- `show ip ssh`
6.1 ip ssh

This command enables SSH server on the device and also configures the various parameters associated with SSH server. The no form of the command disables SSH server on the device and also re-sets the various parameters associated with SSH server.

```
ip ssh {version compatibility | cipher ([des-cbc] [3des-cbc]) | auth ([hmac-md5] [hmac-sha1]) }
```

```
no ip ssh {version compatibility | cipher ([des-cbc] [3des-cbc]) | auth ([hmac-md5] [hmac-sha1]) } version
```

Syntax Description
Compatibility - The support for the SSH protocol version
Cipher - The cipher-algorithm list
Auth - Public key authentication for incoming SSH sessions

Mode
Global configuration Mode

Defaults
version compatibility - false
cipher - 3des-cbc
auth - hmac-sha1

Example:
SMIS(config)#ip ssh version compatibility
SMIS(config)# ip ssh cipher des-cbc

When version compatibility is set to TRUE, both SSH version-1 and SSH version-2 will be supported. When set to FALSE, SSH version-2 only will be supported. The cipher list takes values as bit mask. Setting a bit indicates that the corresponding cipher-list will be used for Encryption. The auth takes values as bit mask. Setting a bit indicates that the corresponding MAC-list will be used for authentication.

Related Command
show ip ssh - Displays SSH server information
6.2 debug ssh

This command sets the given trace levels for SSH and the no form of the command re-sets the
given SSH trace level.

```
debug ssh ([all] [shut] [mgmt] [data] [ctrl] [dump] [resource] [buffer])
```

```
no debug ssh ([all] [shut] [mgmt] [data] [ctrl] [dump] [resource] [buffer])
```

Syntax Description
- **all** - Initialization and Shutdown Messages
- **shut** - Shutdown Messages
- **mgmt** - Management Messages
- **data** - Data Path Messages
- **ctrl** - Control Plane Messages
- **dump** - Packet Dump Messages
- **resource** - Messages related to all resources except Buffers
- **buffer** - Buffer Messages

Mode
Privileged EXEC Mode

Defaults
Debugging is Disabled

Example:
```
SMIS# debug ssh all
```

Setting all the bits will enable all the trace levels and resetting them will disable all the
trace levels.

Related Command
- `show ip ssh` - Displays SSH server information
6.3 show ip ssh

This command displays SSH server information.

```
show ip ssh
```

Mode
Privileged EXEC Mode

Example:

```
SMIS# show ip ssh
Version : 2
Cipher Algorithm : 3DES-CBC
Authentication : HMAC-SHA1
Trace Level : None
```

Related Command

`ip ssh` - Enables SSH server on the device and configures the various parameters associated with SSH server
SSL (Secure Sockets Layer), is a protocol developed for transmitting private documents through the Internet. SSL works by using a private key to encrypt data that is transferred over the SSL connection. Both Netscape Navigator and Internet Explorer support SSL, and many Web sites use the protocol to obtain confidential user information, such as credit card numbers. By convention, URLs that require an SSL connection start with https: instead of http:

The SSL Protocol is designed to provide privacy between two communicating applications (a client and a server) and is designed to authenticate the server, and optionally the client. SSL requires a reliable transport protocol (e.g. TCP) for data transmission and reception.

The advantage of the SSL Protocol is that it is application protocol independent. A higher level application protocol (e.g. HTTP, FTP, TELNET, etc.) can layer on top of the SSL Protocol transparently. The SSL Protocol can negotiate an encryption algorithm and session key as well as authenticate a server before the application protocol transmits or receives its first byte of data. All of the application protocol data is transmitted encrypted, ensuring privacy.

The list of CLI commands for the configuration of SSL is as follows:

```
ip http secure
ssl gen cert-req algo rsa sn
ssl server-cert
debug ssl
show ssl server-cert
show ip http secure server status
```
7.1 ip http secure

This command enables SSL server on the device and also configures ciphersuites and crypto keys. The no form of the command disables SSL server on the device and also disables ciphersuites and crypto key configuration.

ip http secure { server | ciphersuite [rsa-null-md5] [rsa-null-sha] [rsa-dessha] [rsa-3des-sha] [dh-rsa-3des-sha] [dh-rsa-3des-sha][rsa-exp1024-desh] | crypto key rsa [usage-keys (512|1024)] }

no ip http secure { server | ciphersuite [rsa-null-md5] [rsa-null-sha] [rsades-sha] [rsa-3des-sha] [dh-rsa-3des-sha] [dh-rsa-3des-sha] [rsa-exp1024-desh]}

Syntax Description
server - SSL Server
ciphersuite - Configures the cipher-suites list
crypto key rsa - Usage Key

Mode
Global Configuration Mode

Defaults
Ciphersuite - rsa-null-md5

Example:
SMIS(config)# ip http secure ciphersuite rsa-null-sha

The ciphersuite field is a bit mask, setting a bit indicates that the corresponding cipher-list will be involved in the server authentication.

Related Commands
show ssl server-cert - Displays SSL server certificate
show ip http secure server status - Displays SSL status and configuration information
7.2 ssl gen cert-req algo rsa sn

This command creates a certificate request using RSA key pair and subjectName.

ssl gen cert-req algo rsa sn <SubjectName>

Syntax Description
SubjectName - Identification of the switch (or) the switch's IP address

Mode
Privileged EXEC Mode

Example:
SMIS# ssl gen cert-req algo rsa sn 10.6.4.248

Related Commands
show ssl server-cert - Displays SSL server certificate
show ip http secure server status - Displays SSL status and configuration information
7.3 ssl server-cert

This command configures the server cert, input in PEM format. It generates a certificate request, which can be submitted to a CA (Certificate Authority) to obtain the SSL certificate for the device.

ssl server-cert

Mode
Privileged EXEC Mode

Example:

```
SMIS# ssl server-cert
```

The certificate request must have been created.

Related Commands

- `show ssl server-cert` - Displays SSL server certificate
- `show ip http secure server status` - Displays SSL status and configuration information
7.4 debug ssl

This command sets the given debug levels for SSL and the no form of the command re-sets the given SSL debug level.

ddebug ssl ([all] [shut] [mgmt] [data] [ctrl] [dump] [resource] [buffer])

no debug ssl ([all] [shut] [mgmt] [data] [ctrl] [dump] [resource] [buffer])

Syntax Description

call - Initialization and Shutdown Messages
cshut - Shutdown Messages

cmgmt - Management Messages
cdata - Data Path Messages
cctrl - Control Plane Messages
cdump - Packet Dump Messages
cresource - Messages related to all resources except Buffers
cbuffer - Buffer Messages

Mode
Privileged EXEC Mode

Defaults
Debugging is Disabled

Example:
SMIS# debug ssl all

Setting all the bits will enable all the debug levels and resetting them will disable all the debug levels.

Related Commands
show ssl server-cert - Displays SSL server certificate
show ip http secure server status - Displays SSL status and configuration information
7.5 show ssl server-cert

This command displays SSL server certificate.

show ssl server-cert

Mode

Privileged EXEC Mode

Example:

SMIS# show ssl server-cert

Certificate:

Data:

Version: 1 (0x0)

Serial Number: 1 (0x1)

Signature Algorithm: md5WithRSAEncryption

Issuer: C=in, ST=tn, L=ch, O=fsoft,OU=ps, CN=dheepaag/Email=products@supermicro.com

Validity

Not Before: Jan 12 07:40:35 2005 GMT

Not After: Feb 11 07:40:35 2005 GMT

Subject: CN=dee

Subject Public Key Info:

Public Key Algorithm:rsaEncryption

RSA Public Key: (1024bit)

Modulus (1024 bit):

00:b1:cf:8f:04:39:c4:80:bc:f0:2b:40:e0:85:16:
c8:ba:00:ad:b2:96:cc:1c:4a:8b:2d:51:27:df:eb:
9a:8f:6a:b2:8a:98:92:8e:6a:ed:ba:2e:04:38:3a:

Exponent:65537(0x10001)

Signature Algorithm: md5WithRSAEncryption

SSL server certificate must have been created.

Related Commands

- `ip http secure` - Enables SSL server on the device and also configures ciphersuites and crypto keys
- `ssl gen cert req algo rsa sn` - Creates a certificate request using RSA key pair and subjectName
- `ssl server cert` - Configures the server cert, input in PEM format
- `show ip http secure server status` - Displays SSL status and configuration information
7.6 show ip http secure server status

This command displays SSL status and configuration information.

show ip http secure server status

Mode
Privileged EXEC Mode

Example:
SMIS# show ip http secure server status
HTTP secure server status : Enabled
HTTP secure server ciphersuite : RSA-DES-SHA:RSA-3DES-SHA:RSAEXP1024-DES-SHA:

Initially, http secure server, ciphersuite, crypto key must have been configured.

Related Commands
- **ip http secure** - Enables SSL server on the device and also configures ciphersuites and crypto keys
- **ssl gen cert-req algo rsa sn** - Creates a certificate request using RSA key pair and subjectName
- **ssl server-cert** - Configures the server cert, input in PEM format
- **show ssl server-cert** - Displays SSL server certificate
8 RMON

RMON (Remote Monitoring) is a standard monitoring specification that enables various network monitors and console systems to exchange network-monitoring data.

The RMON specification defines a set of statistics and functions that can be exchanged between RMON-compliant console managers and network probes. As such, RMON provides network administrators with comprehensive network-fault diagnosis, planning, and performance-tuning information.

The list of CLI commands for the configuration of RMON is as follows:

```
set rmon
rmon event
rmon alarm
rmon collection history
rmon collection stats
show rmon
```
8.1 set rmon

This command is used to enable or disable the RMON feature.

set rmon {enable | disable}

Syntax Description
enable - Enables the RMON feature in the system
disable - Disables the RMON feature in the system

Mode
Global Configuration Mode

Defaults
The RMON Module is disabled by default

Example:
SMIS(config)# set rmon enable

- All the other RMON Module commands can be executed only when the RMON Module is enabled. Fatal error messages are displayed when commands are executed without enabling the RMON feature.

Related Command
show rmon - Successful execution of this command without any messages indicates that RMON feature is enabled in the system
8.2 rmon event
This command adds an event to the RMON event table. The added event is associated with an
RMON event number. The no form of the command deletes an event from the RMON event table.

```
 rmon event <number (1-65535)> [description <event-description (127)>]
               [log] [owner <ownername (127)>] [trap <community (127)>]
```

```
no rmon event <number (1-65535)>
```

Syntax Description
Number - Event number
Description - Description of the event
Log - Used to generate a log entry
Owner - Owner of the event
Trap - Used to generate a trap. The SNMP community string is to be passed for the specified
trap.

Mode
Global Configuration Mode

Example:
```
SMIS(config)# rmon event 1 log owner supermicro trap netman
```

→ The RMON feature must be enabled for the successful execution of this command.

Related Commands
rmon alarm - Sets an alarm on a MIB object
show rmon - Displays the RMON events (show rmon events)
show snmp community - Configures the SNMP community details
8.3 rmon alarm
This command sets an alarm on a MIB object. The Alarm group periodically takes statistical
samples from variables in the probe and compares them to thresholds that have been configured.
The no form of the command deletes the alarm configured on the MIB object.

```
 rmon alarm <alarm-number (1-65535) > <mib-object-id (255)> <sample-
 intervaltime (1-65535)> {absolute | delta} rising-threshold <value (0-
 2147483647)> <rising-event-number (1-65535)> falling-threshold <value
 (0-2147483647)> <falling-event-number (1-65535)> [owner <ownername
 (127)>]
```

```
no rmon alarm <number (1-65535)>
```

Syntax Description

- **alarm-number** - Alarm Number
- **mib-object-id** - The mib object identifier
- **sample-intervaltime** - Time in seconds during which the alarm monitors the MIB variable
- **absolute** - Used to test each mib variable directly
- **delta** - Used to test the change between samples of a variable
- **rising-threshold** - A number at which the alarm is triggered
- **falling-threshold** - A number at which the alarm is reset
- **rising-eventnumber** - The event number to trigger when the rising threshold exceeds its limit
- **falling-eventnumber** - The event number to trigger when the falling threshold exceeds its limit
- **owner** - Owner of the alarm

Mode

Global Configuration Mode

Example:
```
SMIS(config)# rmon alarm 1 1.3.6.1.2.1.16.1.1.1.5.2 20 absolute
rising-threshold 15 2 falling-threshold 14 2

➤ The RMON Feature must be enabled for the successful execution of this command
RMON events must have been configured
In SMIS, we cannot monitor all the mib objects through RMON. This will be applicable only to the Ethernet interfaces.

Related Commands

- `rmon collection stats` - Enables RMON statistic collection on the interface
- `rmon event` - Adds an event to the RMON event table
- `show rmon` - Displays the RMON alarms (show rmon alarms)
8.4 rmon collection history

This command enables the collection of MIB history group of statistics on the interfaces. The no form of this command removes the specified history group of statistics collection from the interfaces.

```
rmon collection history <index (1-65535)> [buckets <bucket-number (1-65535)>] [interval <seconds (1-3600)>] [owner <ownername (127)>]

no rmon collection history <index (1-65535)>
```

Syntax Description

- **index** – An identifier to refer this history statistics collection configuration. This index is used while deleting this configuration using the no command.
- **buckets** – Maximum number of buckets needed to hold this history statistics
- **interval** - Time in seconds on which this statistics is collected
- **owner** - Owner of this statistics collection

Mode

Interface Configuration Mode

Example:

```
SMIS(config-if)# rmon collection history 1 buckets 1 interval 10 owner abc
```

Related Commands

- **rmon collection stats** - Enables RMON statistic collection on the interface
- **rmon event** - Adds an event to the RMON event table
- **show rmon** - Displays the RMON information
8.5 rmon collection stats

This command enables the collection of RMON statistics on the interfaces.
The no form of this command disables the RMON statistics collection on the interfaces.

```
 rmon collection stats <index (1-65535)> [owner <ownername (127)>]

 no rmon collection stats <index (1-65535)>

Syntax Description
index – An identifier to refer this statistics collection configuration. This index is used while
deleting this configuration using the no command.
owner - Owner of this statistics collection

Mode
Interface Configuration Mode

Example:
SMIS(config-if)# rmon collection stats 1 owner abc
```

Related Commands
rmon event - Adds an event to the RMON event table
show rmon  - Displays the RMON information
8.6 show rmon

This command displays the RMON statistics, alarms, events, and history configured on the interface.

```
show rmon [statistics [<stats-index (1-65535)>]] [alarms] [events] [history [history-index (1-65535)]] [overview]
```

**Syntax Description**

- **Statistics** - The configured stats index value
- **Alarms** - The configured alarm
- **events** - The configured event
- **history** - The configured history index
- **overview** - Displays only the overview of rmon history entries

**Mode**

Privileged EXEC Mode

**Example:**

```
SMIS# show rmon statistics 2
RMON is enabled
Collection 2 on Gi0/2 is active, and owned by fsoft,
Monitors ifEntry.1.2 which has
Received 1240 octets, 10 packets,
2 broadcast and 10 multicast packets,
0 undersized and 1 oversized packets,
0 fragments and 0 jabbers,
0 CRC alignment errors and 0 collisions.
of packets received of length (in octets):
 64: 0, 65-127: 10, 128-255: 0,
 256-511: 0, 512-1023: 0, 1024-1518: 0

SMIS# show rmon
RMON is enabled

SMIS# show rmon history
RMON is enabled
Entry 1 is active, and owned by fsoft
```
Monitors ifEntry.1.1 every 3000 second(s)
Requested # of time intervals, ie buckets, is 3,
Granted # of time intervals, ie buckets, is 3,
Sample 1 began measuring at 0
Received 0 octets, 0 packets,
0 broadcast and 0 multicast packets,
0 undersized and 0 oversized packets,
0 fragments and 0 jabbers,
0 CRC alignment errors and 0 collisions,
# of dropped packet events is 0
Network utilization is estimated at 0
Sample 2 began measuring at 0
Received 0 octets, 0 packets,
0 broadcast and 0 multicast packets,
0 undersized and 0 oversized packets,
0 fragments and 0 jabbers,
0 CRC alignment errors and 0 collisions,
# of dropped packet events is 0
Network utilization is estimated at 0

SMIS# show rmon events
RMON is enabled
Event 1 is active, owned by
Description is end
Event firing causes nothing,
Time last sent is 0 seconds
Event 2 is active, owned by fsoft
Description is trapcheck
Event firing causes log and trap to community 5,
Time last sent is 3 seconds

SMIS# show rmon alarms
RMON is enabled
Alarm 1 is active, owned by
Monitors 1.3.6.1.2.1.16.1.1.1.5.2 every 65 second(s)
Taking absolute samples, last value was 35
Rising threshold is 15, assigned to event 1
Falling threshold is 14, assigned to event 2
On startup enable rising or falling alarm

SMIS# show rmon statistics 2 alarms events history 2
  RMON is enabled
  Collection 2 on Gi0/2 is active, and owned by fsoft,
  Monitors ifEntry.1.2 which has
  Received 4712 octets, 38 packets,
  0 broadcast and 38 multicast packets,
  0 undersized and 0 oversized packets,
  0 fragments and 0 jabbers,
  0 CRC alignment errors and 0 collisions.
  # of packets received of length (in octets):
    64: 0, 65-127: 38, 128-255: 0,
    256-511: 0, 512-1023: 0, 1024-1518: 0
  Alarm 1 is active, owned by
  Monitors 1.3.6.1.2.1.16.1.1.1.5.2 every 65 second(s)
  Taking absolute samples, last value was 37
  Rising threshold is 15, assigned to event 1
  Falling threshold is 14, assigned to event 2
  On startup enable rising or falling alarm
  Event 1 is active, owned by
  Description is end
  Event firing causes nothing,
  Time last sent is 1708335 seconds
  Event 2 is active, owned by fsoft
  Description is trapcheck
  Event firing causes log and trap to community 5,
  Time last sent is 0 seconds
  Entry 2 is active, and owned by fsoft
  Monitors ifEntry.1.2 every 2000 second(s)
  Requested # of time intervals, ie buckets, is 5,
  Sample 1 began measuring at 0
  Received 0 octets, 0 packets,
  0 broadcast and 0 multicast packets,
  0 undersized and 0 oversized packets,
  0 fragments and 0 jabbers,
0 CRC alignment errors and 0 collisions,
# of dropped packet events is 0
Network utilization is estimated at 0
Sample 2 began measuring at 0
Received 0 octets, 0 packets,
0 broadcast and 0 multicast packets,
0 undersized and 0 oversized packets,
0 fragments and 0 jabbers,
0 CRC alignment errors and 0 collisions,
# of dropped packet events is 0
Network utilization is estimated at 0

SMIS# show rmon history overview
RMON is enabled
Entry 1 is active, and owned by fsoft
Monitors ifEntry.1.1 every 3000 second(s)
Requested # of time intervals, ie buckets, is 3,
Granted # of time intervals, ie buckets, is 3

If the show rmon command is executed without enabling the RMON feature, then the following output is displayed

SMIS# show rmon
RMON feature is disabled

Related Commands
set rmon - Enables or disables the RMON feature
rmon collection history - Enables history collection of interface statistics in the buckets for the specified time interval
rmon collection stats - Enables RMON statistic collection on the interface
rmon event - Adds an event to the RMON event table
rmon alarm - Sets an alarm on a MIB object
9 STP

STP (Spanning-Tree Protocol) is a link management protocol that provides path redundancy while preventing undesirable loops in the network that are created by multiple active paths between stations. To establish path redundancy, STP creates a tree that spans all of the switches in an extended network, forcing redundant paths into a standby, or blocked, state.

MSTP defines an extension to RSTP that further develops the usefulness of VLANs. This "per-VLAN" MSTP configures a separate Spanning Tree for each VLAN group and blocks the links that are redundant within each Spanning Tree.

If there is only one VLAN in the network, single (traditional) STP works appropriately. If the network contains more than one VLAN, the logical network configured by single STP would work, but it is possible to make better use of the redundant links available by using an alternate spanning tree for different (groups of) VLANs. MSTP allows the formation of MST regions that can run multiple MST instances (MSTI). Multiple regions and other STP bridges are interconnected using one single common spanning tree (CST).

- The list of CLI commands for the configuration of STP are common to both Single Instance and Multiple Instance, except for a difference in the prompt that appears for the Switch with Multiple Instance support.
  - The prompt for the Global Configuration Mode is,
    SMIS(config-switch)#
  - The prompt for the MSTP Configuration Mode is,
    SMIS(config-switch-mst)#.
- The parameters specific to Multiple Instance are stated so, against the respective parameter descriptions in this document.
- The output of the Show commands differ for Single Instance and Multiple Instance. Hence both the output are documented while depicting the show command examples.

The list of commands to configure STP are:

- spanning-tree mode
- spanning-tree
- spanning-tree compatibility
- spanning-tree timers
- spanning-tree transmit hold-count
- spanning-tree mst max-hops
- spanning-tree priority
spanning-tree pathcost method
spanning-tree mst configuration
name
revision
instance
spanning-tree auto-edge
spanning-tree - Properties of an interface
spanning-tree restricted-role
spanning-tree restricted-tcn
spanning-tree mst - Properties of an interface for MSTP
spanning-tree mst hello-time
clear spanning-tree counters
clear spanning-tree pathcost dynamic
clear spanning-tree detected protocols
debug spanning-tree
show spanning-tree - Summary, Blockedports, Pathcost
show spanning-tree - Detail
show spanning-tree active
show spanning-tree interface
show spanning-tree root
show spanning-tree bridge
show spanning-tree mst
show spanning-tree mst configuration
show spanning-tree mst - Port Specific Configuration
9.1 spanning-tree mode

This command sets the spanning tree operating mode.

```
spanning-tree mode {mst|rst}
```

**Syntax Description**
- `mst` - MSTP configuration
- `rst` - RSTP configuration

**Mode**
Global Configuration Mode

**Defaults**
mst

**Example:**
```
SMIS(config)#spanning-tree mode rst
```

- When ISS boots up, Spanning Tree is enabled by default with MSTP operating in the switch.
- This command only starts and enables the spanning tree mode. However port-roles and states will be computed only after enabling the spanning tree.
- If the user-input for the spanning-tree mode is different from the current mode of operation, then ISS will shutdown the operational spanning-tree and start the spanning-tree as per user-input.

**Related Commands**
- `show spanning-tree - Detail` - Displays detailed spanning tree information
- `show spanning-tree - Active` - Displays spanning tree information of active ports
9.2 spanning-tree

This command enables the spanning tree operation and the no form of the command disables the spanning tree operation.

spanning-tree

no spanning-tree

Mode
Global Configuration Mode

Defaults
Spanning tree enabled is MSTP

Example:
SMIS(config)#spanning-tree

Related Commands
show spanning-tree - Detail - Displays detailed spanning tree information
show spanning-tree - Active - Displays spanning tree information of active ports
9.3 spanning-tree compatibility

This command sets the compatibility version for the spanning tree protocol. The no form of the command sets the compatibility version for spanning tree protocol to its default value.

```
spanning-tree compatibility {stp|rst|mst}
```

```
no spanning-tree compatibility
```

**Syntax Description**

- `mst` - MSTP configuration
- `stp` - STP configuration
- `rst` - RSTP configuration

**Mode**

Global Configuration Mode

**Defaults**

If Spanning Tree Protocol enabled is `mst`, then MSTP compatible
If Spanning Tree Protocol enabled is `rst`, then RSTP compatible

**Example:**

```
SMI(config)#spanning-tree compatibility stp
```

The option `mst` is available only when MSTP is the operational mode of the spanning tree

**Related Commands**

- `show spanning-tree - Detail` - Displays detailed spanning tree information
- `show spanning-tree - Active` - Displays spanning tree information of active ports
9.4 spanning-tree timers

This command sets the spanning tree Timers and the no form of the command sets the spanning tree timers to the default values.

```
spanning-tree {forward-time <seconds(4-30)> | hello-time <seconds(1-2)> | maxage <seconds(6-40)>}
```

```
no spanning-tree { forward-time | hello-time | max-age }
```

**Syntax Description**

- **forward-time** - Controls how fast a port changes its spanning tree state from Blocking state to Forwarding state.
- **hello-time** - Determines how often the switch broadcasts its hello message to other switches when it is the root of the spanning tree.
- **max-age** - The maximum age allowed for the Spanning Tree Protocol information learned from the network on any port before it is discarded.

**Mode**

Global Configuration Mode

**Defaults**

- max-age - 20 secs
- forward-time - 15 secs
- hello-time - 2 secs

**Example:**

```
SMIS(config)#spanning-tree max-age 6
SMIS(config)#spanning-tree hello-time 1
SMIS(config)#spanning-tree forward-time 4
```

The following relation must be observed while configuring the timers:

- \(2 \times (\text{Forward-time} - 1) \geq \text{Max-age}\)
- Max-Age \(\geq 2 \times (\text{Hello-time} +1)\)

**Related Commands**
show spanning-tree bridge  - Displays spanning tree configuration of the bridge forward time
show spanning-tree bridge hello-time - Displays spanning tree configuration of the bridge hello-time
show spanning-tree bridge max-age - Displays spanning tree configuration of the bridge max-age
show spanning-tree - Detail - Displays detailed spanning tree information
show spanning-tree - Active - Displays spanning tree information of active ports
9.5 spanning-tree transmit hold-count

This command sets the transmit hold-count value and the no form of the command sets the transmit holdcount to default value. Transmit hold count value is a counter used to limit the maximum transmission rate of the switch.

```plaintext
spanning-tree transmit hold-count <value (1-10)>

no spanning-tree transmit hold-count
```

Mode
Global Configuration Mode

Defaults
3

Example:
SMIS(config)#spanning-tree transmit hold-count 5

Related Commands
- `show spanning-tree - Detail` - Displays detailed spanning tree information
- `show spanning-tree - Active` - Displays spanning tree information of active ports
9.6 spanning-tree mst max-hops

This command sets the maximum number of hops permitted in the MST and the no form of the command sets the maximum number of hops permitted in the MST to the default value.

```
spanning-tree mst max-hops <value(6-40)>
```

```
no spanning-tree mst max-hops
```

**Mode**

Global Configuration Mode

**Defaults**

20

**Example:**

```
SMIS(config)#spanning-tree mst max-hops 10
```

The root switch of the instance always sends a BPDU with a cost of 0 and the hop count set to the maximum value.

**Related Command**

```
show spanning-tree mst configuration
```

- Displays multiple spanning tree instance Configuration
9.7 spanning-tree priority

This command sets the Bridge Priority for the spanning tree only in steps of 4096 and the no form of the command sets the Bridge Priority to the default value.

`spanning-tree [mst <instance-id>] priority <value(0-61440)>`

`no spanning-tree [mst <instance-id(1-16)>] priority`

**Syntax Description**

- **mst** - Range of spanning tree instances
- **priority** - Switch priority for the specified spanning-tree instance

**Mode**

Global Configuration Mode

**Defaults**

32768

**Example:**

```
SMIS(config)#spanning-tree priority 4096
```

"spanning-tree priority xxx" configures the priority in RSTP, if RSTP is running or configures the CIST priority if MSTP is running.

"spanning-tree mst instance priority" configures the priority in MSTI and is supported only if MSTP is running.

**Related Commands**

- `show spanning-tree - Detail` - Displays detailed spanning tree information
- `show spanning-tree - Active` - Displays spanning tree information of active ports
9.8 spanning-tree pathcost method

This command sets the method to calculate the port path cost and the no form of the command sets the method to calculate the port path cost to its default.

**spanning-tree pathcost method {long|short}**

**no spanning-tree pathcost method**

**Syntax Description**

- **long** - 32 bit pathcost
- **short** - 16 bit path cost

**Mode**

Global Configuration Mode

**Defaults**

If MSTP/RSTP is running, path cost method is long
If STP compatible RSTP is running, the path-cost method is short

**Example:**

SMIS(config)#spanning-tree pathcost method short

**Related Command**

*show spanning-tree - Summary, Blockedports, Pathcost* - Displays spanning tree pathcost information
9.9 spanning-tree mst configuration

This command helps to enter MST configuration submode

`spanning-tree mst configuration`

**Mode**
Global Configuration Mode

**Example:**
`SMIS(config)#spanning-tree mst configuration`

In the MST mode the switch supports up to 16 instances. This MST configuration submode is used to make instance-specific and MST region configurations only.

**Related Command**
`show spanning-tree mst configuration` - Displays multiple spanning tree instance Configuration
9.10 name

This command sets the configuration name for the MST region and the no form of the command deletes the configuration name.

name <string(optional max Length)>

no name

Mode
MSTP configuration Mode

Defaults
The default configuration name is 00: 00: 00: 00: 00: 00

Example:
SMIS(config-mst)#name regionone

The name string is case sensitive.

Related Command
show spanning-tree mst configuration - Displays Multiple spanning tree instance configuration
**9.11 revision**

This command sets the configuration revision number for the MST region and the no form of the command deletes the configuration revision number.

```
revision <value(0-65535)>
```

**no revision**

**Mode**
MSTP configuration Mode

**Defaults**

0

**Example:**

```
SMIS(config-mst)#revision 100
```

**Related Command**

**show spanning-tree mst configuration** - Displays Multiple spanning tree instance configuration
9.12 instance

This command maps VLANs to an MST instance and the no form of the command deletes the instance un-maps specific VLANs from the MST instance.

```
instance <instance-id(1-16)> vlan <vlan-range>
```

```
no instance <instance-id (1-16)> [vlan <vlan-range>]
```

Syntax Description

- `vlan` - VLAN range associated with a spanning-tree instance

Mode

MSTP configuration Mode

Defaults

VLANs mapped for instance 0: 1-1024, 1025-2048, 2049-3072, 3073-4069

Example:

```
SMIS(config-mst)#instance 2 vlan 2
```

A single VLAN identified by VLAN ID number is specified by a range of VLANs separated by a hyphen, or a series of VLANs separated by a comma.

Related Command

- `show spanning-tree mst configuration` - Displays Multiple spanning tree instance configuration
9.13 spanning-tree auto-edge

This command enables automatic detection of bridge attached on an interface and the no form of
the command disables automatic detection of bridge attached on an interface.

spanning-tree auto-edge

no spanning-tree auto-edge

Mode
Interface Configuration Mode

Example:
SMIS(config-if)# spanning-tree auto-edge

Related Command
show spanning-tree bridge - Displays the spanning-tree configuration of the bridge
9.14 spanning-tree - Properties of an interface

This command sets the spanning tree properties of an interface and the no form of the command sets the spanning tree properties of an interface to default value.

```
spanning-tree {cost <value(1-200000000)>|disable|link-type{point-topoint| shared}|portfast|port-priority <value(0-240)>}
```

```
no spanning-tree {cost |disable|link-type|portfast|port-priority}
```

Syntax Description

**port-priority** - Port priority value

**cost** - The pathcost value associated with the port

**disable** - Disables the spanning tree on the port

**link-type** - The link can be a point-to-point link or can be a shared LAN segment on which another bridge is present

**portfast** - Specifies that port has only hosts connected and hence can transition to forwarding rapidly

**Mode**

Interface Configuration Mode

**Defaults**

The default cost value depends on the interface speed.

<table>
<thead>
<tr>
<th>Port Speed</th>
<th>Default Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 Mbps</td>
<td>2000000</td>
</tr>
<tr>
<td>100 Mbps</td>
<td>200000</td>
</tr>
<tr>
<td>1 Gbps</td>
<td>20000</td>
</tr>
<tr>
<td>10 Gbps</td>
<td>2000</td>
</tr>
<tr>
<td>40 Gbps</td>
<td>500</td>
</tr>
</tbody>
</table>

port-priority - 128
portfast - Not in portfast
link-type - shared

Example:
SMIS(config-if)# spanning-tree cost 2200

In case of MSTP this configuration applies to the CIST context.

**Related Command**

`show spanning-tree interface` - Displays the spanning tree properties of an interface
9.15 spanning-tree restricted-role

This command enables the root-guard / restricted role feature (prevents the specific port from becoming the root port) on the port. The no form of the command disables the root-guard / restricted role feature on the port.

```
spanning-tree restricted-role

no spanning-tree restricted-role
```

**Mode**

Interface Configuration Mode

**Defaults**

Disabled

**Example:**

```
SMIS(config-if)# spanning-tree restricted-role
```

**Related Command**

```
show spanning-tree - Detail - Displays spanning tree information
```
9.16 spanning-tree restricted-tcn

This command enables the topology change guard / restricted TCN feature (prevents the Topology change caused by that port ) on the port. The no form of the command disables the topology change guard/ restricted TCN feature on the port.

`spanning-tree restricted-tcn`

`no spanning-tree restricted-tcn`

**Mode**

Interface Configuration Mode

**Defaults**

Disabled

**Example:**

`SMIS(config-if)# spanning-tree restricted-tcn`

**Related Command**

`show spanning-tree - Detail` - Displays spanning tree information
9.17 spanning-tree mst - Properties of an interface for MSTP

This command sets the spanning tree properties of an interface for MSTP and the no form of the command sets the spanning tree properties of an interface to default value.

```
spanning-tree mst <instance-id(1-16)> { cost <value(1-200000)>| port-priority <value(0-240)> | disable }

no spanning-tree mst <instance-id(1-16)>{cost|port-priority | disable}
```

**Syntax Description**
- **cost** - The cost value associated with the port
- **port-priority** - Port priority value
- **disable** - Disables the spanning tree on the port

**Mode**
Interface Configuration Mode

**Defaults**
- The default cost value depends on the interface speed.

<table>
<thead>
<tr>
<th>Port Speed</th>
<th>Default Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 Mbps</td>
<td>2000000</td>
</tr>
<tr>
<td>100 Mbps</td>
<td>200000</td>
</tr>
<tr>
<td>1 Gbps</td>
<td>20000</td>
</tr>
<tr>
<td>10 Gbps</td>
<td>2000</td>
</tr>
<tr>
<td>40 Gbps</td>
<td>500</td>
</tr>
</tbody>
</table>

- port-priority - 128

**Example:**

```
SMIS(config-if)#spanning-tree mst 2 cost 4000
```

MST instance must exist, for this command If all interfaces have the same priority value, the MST puts the interface with the lowest interface number in the forwarding state and blocks other interfaces.
Related Command

`show spanning-tree mst` - CIST or specified mst Instance - Displays the spanning tree properties of an interface for an MSTP instance
9.18 spanning-tree mst hello-time

This command sets the port based hello timer value and the no form of the command sets the port based hello timer value to its default.

```
spanning-tree mst hello-time<value(1-2)>
```

```
no spanning-tree mst hello-time
```

**Mode**

Interface Configuration Mode

**Defaults**

2 seconds

**Example:**

```
SMIS(config-if)#spanning-tree mst hello-time 1
```

On changing the spanning-tree mst hello-time value, all spanning-tree instances active on the interface are affected.

**Related Command**

`show spanning-tree mst` - Port Specific Configuration - Displays multiple spanning tree port specific configurations
9.19 clear spanning-tree counters

This command resets all bridge and port level statistics counters.

**clear spanning-tree counters**

**Mode**
Global Configuration Mode

**Example:**
SMIS(config)# clear spanning-tree counters

Valid interfaces include physical ports, VLANs, and port channels
Port protocol migration count gets incremented consistently, when there is a protocol migration

**Related Commands**
- `show spanning-tree interface` - Displays the spanning tree properties of an interface
- `show spanning-tree mst` - Port Specific Configuration - Displays multiple spanning tree port specific configurations
9.20 spanning-tree pathcost dynamic

This command enables dynamic pathcost calculation and the no form of the command disables dynamic pathcost calculation.

`spanning-tree pathcost dynamic`

`no spanning-tree pathcost dynamic`

**Mode**
Global Configuration Mode

**Defaults**
Disabled

**Example:**
```
SMIS(config)# spanning-tree pathcost dynamic
```

On execution of this command, the pathcost of all the ports will be calculated dynamically based on the speed of the interface.

If the cost has already been configured for a cist or an rstp interface, then this command has no effect on those interfaces.

If the cost has been configured previously for an mst instance on a particular interface, then this command has no effect on that instance in the specified interface. Whereas the pathcost of all the other instances on the same interface will be calculated dynamically.

**Related Commands**

- `spanning-tree pathcost method` – Sets the method to calculate the port path cost
- `spanning-tree compatibility`– Sets the compatibility version for the spanning tree protocol
- `spanning-tree – Properties of an interface` – Sets the spanning tree properties of an interface
- `spanning-tree mst– Properties of an interface for MSTP` – Sets the spanning tree properties of an interface for MSTP
9.21 clear spanning-tree detected protocols

This command restarts the protocol migration process on all the interfaces and forces renegotiation with the neighboring switches.

```
clear spanning-tree detected protocols {interface <interface-type> <interfaceid> }
```

**Syntax Description**

- `interface` - Restarts the protocol migration process on the specified interface

Valid interfaces include physical ports, VLANs, and port channels

**Mode**

Privileged EXEC Mode

**Example:**

```
SMIS# clear spanning-tree detected protocols interface
gigabitethernet 0/1
```

Port protocol migration count gets incremented consistently, when there is a protocol migration.

**Related Commands**

- `show spanning-tree interface` - Displays the spanning tree properties of an interface
- `show spanning-tree mst` - Port Specific Configuration - Displays multiple spanning tree port specific configurations
9.22 debug spanning-tree

This command provides spanning tree debugging support and the no form of the command disables debugging.

d debug spanning-tree { global | { all | errors | init-shut | management | memory | bpdu | events | timer | state-machine { port-info | port-recieve | portrole-selection | role-transition | state-transition | protocol-migration | topology-change | port-transmit | bridge-detection } | redundancy | semvariables} }

no debug spanning-tree {global | {all | errors | init-shut | management | memory | bpdu | events | timer | state-machine {port-info | port-recieve | portrole-selection | role-transition | state-transition | protocol-migration | topology-change | port-transmit | bridge-detection } redundancy | semvariables} }

Syntax Description

global - Global debug messages
all - All RSTP / MSTP debug messages
errors - Error code debug messages
init-shut - Init and Shutdown debug messages
management - Management messages
Memory - Memory related messages
bpdu - BPDU related messages
timer - Timer module messages
events - Events related messages
state machine - State-machine related debug messages
port-info - Port information messages
port-receive - Port received messages. This parameter is specific to Multiple Instance.
port-roleselection - Port role selection messages
role-transition - Role transition messages
state-transition - State transition messages
protocolmigration - Protocol migration messages
topology-change - Topology change messages
port-transmit - Port transmission messages
bridge-detection - Bridge detection messages
redundancy - Redundancy related messages
sem-variables - State-machine variables debug messages

Mode
Privileged EXEC Mode

Defaults
Debugging is Disabled

Example:
SMIS# debug spanning-tree all

Related Command
show spanning-tree - Detail - Displays detailed spanning tree information for
STP/RSTP/MSTP configuration
show spanning-tree - Summary, Blockedports, Pathcost

This command displays spanning tree information.

```
show spanning-tree [{ summary | blockedports | pathcost method }]
```

**Syntax Description**
- **summary** - Summary of port states
- **blockedports** - Blocked ports in the system
- **pathcost method** - Pathcost method configured for a bridge

**Mode**
Privileged EXEC Mode

**Defaults**
When SMIS boots up, Spanning Tree is enabled by default with MSTP operating in the switch.

**Example:**

**Single Instance:**
SMIS# show spanning-tree
Root Id Priority 32768
Address 00:01:02:03:04:01
Cost 0
Port 0 [0]
This bridge is the root
Max age 20 Sec, forward delay 15 Sec
MST00
Spanning tree Protocol Enabled.
S-VLAN Component: MST00 is executing the mstp compatible
Multiple Spanning Tree Protocol
Bridge Id Priority 32768
Address 00:01:02:03:04:01
Max age is 20 sec, forward delay is 15 sec
Name Role State Cost Prio Type
Gi0/1 Disabled Discarding 200000 128 SharedLan
Gi0/2 Designated Forwarding 200000 128 SharedLan
Gi0/3 Designated Forwarding 200000 128 SharedLan
Gi0/4 Designated Forwarding 200000 128 SharedLan
Gi0/5 Designated Forwarding 200000 128 SharedLan
Gi0/6 Designated Forwarding 200000 128 SharedLan
Gi0/7 Designated Forwarding 200000 128 SharedLan

SMIS# show spanning-tree blockedports
Blocked Interfaces List:
The Number of Blocked Ports in the system is :1

SMIS# show spanning-tree pathcost method
Spanning Tree port pathcost method is Long

SMIS# show spanning-tree summary
Spanning tree enabled protocol is RSTP
RSTP Port Roles and States
Port-Index Port-Role Port-State Port-Status
---------- ---------- ---------- ----------
1 Root Forwarding Enabled
2 Disabled Discarding Enabled
3 Disabled Discarding Enabled
4 Disabled Discarding Enabled

**Multiple Instance:**
SMIS# show spanning-tree
Switch default
Root Id Priority 32768
Address 00:01:02:03:04:01
Cost 0
Port 0 [0]
This bridge is the root
Max age 20 Sec, forward delay 15 Sec
MST00
Spanning tree Protocol Enabled.
S-VLAN Component: MST00 is executing the mstp compatible

Multiple Spanning Tree Protocol
Bridge Id Priority 32768
Address 00:01:02:03:04:01
Max age is 20 sec, forward delay is 15 sec

Name Role State Cost Prio Type

Gi0/1 Disabled Discarding 200000 128 SharedLan
Gi0/2 Designated Forwarding 200000 128 SharedLan
Gi0/3 Designated Forwarding 200000 128 SharedLan
Gi0/4 Designated Forwarding 200000 128 SharedLan
Gi0/5 Designated Forwarding 200000 128 SharedLan
Gi0/6 Designated Forwarding 200000 128 SharedLan
Gi0/7 Designated Forwarding 200000 128 SharedLan

SMIS# show spanning-tree summary

Switch - default
Spanning Tree port pathcost method is Long
Spanning tree enabled protocol is MSTP
MST00 Port Roles and States
Port-Index Port-Role Port-State Port-Status
---------- ---------- ----------- ----------
49 Disabled Forwarding Disabled

Switch - cust1
Spanning Tree port pathcost method is Long
Spanning tree enabled protocol is MSTP
MST00 Port Roles and States
Port-Index Port-Role Port-State Port-Status
---------- ---------- ----------- ----------
1 Designated Forwarding Enabled
2 Root Forwarding Enabled
3 Designated Forwarding Enabled
4 Disabled Discarding Enabled
5 Disabled Discarding Enabled
6 Disabled Discarding Enabled

Switch - cust2
Spanning Tree port pathcost method is Long
Spanning tree enabled protocol is MSTP
MST00 Port Roles and States
Port-Index Port-Role Port-State Port-Status
--------- --------- --------- ---------
7 Designated Forwarding Enabled
8 Root Forwarding Enabled
9 Alternate Discarding Enabled
10 Disabled Discarding Enabled
11 Disabled Discarding Enabled
12 Disabled Discarding Enabled
This command is the same for both RSTP and MSTP.

Related Commands
spanning-tree mode - Sets the spanning tree operating mode
spanning-tree - Enables the spanning tree operation
spanning-tree provider - Enables the spanning tree operation
spanning-tree compatibility - Sets the compatibility version for the spanning tree protocol
spanning-tree timers - Sets the spanning tree Timers
spanning-tree transmit hold-count - Sets the transmit hold-count value
spanning-tree priority - Sets the Bridge Priority for the spanning tree only in steps of 4096
spanning-tree - Properties of an interface - Sets spanning tree properties of an interface
spanning-tree mst- Properties of an interface for MSTP - Sets the spanning tree properties of an interface for MSTP
show spanning-tree bridge - Displays the spanning-tree configuration of the bridge
show spanning-tree interface - Displays Spanning-tree port configuration
spanning-tree pathcost method - Sets the method to calculate the default port path cost
9.24 show spanning-tree - Detail

This command displays detailed spanning tree information.

show spanning-tree detail [active]

**Syntax Description**

*active* - Displays the Bridge and details of the active (active ports are those ports that are participating in the spanning-tree) ports

**Mode**

Privileged EXEC Mode

**Example:**

**Single Instance:**

SMIS# show spanning-tree detail

Bridge is executing the rstp compatible Spanning Tree Protocol

Bridge Identifier has priority 32768, Address 00:01:02:03:04:11

Configured Hello time 2 sec, Max Age 20 sec, Forward Delay 15 sec

Number of Topology Changes 1

Time since topology Change 1637 seconds ago

Transmit Hold-Count 3 sec

Timers : Hello Time 2 Sec, Max Age 20 Sec, Forward Delay 15 Sec

Port 1 [Gi0/1] is Root, Forwarding

Port PathCost 2000000, Port Priority 128, Port Identifier 128.1

Designated Root has priority 8192, address 00:01:02:03:04:21

Designated Bridge has priority 8192, address 00:01:02:03:04:21

Designated Port Id is 128.1, Designated PathCost 0

No of Transitions to forwarding State :1

PortFast is disabled

Link Type is Shared

BPDUs : sent 735, received 865
Multiple Instance:
SMIS# show spanning-tree detail switch default
Switch default
MST00 is executing the mstp compatible Multiple Spanning Tree Protocol
Bridge Identifier has Priority 32768, Address 00:51:02:03:04:05
Configured Max age 20 sec, Forward delay 15 sec
Configured Hello Time 2 sec
We are root of the spanning tree
Current Root has priority 32768, address 00:51:02:03:04:05
cost of root path is 0
Number of Topology Changes 1, Time since topology Change 82 seconds ago
Transmit Hold-Count 3
Times : Max age 20 Sec, Forward delay 15 Sec
Port 1 [Gi0/1] of MST00 is Designated, Forwarding
Gi0/1 is operating in the MSTP Mode
Port path cost 200000, Port priority 128,
Port Identifier 128.1. Port HelloTime 2,
Timers: Hello - 0, Forward Delay - 0, Topology Change - 0
Designated root has priority 32768, address 00:51:02:03:04:05
Designated Bridge has priority 32768, address 00:51:02:03:04:05
Designated Port Id is 128.1, Designated pathcost is 0
Operational Forward delay 15, Max age 20
Number of Transitions to forwarding State : 1
PortFast is disabled
Link Type is Shared
BPDUs : sent 58, recived 0
Restricted Role is disabled.
Restricted TCN is disabled.

Related Commands
spanning-tree mode - Sets the spanning tree operating mode
spanning-tree - Enables the spanning tree operation
spanning-tree provider - Enables the Spanning tree operation
spanning-tree compatibility - Sets the compatibility version for the spanning tree protocol
spanning-tree timers - Sets the spanning tree timers
spanning-tree transmit hold-count - Sets the transmit hold-count value
spanning-tree priority - Sets the Bridge Priority for the spanning tree only in steps of 4096
spanning-tree - Properties of an interface - Sets spanning tree properties of an interface
spanning-tree mst- Properties of an interface for MSTP - Sets the spanning tree properties of an interface for MSTP
show spanning-tree bridge - Displays the spanning-tree configuration of the bridge
show spanning-tree interface - Displays Spanning-tree port configuration
9.25 show spanning-tree - Active

This command displays spanning tree information of active ports.

show spanning-tree active [detail]

Syntax Description

detail - Displays in detail about the port and bridge. This includes designated Bridge details, designated port details, timer values, root bridge, etc.

Mode

Privileged EXEC Mode

Example:

Single Instance:

SMIS# show spanning-tree active
Root Id Priority 8192
Address 00:01:02:03:04:21
Cost 2000000
Port Gi0/1
Hello Time 2 Sec, Max Age 20 Sec,
Forward Delay 15 Sec
Spanning Tree Enabled Protocol RSTP
Bridge Id Priority 32768
Address 00:01:02:03:04:11
Hello Time 2 sec, Max Age 20 sec,
Forward Delay 15 sec
Name Role State Cost Prio Type
---- ---- ----- ----- ---- ------
Gi0/1 Root Forwarding 2000000 128 SharedLan

Multiple Instance:

SMIS# show spanning-tree active switch default
Switch default
Root Id Priority 32768
Address 00:51:02:03:04:05
Cost 0
Port 0 [0]
This bridge is the root
Max age 20 Sec, forward delay 15 Sec
MST00
MST00 is executing the mstp compatible Multiple Spanning
Tree Protocol
Bridge Id Priority 32768
Address 00:51:02:03:04:05
Max age is 20 sec, forward delay is 15 sec
Name Role State Cost Prio Type
----- ---- ---- ---- ----
Gi0/1 Designated Forwarding 200000 128 SharedLan

Related Commands
spanning-tree mode - Sets the spanning tree operating mode
spanning-tree - Enables the spanning tree operation
spanning-tree provider - Enables the Spanning tree operation
spanning-tree compatibility - Sets the compatibility version for the spanning tree protocol
spanning-tree timers - Sets the spanning tree Timers
spanning-tree transmit hold-count - Sets the transmit hold-count value
spanning-tree priority - Sets the Bridge Priority for the spanning tree only in steps of 4096
spanning-tree - Properties of an interface - Sets spanning tree properties of an interface
spanning-tree mst- Properties of an interface for MSTP - Sets the spanning tree properties of an interface for MSTP
show spanning-tree bridge - Displays the spanning-tree configuration of the bridge
show spanning-tree interface - Displays Spanning-tree port configuration
9.26 show spanning-tree interface

This command displays Spanning-tree port configuration.

`show spanning-tree interface <interface-type> <interface-id> [{ cost | priority | portfast | rootcost | restricted-role | restricted-tcn | state | stats | detail }]`

**Syntax Description**
- **cost** - Spanning tree port cost
- **state** - Spanning tree state
- **stats** - Displays the input and output packets by switching path for the interface
- **priority** - Spanning tree port priority
- **portfast** - Spanning tree portfast state
- **rootcost** - Spanning tree rootcost (pathcost to reach the root) value
- **restricted-role** - Spanning-tree Restricted Role
- **restricted-tcn** - Spanning-tree Restricted Topology Change
- **detail** - Displays in detail about the port and bridge

**Mode**
Privileged EXEC Mode

**Example:**

*Single Instance:*

```
SMIS# show spanning-tree interface gigabitethernet 0/1
Role State Cost Prio Type
---- ----- ---- ----
Root Forwarding 2000000 128 SharedLan

SMIS# show spanning-tree interface gigabitethernet 0/1 cost
Port cost is 2000000

SMIS# show spanning-tree interface gigabitethernet 0/1 priority
Port Priority is 128

SMIS# show spanning-tree interface gigabitethernet 0/1 portfast
PortFast is disabled
```
SMIS# show spanning-tree interface gigabitethernet 0/1 rootcost
Root Cost is 2000000

SMIS# show spanning-tree interface gigabitethernet 0/1 state
Forwarding

SMIS# show spanning-tree interface gigabitethernet 0/1 stats
Statistics for Port Gi0/1
Number of Transitions to forwarding State : 1
Number of RSTP BPDU Count received : 1692
Number of Config BPDU Count received : 9
Number of TCN BPDU Count received : 0
Number of RSTP BPDU Count Transmitted : 735
Number of Config BPDU Count Transmitted : 11
Number of TCN BPDU Count Transmitted : 0
Port Protocol Migration Count : 1

SMIS# show spanning-tree interface gigabitethernet 0/1 detail
Port 1 [Gi0/1] is Root , Forwarding
Port PathCost 2000000, Port Priority 128, Port Identifier 128.1
Designated Root has priority 8192, address 00:01:02:03:04:21
Designated Bridge has priority 8192, address 00:01:02:03:04:21
Designated Port Id is 128.1, Designated PathCost 0
No of Transitions to forwarding State :1

PortFast is disabled
Link Type is Shared
BPDUs : sent 735, recieved 1729

SMIS# show spanning-tree interface fast 0/1 restricted-role
Restricted Role is Disabled

SMIS# show spanning-tree interface fast 0/1 restricted-tcn
Restricted TCN is Disabled
Multiple Instance:
SMIS# show spanning-tree interface gigabitethernet 0/1
Switch - default
Role State Cost Prio Type
---- ----- ---- ---- ----
Root Forwarding 2000000 128 SharedLan

SMIS# show spanning-tree interface gigabitethernet 0/1 cost
Port cost is 2000000
Switch - default

SMIS# show spanning-tree interface gigabitethernet 0/1 priority
Switch - default
Port Priority is 128

SMIS# show spanning-tree interface gigabitethernet 0/1 portfast
Switch - default
PortFast is disabled

SMIS# show spanning-tree interface gigabitethernet 0/1 rootcost
Switch - default
Root Cost is 2000000

SMIS# show spanning-tree interface gigabitethernet 0/1 state
Switch - default
Forwarding

SMIS# show spanning-tree interface gigabitethernet 0/1 stats
Switch - default
Statistics for Port Gi0/1
Number of Transitions to forwarding State : 1
Number of RSTP BPDU Count received : 1692
Number of Config BPDU Count received : 9
Number of TCN BPDU Count received : 0
Number of RSTP BPDU Count Transmitted : 735
Number of Config BPDU Count Transmitted : 11
Number of TCN BPDU Count Transmitted : 0
Number of Invalid BPDU Count Transmitted : 0
Port Protocol Migration Count : 1

SMIS# show spanning-tree interface gigabitethernet 0/1 detail
Switch - default
Port 1 [Gi0/1] is Root , Forwarding
Port PathCost 2000000, Port Priority 128, Port Identifier 128.1
Designated Root has priority 8192, address 00:01:02:03:04:21
Designated Bridge has priority 8192, address 00:01:02:03:04:21
Designated Port Id is 128.1, Designated PathCost 0
No of Transitions to forwarding State :1
PortFast is disabled
Link Type is Shared
BPDU's : sent 735 , recieved 1729

SMIS# show spanning-tree interface fast 0/1 restricted-role
Switch - default
Restricted Role is Disabled

SMIS# show spanning-tree interface fast 0/1 restricted-tcn
Switch - default
Restricted TCN is Disabled

Enter each interface separated by a space. Ranges are not supported. Valid interfaces include physical ports, VLANs, and port channels.

Related Commands
spanning-tree - Properties of an interface - Sets spanning tree properties of an interface
spanning-tree mst- Properties of an interface for MSTP - Sets the spanning tree properties of an interface for MSTP
show spanning-tree - Detail - Displays detailed spanning tree information
show spanning-tree - Active - Displays spanning tree information of active ports
clear spanning-tree detected protocols - Restarts the protocol migration process on all the interfaces
clear spanning-tree counters - Resets all bridge and port level statistics counters
9.27 show spanning-tree root

This command displays Spanning-tree root information.

```
show spanning-tree root [{ address | cost | forward-time | hello-time | id | max-age | port | priority | detail }]
```

**Syntax Description**
- **Address** - Root bridge MAC address
- **Cost** - Cost value associated with the port
- **forward-time** - Root bridge forward time
- **hello-time** - Root bridge hello time
- **id** - Root bridge ID
- **max-age** - Root bridge Max age
- **port** - Root port
- **priority** - Root bridge priority
- **detail** - Displays in detail about the port and bridge. This includes designated Bridge details, designated port details, timer values, root bridge, etc

**Mode**
Privileged EXEC Mode

**Example:**

**Single Instance:**
```
SMIS# show spanning-tree root
Root ID RootCost HelloTime MaxAge FwdDly RootPort
-------- -------- -------- -------- --------
80:00:00:01:02:03:04:11 0 2 20 15 0

SMIS# show spanning-tree root address
Root Bridge Address is 00:01:02:03:04:11

SMIS# show spanning-tree root cost
Root Cost is 2000000

SMIS# show spanning-tree root forward-time
Forward delay is 15 sec
```
SMIS# show spanning-tree root id
Root Bridge Id is 80:00:00:01:02:03:04:11

SMIS# show spanning-tree root hello-time
Hello Time is 2 sec

SMIS# show spanning-tree root id
Root Bridge Id is 80:00:00:01:02:03:04:11

SMIS# show spanning-tree root max-age
Root MaxAge is 20

SMIS# show spanning-tree root port
Root Port is 1

SMIS# show spanning-tree root priority
Root Priority is 32768

SMIS# show spanning-tree root detail
We are the root of the Spanning Tree
Root Id Priority 32768
Address 00:01:02:03:04:11
Cost 0
Port 0
Hello Time 2 Sec, Max Age 20 Sec, Forward Delay 15 Sec

**Multiple Instance:**
SMIS# show spanning-tree root
Switch - default
Instance Root ID RootCost MaxAge FwdDly RootPort
--------- --------- --------- ----- -------
MST00 80:00:00:01:02:03:04:01 0 20 15 0
Switch - custl
Instance Root ID RootCost MaxAge FwdDly RootPort
--------- --------- --------- ----- -------
MST00 00:00:00:01:02:03:04:04 200000 20 15 Gi0/2

Related Commands
spanning-tree timers - Sets the spanning tree Timers
spanning-tree priority - Sets the Bridge Priority for the spanning tree only in steps of 4096
show spanning-tree - Detail - Displays detailed spanning tree information
9.28 show spanning-tree bridge

This command displays the spanning-tree configuration of the bridge.

```
show spanning-tree bridge [{ address | forward-time | hello-time | id | maxage | protocol | priority | detail }]
```

Syntax Description

- **Address** - Bridge Address
- **forward-time** - Bridge Forward Time
- **hello-time** - Bridge Hello Time
- **id** - Bridge ID
- **max-age** - Bridge Max Age
- **protocol** - Spanning tree Protocol
- **priority** - Bridge Priority
- **detail** - Bridge Detail

Mode

Privileged EXEC Mode

Example:

**Single Instance:**

```
SMIS# show spanning-tree bridge address
Bridge Address is 00:01:02:03:04:21

SMIS# show spanning-tree bridge forward-time
Bridge Forward delay is 15 sec

SMIS# show spanning-tree bridge
Bridge ID HelloTime MaxAge FwdDly Protocol
---------- ---------- ------ ------ -------
80:00:00:01:02:03:04:21 2 20 15 rstp

SMIS# show spanning-tree bridge hello-time
```
Bridge Hello Time is 2 sec

SMIS# show spanning-tree bridge id
Bridge ID is 80:00:00:01:02:03:04:21

SMIS# show spanning-tree bridge max-age
Bridge Max Age is 20 sec

SMIS# show spanning-tree bridge protocol
Bridge Protocol Running is RSTP

SMIS# show spanning-tree bridge priority
Bridge Priority is 32768

SMIS# show spanning-tree bridge detail
Bridge Id Priority 32768,
Address 00:01:02:03:04:21
Hello Time 2 sec, Max Age 20 sec, Forward
Delay 15 sec

Multiple Instance:
SMIS# show spanning-tree bridge
Switch - default
MST Instance Bridge ID MaxAge FwdDly Protocol
--------- ------- ------- -------
MST00 0 :00:00:01:02:03:04:01 20 15 mstp
Switch - cust1
MST Instance Bridge ID MaxAge FwdDly Protocol
--------- ------- ------- -------
MST00 0 :00:00:01:02:03:04:02 20 15 mstp

SMIS# show spanning-tree bridge address
Switch - default
MST00 00:01:02:03:04:01
Switch - cust1
MST00 00:01:02:03:04:0

Related Commands
spanning-tree timers - Sets the spanning tree Timers
spanning-tree mode - Sets the spanning tree operating mode
show spanning-tree - Detail - Displays detailed spanning tree information
show spanning-tree - Active - Displays spanning tree information of active ports
9.29  show spanning-tree mst - CIST or specified mst Instance

This command displays multiple spanning tree information for the CIST (Common Internal Spanning Tree) Instance or specified MST Instance.

```
show spanning-tree mst [<instance-id(1-16)>] [detail]
```

**Syntax Description**

- `instance-id` - Range of Spanning tree instances
- `detail` - Spanning tree mst instance specific details

**Mode**

Privileged EXEC Mode

**Example:**

**Single Instance:**

```
SMIS# show spanning-tree mst 1
MST01
Vlans mapped: 2
Bridge Address 00:01:02:03:04:11 Priority 32768
Root Address 00:01:02:03:04:11 Priority 32768
Root this switch for MST01
Interface Role Sts Cost Prio.Nbr Type
---------- ---- --- ---- --------------
Gi0/1 Master Forwarding 2000000 128.1 SharedLan

SMIS# show spanning-tree mst 1 detail
MST01
Vlans mapped: 2
Bridge Address 00:01:02:03:04:11 Priority 32768
Root Address 00:01:02:03:04:11 Priority 32768
Root this switch for MST01
Gi0/1 of MST01 is Master , Forwarding
Port info port id 128.1 priority 128 cost 2000000
```
Designated root address 00:01:02:03:04:11 priority 32768
  cost 0
Designated bridge address 00:01:02:03:04:11 priority 32768
  port id 128.1

**Multiple Instance:**
SMIS# show spanning-tree mst 1
Switch – default
## MST01
  Vlans mapped: 2
  Bridge Address 00:01:02:03:04:11 Priority 32768
  Root Address 00:01:02:03:04:11 Priority 32768
  Root this switch for MST01
  Interface Role Sts Cost Prio.Nbr Type
  --------- ---- --- ---- ------- -----
  Gi0/1 Master Forwarding 2000000 128.1 SharedLan

The option mst is available only when MSTP is the operational mode of the spanning tree.

**Related Commands**
- `instance` - Maps VLANs to an MST instance
- `spanning-tree priority` - Sets the Bridge Priority for the spanning tree only in steps of 4096
- `spanning-tree mst` - Properties of an interface for MSTP - Sets the spanning tree properties of an interface for MSTP
9.30 show spanning-tree mst configuration

This command displays multiple spanning tree instance configuration.

**show spanning-tree mst configuration**

**Syntax Description**

**Mode**
Privileged EXEC Mode

**Example:**

**Single Instance:**

SMIS# show spanning-tree mst configuration
Name [fsoft]
Revision 2
Instance Vlans mapped
-------- ------------------------------------------
0 1,3-1024,1025-2048,2049-3072, 3073-4069
1 2
-------- ------------------------------------------

**Multiple Instance:**

SMIS# show spanning-tree mst configuration
Switch - default
Name [00:01:02:03:04:01]
Revision 0
Instance Vlans mapped
-------- ------------------------------------------
0 1-1024,1025-2048,2049-3072,3073-4069
-------- ------------------------------------------
Switch - cust1
Name [00:01:02:03:04:02]
Revision 0
Instance Vlans mapped
0 1-1024,1025-2048,2049-3072,3073-4069

Related Commands

name - Sets Configuration name
revision - Sets the configuration revision number
instance - Maps VLANs to an MST instance
9.31  show spanning-tree mst - Port Specific Configuration

This command displays multiple spanning tree port specific configuration.

```
show spanning-tree mst [<instance-id(1-16)>] interface <interface-type> <interface-id> [{ stats | hello-time | detail }]
```

**Syntax Description**
- **instance-id** - Range of spanning tree instances
- **interface** - Details about a particular interface
- **stats** - Displays the input and output packets by switching path for the interface
- **hello-time** - Determines how often the switch broadcasts its hello message to other switches when it is the root of the spanning tree
- **detail** - Detailed multiple spanning tree port specific configuration

**Mode**
Privileged EXEC Mode

**Example:**

```
SMIS# show spanning-tree mst 1 interface gigabitethernet 0/1
Instance Role Sts Cost Prio.Nbr
-------- ---- --- ---- ---------
1 Master Forwarding 2000000 128.1

SMIS# show spanning-tree mst 1 interface gigabitethernet 0/1
stats
MST01 Bpdus sent 2, Received 0

SMIS# show spanning-tree mst 1 interface gigabitethernet 0/1
hello-time
MST01 2

SMIS# show spanning-tree mst 1 interface gigabitethernet 0/1
detail
Gi0/1 of MST01 is Master, Forwarding
```
Port info port id 128.1 priority 128 cost 2000000
Designated root address 00:01:02:03:04:11 priority 32768 cost 0
Designated bridge address 00:01:02:03:04:11 priority 32768 port id 128.1

Related Commands
instance - Maps VLANS to an MST instance
spanning-tree mst hello-time - Sets the port based hello timer value
spanning-tree - Properties of an interface - Sets spanning tree properties of an interface
show customer spanning-tree - Displays the detailed customer spanning information
show spanning-tree mst - CIST or specified MST Instance - Displays multiple spanning tree information for the CIST Instance or specified MST Instance
show spanning-tree interface - Displays Spanning-tree port configuration
clear spanning-tree detected protocols - Restarts the protocol migration process on all the interfaces
clear spanning-tree counters - Resets all bridge and port level statistics counters
PNAC (Port Based Network Access Control) is a portable implementation of the IEEE Std 802.1x PNAC. It can be used in both LAN Switches and Wireless LAN Access Points for providing security services. When used in LAN Switches, it offers access control to protected resources existing in the switched network. When used in WLAN Access Points, it not only provides authentication of the WLAN stations, but also improves the security by making use of the periodically exchanged key for encrypting the data. PNAC can be very easily ported to different RTOS environments and interfaced to different switch hardware.

The list of CLI commands for the configuration of PNAC is as follows:

- `dot1x system-auth-control`
- `aaa authentication dot1x default`
- `dot1x local-database`
- `set nas-id`
- `dot1x default`
- `dot1x max-req`
- `dot1x max-start`
- `dot1x reauthentication`
- `dot1x timeout`
- `dot1x port-control`
- `dot1x access-control`
- `dot1x control-direction`
- `dot1x re-authenticate`
- `shutdown dot1x`
- `debug dot1x`
- `show dot1x`
10.1  dot1x system-auth-control

This command enables dot1x in the switch and the no form of this command disables dot1x in the switch.

dot1x system-auth-control

no dot1x system-auth-control

Mode
Global Configuration Mode

Defaults
dot1x is enabled

Example:
SMIS(config)# dot1x system-auth-control

It is required to enable authentication, authorization, and accounting (AAA) and specify the authentication method before enabling 802.1x globally.

802.1x can be enabled on interfaces, which have Port-channel configured.

Related Commands
shutdown dot1x - Shuts down dot1x capability
show dot1x - Displays dot1x information
10.2  aaa authentication dot1x default

This command enables the dot1x local authentication or RADIUS server based remote authentication method for all ports.

```
aaa authentication dot1x default { group radius | local}
```

**Syntax Description**

- `group radius` - RADIUS server based authentication
- `local` - Local authentication

**Mode**

Global Configuration Mode

**Defaults**

local

**Example:**

```
SMIS(config)# aaa authentication dot1x default group radius
```

Only one method can be specified at a time. The 1st method specified will be used and the rest discarded if more than one are typed in.

**Related Commands**

- `radius-server host` - Specifies RADIUS query parameters
- `dot1x local-database` - Configures the dot1x authentication server database with user name and password
- `show dot1x` - Displays dot1x detailed information
10.3 dot1x local-database

This command configures the dot1x authentication server database with user name and password and the no form of the command deletes an entry from the dot1x authentication server database.

dot1x local-database <username> password <password> permission {allow | deny} [auth-timeout (value(1-7200))] [interface <interface-type> <interface-list>]

no dot1x local-database username

Syntax Description
Username - User name
Password - Password
Permission - Specifies whether the user must be allowed/denied access on a set of ports
auth-timeout - Number of seconds between authentication attempts
interface - Port list of the interface on which dot1x authentication can be applied

Mode
Global Configuration Mode

Defaults
Permission - allow
interface-list - all the physical interfaces

Example:
SMIS(config)# dot1x local-database fsoft password admin123 permission allow auth-timeout 6000

The command adds users to the local database only for local authentication.

The auth-timeout parameter represents the time in seconds after which the access to the port is denied for the user. When the timeout value is 0, the authenticator uses the re-authentication period of the authenticator port.

If the port list is not configured, the user will be allowed/denied access on all the ports.
Related Commands

**aaa authentication dot1x default** - Enables the dot1x local authentication

**show dot1x** - Displays dot1x local database information
10.4 set nas-id

This command sets the dot1x network access server id.

```
set nas-id <identifier>
```

**Syntax Description**

- **identifier** - It is a string length of 16 that specifies dot1x network access server ID

**Mode**

Global Configuration Mode

**Defaults**

fsNas1

**Example:**

```
SMIS(config)#set nas-id Identifier
```

Network Access Server Identifier is set in the RADIUS packets sent to the Remote Authentication Server.

**Related Command**

- **show dot1x** - Displays dot1x information
10.5  dot1x default

This command configures dot1x with default values for this port.

**dot1x default**

**Mode**
Interface Configuration Mode

**Defaults**
Per-interface 802.1X protocol enable state - Enabled (force-authorized)
Periodic reauthentication - Disabled
Number of seconds between reauthentication attempts - 3600 seconds
Quiet period - 60 seconds
Retransmission time - 30 seconds
Maximum retransmission number - 2 times
Client timeout period - 30 seconds
tx period - 30 seconds
Authentication server timeout period - 30 seconds

**Example:**
SMIS(config-if)# dot1x default

**Related Command**
*show dot1x* - Displays dot1x interface information
10.6  dot1x max-req

This command sets the maximum number of EAP (Extensible Authentication Protocol) retries to
the client before restarting authentication process and the no form of the command sets the
maximum number of EAP retries to the client to default value.

\texttt{dot1x\ max-req\ <count(1-10)>}

\texttt{no\ dot1x\ max-req}

Mode

Interface Configuration Mode

Defaults

Count - 2

Example:

\texttt{SMIS(config-if)# dot1x\ max-req\ 5}

The default value of this command must be changed only to adjust for unusual circumstances
such as unreliable links or specific behavioral problems with RADIUS server/local clients.

Related Command

\texttt{show dot1x} - Displays dot1x information
10.7 dot1x max-start

This command sets the maximum number of EAPOL retries to the authenticator and the no form of the command sets the maximum number of EAPOL retries to the authenticator to default value.

**Command Syntax**

`dot1x max-start <count(1-65535)>`

**Mode**
Interface Configuration Mode

**Defaults**
3

**Example:**

```
SMIS(config-if)# dot1x max-start 2
```

**Related Command**

`show dot1x` - Displays dot1x information
10.8  dot1x reauthentication

This command enables periodic re-authentication from authenticator to client and the no form of the command disables periodic re-authentication from authenticator to client.

```
dot1x reauthentication
```

```
no dot1x reauthentication
```

**Mode**
Interface Configuration Mode

**Defaults**
Periodic re-authentication is disabled

**Example:**
```
SMIS(config-if)# no dot1x reauthentication
```

The amount of time between periodic re-authentication attempts can be configured by using the dot1x timeout reauth-period interface configuration command.

**Related Commands**
- `dot1x default` - Configures dot1x with default values for this port
- `dot1x timeout` - Sets the dot1x timers
- `show dot1x` - Displays dot1x information
10.9 dot1x timeout

This command sets the dot1x timers and the no form of the command sets the dot1x timers to the default values.

```
dot1x timeout {quiet-period <value (0-65535)> | {reauth-period |
server-timeout | supp-timeout | tx-period | start-period | held-period |
auth-period }<value (1-65535)>}

no dot1x timeout {quiet-period | reauth-period | server-timeout | supp-
timeout | tx-period | start-period | held-period | auth-period}
```

**Syntax Description**
- **quiet-period** - Number of seconds that the switch remains in the quiet state following a failed authentication exchange with the client
- **reauth-period** - Number of seconds between re-authentication attempts
- **server-timeout** - Number of seconds that the switch waits for the retransmission of packets by the switch to the authentication server
- **supp-timeout** - Number of seconds that the switch waits for the retransmission of packets by the switch to the client
- **tx-period** - Number of seconds that the switch waits for a response to an EAP-request/identity frame from the client before retransmitting the request
- **start-period** - Number of seconds that the supplicant waits between successive retries to the authenticator
- **held-period** - Number of seconds that the supplicant waits before trying to acquire the authenticator
- **auth-period** - Number of seconds that the supplicant waits before timing-out the authenticator

**Mode**

Interface Configuration Mode

**Defaults**
- quiet-period - 60 seconds
- reauth-period - 3600 seconds
- server-timeout - 30 seconds
- supp-timeout - 30 seconds
- tx-period - 30 seconds
start-period - 30 seconds
held-period - 60 seconds
auth-period - 30 seconds

Example:
SMIS(config-if)# dot1x timeout quiet-period 30
SMIS(config-if)# dot1x timeout supp-timeout 25

Only one timer can be configured using this command, that is, the user can configure either the quiet-period or tx-period, but not both.

Related Commands
dot1x default - Configures dot1x with default values for this port
dot1x max-req - Sets the maximum number of EAP retries to the client before restarting authentication process
dot1x reauthentication - Enables periodic re-authentication of the client
show dot1x - Displays dot1x information
10.10  

**dot1x port-control**

This command configures the authenticator port control parameter and the no form of the command sets the authenticator port control state to force authorized.

```
dot1x port-control {auto|force-authorized|force-unauthorized}
```

```
no dot1x port-control
```

**Syntax Description**

- **force-authorized** - All the traffic will be allowed without any restrictions
- **force-unauthorized** - All the traffic over the interface will be blocked
- **auto** - Enables 802.1x authentication on the interface and cause the port to transition to the authorized or unauthorized state based on the 802.1x authentication exchange between the server and the client

**Mode**

Interface Configuration Mode

**Defaults**

force-authorized

**Example:**

```
SMIS(config-if)# dot1x port-control auto
```

The auto keyword can be used only if the port is not configured.

The 802.1x protocol is supported on both Layer 2 static-access ports and Layer 3 routed ports.

**Related Commands**

- **dot1x default** - Configures dot1x with default values for this port
- **show dot1x** - Displays dot1x information
10.11 (dot1x access-control)

This command configures the supplicant access control and the no form of the command sets the access control to inactive.

```
dot1x access-control {active | inactive}
```

```
no dot1x access-control
```

**Syntax Description**

- **active** - The port status is the combined port status of the authenticator and supplicant
- **inactive** - The port status is the port status of authenticator

**Mode**

Interface Configuration Mode

**Defaults**

inactive

**Example:**

```
SMIS(config-if)# dot1x access-control active
```

**Related Command**

- **show dot1x** - Displays dot1x information
10.12  **dot1x control-direction**

This command configures port control direction and the **no** form of the command sets the authenticator port control direction to both.

```
dot1x control-direction {in | both}
```

```
no dot1x control-direction
```

**Syntax Description**

*in* - Authentication control is imposed only on the incoming packets

*both* - Authentication control is imposed on both incoming and outgoing packets

**Mode**

Interface Configuration Mode

**Defaults**

*both*

**Example:**

```
SMIS(config-if)# dot1x control-direction in
```

**Related Command**

*show dot1x* - Displays dot1x information
10.13  **dot1x re-authenticate**

This command initiates re-authentication of all dot1x-enabled ports or the specified dot1x-enabled port.

```plaintext
dot1x re-authenticate [interface <interface-type><interface-id>]
```

**Syntax Description**

- **Interface** - Port number of the interface to re-authenticate

**Mode**
Privileged EXEC Mode

**Example:**

```
SMIS# dot1x re-authenticate interface fastethernet 0/1
```

The command re-authenticates a client without waiting for the configured number of seconds between re-authentication attempts (re-authperiod) and automatic reauthentication.

If no interface is specified, reauthentication is initiated on all dot1x ports.

**Related Command**

- **show dot1x** - Displays dot1x information
10.14 shutdown dot1x

This command shuts down dot1x capability and the no form of the command starts and enables dot1x capability.

shutdown dot1x

no shutdown dot1x

Mode
Global Configuration Mode

Example:
SMIS(config)# shutdown dot1x

When shutdown, all resources acquired by dot1x Module are released to the system.

Related Commands
dot1x system-auth-control - Enables dot1x in the switch
show dot1x - Displays dot1x information
10.15 debug dot1x

This command enables debugging of dot1x module and the no form of the command disables debugging of dot1x module.

```
debug dot1x {all | errors | events | packets | state-machine | redundancy}
```

```
no debug dot1x {all | errors | events | packets | state-machine | redundancy}
```

Syntax Description
all - All dot1x debug messages
errors - dot1x error code debug messages
events - dot1x event debug messages
packets - dot1x packet debug messages
state-machine - State-machine related-event debug messages
redundancy - Redundancy related debug messages

Mode
Privileged EXEC Mode

Defaults
Events Debugging is enabled

Example:
```
SMIS# debug dot1x all
```

A four byte integer is used for enabling the level of tracing. Each BIT in the four byte integer, represents a particular level of Trace.

Related Command
show dot1x - Displays dot1x information
10.16  show dot1x

This command displays dot1x information.

```
show dot1x [{ interface <interface-type> <interface-id> | statistics
interface <interface-type> <interface-id> | supplicant-statistics
interface <interface-type> <interface-id> | local-database | mac-info
[address <aa.aa.aa.aa.aa.aa>] | mac-statistics [address
<aa.aa.aa.aa.aa.aa>] | all }]
```

**Syntax Description**

- `interface` - dot1x status for the specified interface
- `statistics interface` - dot1x authenticator statistics for the switch or the specified interface
- `supplicant-statistics interface` - dot1x supplicant statistics for the switch or the specified interface
- `local-database` - dot1x authentication server database with user name and password
- `mac-info` - dot1x MAC session
- `mac-statistics` - dot1x MAC statistic
- `all` - dot1x status for all interfaces

**Mode**

Privileged EXEC Mode

**Example:**

```
SMIS# show dot1x
Sysauthcontrol = Enabled
Dot1x Protocol Version = 1
Dot1x Oper Controlled Directions = Both
Dot1x Admin Controlled Directions = Both
Dot1x Authentication Method = Local
Nas ID = faNas1

SMIS# show dot1x local-database
Pnac Authentication Users Database

User name : brg2
```
Protocol : 4  
Timeout : 0 seconds  
Ports : Gi0/1, Gi0/2, Gi0/3, Gi0/4, Gi0/5, Gi0/6, Gi0/7, Gi0/8, Gi0/9, Gi0/10, Gi0/11, Gi0/12, Gi0/13, Gi0/14, Gi0/15, Gi0/16, Gi0/17, Gi0/18, Gi0/19, Gi0/20, Gi0/21, Gi0/22, Gi0/23, Gi0/24  
Permission : Allow  
-----------------------------------

SMIS# show dot1x all

When access-control is made inactive for Gi0/1 and Gi0/2:

Dot1x Info for Gi0/1
---------------------
PortStatus = AUTHORIZED  
AccessControl = INACTIVE  
AuthSM State = FORCE AUTHORIZED  
BendSM State = INITIALIZE  
AuthPortStatus = AUTHORIZED  
ControlDirection = BOTH  
MaxReq = 2  
Port Control = Force Authorized  
QuietPeriod = 60 Seconds  
Re-authentication = Disabled  
ReAuthPeriod = 3600 Seconds  
ServerTimeout = 30 Seconds  
SuppTimeout = 30 Seconds  
Tx Period = 30 Seconds  

Dot1x Info for Gi0/2
---------------------
PortStatus = AUTHORIZED  
AccessControl = INACTIVE  
AuthSM State = INITIALIZE  
BendSM State = INITIALIZE  
AuthPortStatus = AUTHORIZED  
ControlDirection = BOTH  
MaxReq = 2
Port Control = Force Authorized
QuietPeriod = 60 Seconds
Re-authentication = Disabled
ReAuthPeriod = 3600 Seconds
ServerTimeout = 30 Seconds
SuppTimeout = 30 Seconds
Tx Period = 30 Seconds
If access-control for only Gi0/1 is made active then display will be as given below:
Dot1x Info for Gi0/1

PortStatus = UNAUTHORIZED
AccessControl = ACTIVE
AuthSM State = CONNECTING
SuppSM State = AUTHENTICATED
BendSM State = IDLE
AuthPortStatus = UNAUTHORIZED
SuppPortStatus = AUTHORIZED
ControlDirection = BOTH
MaxReq = 2
Port Control = Auto
QuietPeriod = 60 Seconds
Re-authentication = Disabled
ReAuthPeriod = 3600 Seconds
ServerTimeout = 30 Seconds
SuppTimeout = 30 Seconds
Tx Period = 30 Seconds
Start Period = 30 Seconds
Held Period = 60 Seconds
Auth Period = 30 Seconds
Dot1x Info for Gi0/2

PortStatus = AUTHORIZED
AccessControl = INACTIVE
AuthSM State = INITIALIZE
BendSM State = INITIALIZE
AuthPortStatus = AUTHORIZED
ControlDirection = BOTH
MaxReq = 2
Port Control = Force Authorized
QuietPeriod = 60 Seconds
Re-authentication = Disabled
ReAuthPeriod = 3600 Seconds
ServerTimeout = 30 Seconds
SuppTimeout = 30 Seconds
Tx Period = 30 Seconds

SMIS# show dot1x statistics interface gigabitethernet 0/1
PortStatistics Parameters for Dot1x
----------------------------------------
TxReqId = 1
TxReq = 0
TxTotal = 1
RxStart = 0
RxLogoff = 0
RxRespId = 0
RxResp = 0
RxInvalid = 0
RxLenErr = 0
RxTotal = 0
RxVersion = 0
LastRxSrcMac = 00:00:00:00:00:00

SMIS# show dot1x supplicant-statistics interface gigabitethernet 0/1
PortStatistics Parameters for Dot1x-Suppliant
-----------------------------------------------
TxStart = 2
TxRespId = 0
TxResp = 0
TxLogoff = 0
TxTotal = 2
RxReqId = 0
RxReq = 0
RxInvalid = 0
RxLenErr = 0
RxTotal = 0
RxVersion = 0
LastRxSrcMac = 00:00:00:00:00:00

If an interface is not specified, global parameters and a summary appear. Expressions are case sensitive.

If address is not specified for mac-info and mac-statistics, then this command displays the MAC sessions and MAC statistics of all the supplicant MAC addresses.

**Related Command**
- **dot1x default** - Configures dot1x with default values for that port.
11 RADIUS

RADIUS (Remote Authentication Dial-In User Service), widely used in network environments, is a client/server protocol and software that enables remote access servers to communicate with a central server to authenticate dial-in users and authorize their access to the requested system or service. It is commonly used for embedded network devices such as routers, mode servers, switches, etc. RADIUS is currently the de-facto standard for remote authentication. It is very prevalent in both new and legacy systems. It is used for several reasons:

- RADIUS facilitates centralized user administration.
- RADIUS consistently provides some level of protection against an active attacker.

The list of CLI commands for the configuration of RADIUS is as follows:

radius-server host

debug radius

show radius server

show radius statistics
11.1 radius-server host

This command configures the RADIUS client with the parameters (host, timeout, key, retransmit) and the no form of the command deletes RADIUS server configuration.

```
radius-server host <ip-address> [timeout <1-120>] [retransmit <1-254>] key <secret-key-string>

no radius-server host <ip address>
```

**Syntax Description**

- **timeout** - The time period in seconds for which a client will wait for a response from the server before re-transmitting the request.
- **Retransmit** - The maximum number of attempts the client undertakes to contact the server
- **key** - Per-server encryption key. Specifies the authentication and encryption key for all RADIUS communications between the authenticator and the RADIUS server. The string length is 46.

**Mode**

Global Configuration Mode

**Defaults**

- Timeout - 3 seconds
- Retransmit - 3 attempts
- Key - empty string

**Example:**

```
SMIS(config)# radius-server host 10.0.0.1 key pass
```

**Related Commands**

- `aaa authentication dot1x default` - Enables the dot1x local authentication or RADIUS server based remote authentication method for all ports
- `show radius server` - Displays RADIUS server configuration
- `show radius statistics` - Displays RADIUS statistics
11.2 debug radius

This command enables RADIUS debugging options and the no form of the command disables RADIUS debugging options.

```
debug radius {all | errors | events | packets | responses | timers}
```

```
no debug radius
```

Syntax Description

- **all** - All the RADIUS server messages
- **errors** - Error code debug messages
- **events** - Events related messages
- **packets** - Packets related messages
- **responses** - Server response related messages
- **timers** - Timer module related messages

Mode

Privileged EXEC Mode

Defaults

Debugging is Disabled

Example:

```
SMIS# debug radius all
```

Related Command

- **show radius server** - Displays RADIUS server configuration
11.3  show radius server

This command displays RADIUS server configuration.

```
show radius server
```

**Mode**

Privileged EXEC Mode

**Example:**

```
SMIS# show radius server
Radius Server Host Information

Index : 1
Server address : 10.0.0.1
Shared secret : admin123
Radius Server Status : Enabled
Response Time : 20
Maximum Retransmission : 8

```

**Related Command**

```
radius-server host - Configures the RADIUS client with the parameters
```
11.4 show radius statistics

This command displays RADIUS Server Statistics.

**show radius statistics**

**Mode**
Privileged EXEC Mode

**Example:**
SMIS# show radius statistics
Radius Server Statistics
-----------------------------
Index : 1
Radius Server Address : 10.0.0.1
UDP port number : 1812
Round trip time : 0
No of request packets : 8
No of retransmitted packets : 80
No of access-accept packets : 0
No of access-reject packets : 0
No of access-challenge packets : 0
No of malformed access responses : 0
No of bad authenticators : 0
No of pending requests : 97
No of timeouts : 89
No of unknown types : 0
--------------------------------------------

**Related Command**
radius-server host - Configures the RADIUS client with the parameters
12 TACACS

TACACS (Terminal Access Controller Access Control System), widely used in network environments, is a client/server protocol that enables remote access servers to communicate with a central server to authenticate dial-in users and authorize their access to the requested system or service. It is commonly used for providing Network Access Security (NAS). NAS ensures secure access from remotely connected users. TACACS implements the TACACS Client and provides the Authentication, Authorization and Accounting (AAA) functionalities.

TACACS is used for several reasons:

- Facilitates centralized user administration.
- Uses TCP for transport to ensure reliable delivery.
- Supports inbound authentication, outbound authentication and change password request for the Authorization service.
- Provides some level of protection against an active attacker.

The list of CLI commands for the configuration of TACACS is as follows:

- `tacacs-server host`
- `tacacs use-server address`
- `tacacs-server retransmit`
- `aaa authentication tacacs`
- `aaa authorization group tacacs`
- `debug tacacs`
- `show tacacs`
12.1 tacacs-server host
This command configures the TACACS server with the parameters (host, timeout, key). The no form of the command deletes server entry from the TACACS server table.

```
tacacs-server host <ip-address> [single-connection] [port <TCP port>] [timeout <time out in seconds>] [key <secret key>]
```

```
o tacacs-server host <ip-address>
```

Syntax Description
- **single-connection** - Establishes Single TCP connection to communicate with TACACS Server
- **port** - TCP Port number
- **timeout** - The time period in seconds for which a client will wait for a response from the server before closing the connection
- **key** - Per-server encryption key. Specifies the authentication and encryption key for all TACACS communications between the authenticator and the TACACS server. The string length is 64.

Mode
Global Configuration Mode

Defaults
- Port - 40
- Timeout - 5 seconds

Example:
```
SMIS(config)# tacacs-server host 10.0.0.100 key SuperMicroTACACS
```

Related Commands
- **show tacacs** - Displays the statistical log information and server for TACACS client
12.2 tacacs use-server address
This command selects a server from the list of servers maintained in the TACACS client and makes the TACACS client to use the specified server. The no form of the command disables the configured TACACS active server.

`tacacs use-server address<ip-address>`

`no tacacs use-server`

Mode
Global Configuration Mode

Example:
SMIS(config)# tacacs use-server address 10.0.0.100

Related Commands
show tacacs - Displays the statistical log information and server for TACACS client
12.3 tacacs-server retransmit

This command specifies the number of times the client searches the active server from the list of servers maintained in the TACACS client, when active server is not configured. The no form of the command sets the default retries.

*tacacs-server retransmit <1-100>*

*no tacacs-server retransmit*

**Mode**
Global Configuration Mode

**Example:**

SMIS(config)# tacacs-server retransmit 3
12.4 aaa authentication tacacs

This command selects the authentication method used for transmitting a password to the TACACS server. The default method used is pap. The “no” form of the command selects the default method pap.

```
aaa authentication tacacs { chap | pap }
```

```
no aaa authentication tacacs
```

**Mode**

Global Configuration Mode

**Default**

pap

**Example:**

```
SMIS(config)# aaa authentication tacacs chap
```

**Related Commands**

- `show running-config` - Displays the currently running configuration
12.5 aaa authorization group tacacs

This command configures the switch to receive and process a privilege level from the TACACS+ server. By default the switch does not request and use the privilege level from TACACS+ server. The “no” form of this command makes the switch not request and use the privilege level from TACACS+ server.

```
aaa authorization group tacacs

no aaa authorization group tacacs
```

**Mode**
Global Configuration Mode

**Default**
No authorization.

**Example:**
```
SMIS(config)# aaa authorization group tacacs
```

**Related Commands**
- `show running-config` - Displays the currently running configuration
12.6  **debug tacacs**

This command sets the debug trace level for TACACS client module. The no form of the command disables the debug trace level for TACACS client module.

```
debug tacacs { all | info | errors | dumptx | dumprx }
```

```no debug tacacs```

Syntax Description

- `all` - All TACACS debug messages
- `info` - TACACS Server information messages
- `errors` - Error code debug messages
- `dumptx` - Transmitted packet dump messages
- `dumprx` - Received packet dump messages

Mode

Privileged EXEC Mode

Defaults

Debugging is Disabled

Example:

```
SMIS# debug tacacs all
```
12.7 show tacacs

This command displays the statistical log information and server for TACACS+ client.

show tacacs

Mode

Privileged EXEC Mode

Example:

```
SMIS# show tacacs
Server : 1
Address : 10.0.0.5
Single Connection : no
TCP port : 49
Timeout : 5
Secret Key : SuperMicroTACACS
Server : 2
Address : 12.0.0.5
Single Connection : no
TCP port : 49
Timeout : 5
Secret Key : SuperMicroTACACS
Client uses server: 12.0.0.5
Authen. Starts sent : 0
Authen. Continues sent : 0
Authen. Enables sent : 0
Authen. Aborts sent : 0
Authen. Pass rcvd. : 0
Authen. Fails rcvd. : 0
Authen. Get User rcvd. : 0
Authen. Get Pass rcvd. : 0
Authen. Get Data rcvd. : 0
Authen. Errors rcvd. : 0
Authen. Follows rcvd. : 0
Authen. Restart rcvd. : 0
Authen. Sess. timeouts : 0
Author. Requests sent : 0
```
Related Commands

tacacs-server host - Configures the TACACS server with the parameters

tacacs use-server address - Selects a server from the list of servers maintained in the TACACS client and makes the TACACS client to use the specified server
13 Link Aggregation (LA)

Link Aggregation (LA) is a method of combining multiple parallel physical connections into a single logical connection (trunk), thus allowing increased bandwidth for a particular network path beyond what a single connection could sustain. By taking multiple LAN connections and treating them as a unified, aggregated link, practical benefits in many applications can be achieved. For example, link aggregation provides redundancy in case one of the links fails. Link Aggregation also provides load balancing so that processing and communication activity is distributed across several links in a trunk ensuring that no single link is overwhelmed.

Other terms often used to describe this Link Aggregation method include port trunking, link bundling, bonding, or teaming. These umbrella terms encompass industry standards such as IEEE 802.1ax Link Aggregation Control Protocol (LACP) for wired Ethernet, or the previous IEEE 802.3ad, as well as various proprietary solutions. In this manual we will also refer to a particular group of aggregated links as a Port Channel.

Supermicro switches support both static link aggregation and dynamic link aggregation using IEEE 802.3ad and LACP. Up to 24 Port Channels can be configured on an individual switch and each Port Channel can contain up to 8 members.

The list of CLI commands for the configuration of LA is as follows:

- `set port-channel`
- `lacp system-priority`
- `port-channel load-balance`
- `lacp port-priority`
- `channel-group`
- `lacp wait-time`
- `lacp timeout`
- `show etherchannel`
- `show interfaces`
- `show lacp`
- `debug la`
13.1 set port-channel

This command enables/disables link aggregation in the switch.

\[\text{set port-channel} \{ \text{enable} | \text{disable} \} \]

Syntax Description

- **enable** - Enables link aggregation in the switch
- **disable** - Disables link aggregation in the switch

Mode

Global Configuration Mode

Defaults

Enable

Example:

```
SMIS(config)# set port-channel enable
```

Related Command

- `show etherchannel` - Displays etherchannel information
13.2 lACP system-priority

This command sets the LACP priority for the system and the no form of the command sets the LACP priority for the system to the default value. System Priority represents a 2-octet value indicating the priority value associated with the system involved in link aggregation.

```
lACP system-priority <0-65535>
```

```
no lACP system-priority
```

Mode

Global Configuration Mode

Defaults

0x8000 or 32768

Example:

```
SMIS(config)# lACP system-priority 5
```

The switch with the lowest system priority value decides the standby and active links in the aggregation.

Although this is a global configuration command, the priority only takes effect on EtherChannels that have physical interfaces with LACP enabled.

Related Command

```
show etherchannel - Displays lACP system-priority value
```
13.3 port-channel load-balance

This command sets the load balancing policy and the no form of the command sets the load balancing policy to the default value.

```
port-channel load-balance {src-mac | dest-mac | src-dest-mac| src-ip | dest-ip | src-dest-ip } [ <port-channel-index(1-65535)> ]
```

```
o port-channel load-balance [ <port-channel-index(1-65535)> ]
```

Syntax Description
- **src-mac** - Load distribution is based on the source MAC address. Packets from different hosts use different ports in the channel, but packets from the same host use the same port.
- **dest-mac** - Load distribution is based on the destination host MAC address. Packets to the same destination are sent on the same port, but packets to different destinations are sent on different ports in the channel.
- **src-dest-mac** - Load distribution is based on the source and destination MAC address.
- **src-ip** - Load distribution is based on the source IP address.
- **dest-ip** - Load distribution is based on the destination IP address.
- **src-dest-ip** - Load distribution is based on the source and destination IP address.
- **port-channel-index** - Port channel number

Mode
- Global Configuration Mode

Defaults
- source and destination MAC address based

Example:
```
SMIS(config)# port-channel load balance dest-mac 28
```

If the port-channel index is not mentioned in this command the load-balancing must apply for all port-channels configured in the system.

Initially, the port channel interface must have been configured for this command.

Related Command
show etherchannel - Displays etherchannel load balance information
13.4 lacp port-priority

This command sets the LACP port priority and the no form of the command sets the LACP port priority to the default value. Port priority determines whether the link is an active link or a standby link, when the number of ports in the aggregation exceeds the maximum number supported by the hardware.

`lacp port-priority <0-65535>`

`no lacp port-priority`

Mode
Interface Configuration Mode

Defaults
`port-priority - 128`

Example:
SMIS(config-if)# lacp port-priority 1

This command takes effect only on EtherChannel interfaces that are already configured for LACP.

If the number of links in an aggregation exceeds the maximum supported by the hardware, then the links with lower priority become active links.

Related Commands
`lacp system-priority` - Globally sets the LACP priority
`show etherchannel` - Displays etherchannel detailed / port information
13.5 channel-group

This command configures an Etherchannel and the no form of the command removes an interface from the Etherchannel.

```
channel-group <channel-group-number(1-65535)> mode {active | passive | on}

no channel-group
```

Syntax Description

- **channel-group-number** – The port channel number to which this interface is to be added. If there is no port channel configured with the given channel group number, switch will create a port channel automatically and add this interface.
- **mode** – mode represents any one of the following:
 - **active** - LACP negotiation is started un-conditionally
 - **passive** - LACP negotiation is started only when LACP packet is received from peer
 - **on** - Force the interface to channel without LACP. This is equivalent to manual aggregation

Mode

Interface Configuration Mode

Example:

```
SMIS(config-if)# channel-group 1 mode active
```

Related Command

- **show etherchannel** - Displays etherchannel detailed / port information
13.6 lACP wait-time

This command sets the LACP wait-time and the no form of the command sets the LACP wait-time to the default value.

`lacp wait-time <0-10>`

`no lacp wait-time`

Mode

Interface Configuration Mode

Defaults

2

Example:

`SMIS(config-if)# lacp wait-time 1`

Configuring the wait-time value as 0 ensures that links get aggregated immediately.

Related Command

`show etherchannel` - Displays etherchannel detailed / port information
13.7 lACP allow-zero-partner-key

This command allows the Supermicro Intelligent Switch to establish a connection with some particular switch (such as a Cisco Nexus OS) which uses an admin key of zero to negotiate an LACP connection.

```plaintext
lacp allow-zero-partner-key { enable | disable }
```

Mode
Interface Configuration Mode

Defaults
Disable

Example:
```plaintext
SMIS(config-if)# lACP allow-zero-partner-key enable
```

Related Command
- `show etherchannel` - Displays etherchannel detailed / port information
13.8 lACP timeout

This command sets the LACP timeout period and the no form of the command sets the LACP timeout period to the default value.

```
lACP timeout {long | short }
```

```
no lACP timeout
```

Syntax Description

- **long** - Long timeout value
- **short** - Short timeout value

Mode

Interface Configuration Mode

Defaults

long

Example:

```
SMIS(config-if)# lACP timeout short
```

The long timeout value means that LACP PDU will be sent every 30 seconds and LACP timeout value (no packet is received from peer) is 90 seconds.

The short timeout value means that LACP PDU will be sent every 1 second and timeout value is 3 seconds.

Related Command

- **show etherchannel** - Displays etherchannel detailed / port information
13.9 show etherchannel

This command displays etherchannel information.

```
show etherchannel [channel-group-number] { detail | load-balance | port | port-channel | summary | protocol]
```

Syntax Description
- `channel-group-number` - Number of the channel group. Valid numbers range from maximum number of ports in the system to maximum number of aggregations supported
- `detail` - Detailed EtherChannel information
- `load-balance` - Load-balance or frame-distribution scheme among ports in the port channel
- `port` - EtherChannel port information
- `port-channel` - Port-channel information
- `summary` - Protocol that is being used in the EtherChannel
- `protocol` - One-line summary per channel-group

Mode
Privileged EXEC Mode

Example:
```
SMIS# show etherchannel
Port-channel is enabled
Max Port Channels is 24 with maximum 8 active ports per port
channel
Channel Group Listing
---------------------
Group : 1
--------
Protocol : LACP

SMIS# show etherchannel 1 detail
Port-channel is enabled
Max Port Channels is 24 with maximum 8 active ports per port
channel
LACP System Priority: 32768
Channel Group Listing
```
Group: 1

Protocol: LACP

Ports in the Group

Port: Gi0/1

Port State = Up in Bundle
Channel Group: 1

Mode:
: Active

Pseudo port-channel = Po1
LACP port-priority = 128
LACP Wait-time = 2 secs
LACP Activity: Active
LACP Timeout: Long
Aggregation State: Aggregation, Sync, Collecting, Distributing

Port: Gi0/2

Port State = Up in Bundle
Channel Group: 1

Mode:
: Active

Pseudo port-channel = Po1
LACP port-priority = 128
LACP Wait-time = 2 secs
LACP Activity: Active
LACP Timeout: Long
Aggregation State: Aggregation, Sync, Collecting, Distributing
Port-channel: Po1
Number of Ports = 2
HotStandBy port = null
Port state = Port-channel Ag-Inuse
Protocol = LACP
MAC selection = Dynamic

SMIS# show etherchannel 1 port
Channel Group Listing

Group: 1

Protocol :LACP
Ports in the Group

Port : Gi0/1

Port State = Up in Bundle
Channel Group : 1

Mode
: Active

Pseudo port-channel = Po1
LACP port-priority = 128
LACP Wait-time = 2 secs
LACP Port Identifier = 2
LACP Activity : Active
LACP Timeout : Long
Aggregation State : Aggregation, Sync, Collecting, Distributing,
Port : Gi0/2

Port State = Up in Bundle
Channel Group : 1

Mode
: Active
Pseudo port-channel = Po1
LACP port-priority = 128
LACP Wait-time = 2 secs
LACP Activity : Active
LACP Timeout : Long
Aggregation State : Aggregation, Sync, Collecting, Distributing,
LACP Port Admin Oper Port Port
Port State Priority Key Key Number State

Gi0/1 Bundle 128 1 1 0x1 0xbc
Gi0/2 Bundle 128 1 1 0x2 0xbc

SMIS# show etherchannel 1 port-channel
Port-channel is enabled
Max Port Channels is 24 with maximum 8 active ports per port
channel
Channel Group Listing

Group : 1

Port-channels in the group:

Port-channel : Po1

Number of Ports = 2
HotStandBy port = null
Port state = Port-channel Ag-Inuse
Protocol = LACP
MAC selection = Dynamic

SMIS# show etherchannel 1 summary
Flags:
D - down P - in port-channel
I - stand-alone S - suspended
H - Hot-standby (LACP only)
Port-channel is enabled
Port-channel System Identifier is 00:01:02:03:04:05
Number of channel-groups in use: 1
Number of aggregators: 1

Group Port-channel Protocol Ports
--
1 Po1(P) LACP Gi0/1(P), Gi0/2(P)

SMIS# show etherchannel 1 protocol
Channel Group Listing

Group : 1

Protocol : LACP

SMIS# show etherchannel load-balance
Channel Group Listing

Group : 1

Source IP Address

If the channel group number is not specified details on all channels are displayed.

Related Commands

- `channel-group` - Assigns an Ethernet interface to an EtherChannel group
- `set port-channel` - Enables/disables link aggregation in the switch
- `lacp system-priority` - Sets the LACP priority for the system
- `port-channel load-balance` - Sets the load balancing policy
- `lacp port-priority` - Sets the LACP port priority
- `lacp wait-time` - Sets the LACP wait-time
- `lacp timeout` - Sets the LACP timeout period
- `show interfaces` - Displays interface specific port-channel information
13.10 show interfaces

This command displays interface specific port-channel information.

```
show interfaces [<interface-type> <interface-id>] etherchannel
```

Syntax Description

- **Etherchannel** - Interface EtherChannel information
- **Mode**
 - Privileged EXEC Mode

Example:

```
SMIS# show interfaces gigabitethernet 0/1 etherchannel
Port : Gi0/1
---------
Port State = Up in Bundle
Channel Group : 2

Mode
: Active

Pseudo port-channel = Po2
LACP port-priority = 128
LACP Port Identifier = 2
LACP Wait-time = 2 secs
LACP Activity : Passive
LACP Timeout : Long
Aggregation State : Aggregation, Sync, Collecting, Distributing,
LACP Port Admin Oper Port Port
Port State Priority Key Key Number State
-----------------------------------------------
Gi0/1 Bundle 128 2 2 0x1 0x3c

SMIS# show interfaces etherchannel
Port : Gi0/1
---------
Port State = Up in Bundle
```
Channel Group : 2

Mode
: Active

Pseudo port-channel = Po2
LACP port-priority = 128
LACP Wait-time = 2 secs
LACP Activity : Passive
LACP Timeout : Long
Aggregation State : Aggregation, Sync, Collecting, Distributing,
Port : Gi0/2

Port State = Up in Bundle
Channel Group : 2

Mode
: Active

Pseudo port-channel = Po2
LACP port-priority = 128
LACP Wait-time = 2 secs
LACP Activity : Passive
LACP Timeout : Long
Aggregation State : Aggregation, Sync, Collecting, Distributing,
LACP Port Admin Oper Port Port
Port State Priority Key Key Number State

Gi0/1 Bundle 128 2 2 0x1 0x3c
Gi0/2 Bundle 128 2 2 0x2 0x3c
Port-channel : Po2
Number of Ports = 2
HotStandBy port = null
Port state = Port-channel Ag-Inuse
Protocol = LACP
MAC selection = Dynamic

Expressions are case sensitive.
The port-channel range is 1 to 64.

Related Commands
set port-channel - Enables/disables link aggregation in the switch
channel-group - Assigns an Ethernet interface to an EtherChannel group
port-channel load-balance - Sets the load balancing policy
lacp port.Priority - Sets the LACP port priority
lacp wait-time - Sets the LACP wait-time
lacp timeout - Sets the LACP timeout period
show etherchannel - Displays etherchannel information
13.11 show lacp

This command displays port-channel traffic/neighbor information.

```
show lacp [ <port-channel(1-65535) > ] { counters | neighbor [ detail ] }
```

Syntax Description

- `port-channel` - Number of the channel group
- `counters` - Traffic information
- `neighbor` - Neighbor information
- `detail` - Neighbor detail information

Mode

Privileged EXEC Mode

Example:

```
SMIS# show lacp 1 counters
LACPDUs Marker Market Response LACPDUs
Port Sent Recv Sent Recv Sent Recv Pkts Err
------------------------------------------
Channel group: 1
------------------
Gi0/1 394 352 0 0 0 0 0 0
Gi0/2 318 297 0 0 0 0 0 0

SMIS# show lacp neighbor detail
Flags:
A - Device is in Active mode
P - Device is in Passive mode

Channel group 1 neighbors
Port Gi0/1
----------
Partner System ID : 00:01:02:03:04:21
Flags : P
LACP Partner Port Priority : 128
LACP Partner Oper Key : 2
```
LACP Partner Port State : 0x3c
Port State Flags Decode

Activity : Passive
LACP Timeout : Long
Aggregation State : Aggregation, Sync, Collecting,
Distributing
Port Gi0/2

Partner System ID : 00:01:02:03:04:21
Flags : P
LACP Partner Port Priority : 128
LACP Partner Oper Key : 2
LACP Partner Port State : 0x3c
Port State Flags Decode

Activity : Passive
LACP Timeout : Long
Aggregation State : Aggregation, Sync, Collecting,
Distributing

Expressions are case sensitive

Related Commands

\texttt{lACP wait-time} - Sets the LACP wait-time
\texttt{lACP timeout} - Sets the LACP timeout period
\texttt{channel-group} - Assigns an Ethernet interface to an EtherChannel group
\texttt{show interfaces} - Displays interface specific port-channel information
\texttt{show etherchannel} - Displays etherchannel detailed information
13.12 debug la

This command enables the display of link aggregation debug messages.
The no form of this command disables the display of link aggregation debug messages.

debug la [{all | [init-shut] [mgmt] [data] [ctrl] [pkt-dump] [resource] [all-fail] [buf] [sel] [pdu <iftype> <ifnum>] }]

no debug la [{all | [init-shut] [mgmt] [data] [ctrl] [pkt-dump] [resource] [all-fail] [buf] [sel] [pdu <iftype> <ifnum>] }]

Syntax Description
all – displays all debug messages
init-shut – displays initialization and shutdown messages
mgmt – displays management messages
data – displays all data path messages
ctrl – displays all control messages
pkt-dump – displays the contents of all LACP packets
resource – displays the resources (like memory) utilization debug messages
all-fail – displays all failure events
buf – displays the buf utilization debug messages
sel – displays the selector related debug messages
pdu – displays all the LACP packets received and transmitted on the given interface
iftype - Interface type, can either be a gi, ex or qx ethernet interfaces
ifnum - Physical interface ID including slot and port number

Mode
Privileged/User EXEC Mode

Defaults
Disabled

Example:
SMIS# debug la all

Related Commands
14 IGMP Snooping

IGMP (Internet Group Multicast Protocol), is the protocol a host uses to inform a router when it joins (or leaves) an Internet multicast group. IGMP is only used on a local network; a router must use another multicast routing protocol to inform other routers of group membership. IGS (IGMP Snooping), is a feature that allows the switch to “listen in” on the IGMP conversation between hosts and routers. In IGS, a host computer uses IGMP to inform a router that it intends to listen to a specific multicast address. If another computer snoops such packets, the other computer can learn the multicast sessions to which other computers on the local network are listening. IGMP snooping significantly reduces traffic from streaming media and other bandwidth-intensive IP multicast applications.

The list of CLI commands for the configuration of IGS are common to both Single Instance and Multiple Instance except for a difference in the prompt that appears for the Switch with Multiple Instance support.

The prompt for the Global Configuration Mode is,

```
SMIS(config-switch)#
```

The parameters specific to Multiple Instance are stated so, against the respective parameter descriptions in this document.

The output of the Show commands differ for Single Instance and Multiple Instance. Hence both the output are documented while depicting the show command Example:s.

The list of CLI commands for the configuration of IGS is as follows:

```
ip igmp snooping
ip igmp snooping proxy-reporting
snooping multicast-forwarding-mode
ip igmp snooping mrouter-time-out
ip igmp snooping port-purge-interval
ip igmp snooping report-suppression interval
ip igmp snooping retry-count
ip igmp snooping group-query-interval
```
ip igmp snooping report-forward
ip igmp snooping version
ip igmp snooping fast-leave
ip igmp snooping querier
ip igmp snooping query-interval
ip igmp snooping mrouter
ip igmp snooping send-query
ip igmp snooping clear counters
shutdown snooping
debug ip igmp snooping
show ip igmp snooping mrouter
show ip igmp snooping globals
show ip igmp snooping
show ip igmp snooping groups
show ip igmp snooping forwarding-database
show ip igmp snooping statistics
14.1 ip igmp snooping

This command enables IGMP snooping in the switch/a specific VLAN and the no form of the command disables IGMP snooping in the switch/a specific VLAN.

`ip igmp snooping`

`no ip igmp snooping`

Mode

Global Configuration Mode / Config-VLAN Mode

Defaults

IGMP snooping is globally disabled

Example:

```
SMIS(config)# ip igmp snooping
SMIS(config-vlan)# ip igmp snooping
```

When IGMP snooping is enabled globally, it is enabled in all the existing VLAN interfaces. When IGMP snooping is disabled globally, it is disabled in all the existing VLAN interfaces.

GMRP has to be disabled for the IGMP snooping to be enabled.

Related Commands

- `shutdown snooping` - Shuts down IGMP snooping in the switch
- `show ip igmp snooping` - Displays IGMP snooping information for all VLANs or a specific VLAN
- `show ip igmp snooping globals` - Displays the IGMP snooping information for all VLANs or a specific VLAN
- `snooping multicast-forwarding-mode` - Specifies the snooping multicast forwarding mode
14.2 ip igmp snooping proxy-reporting

This command enables proxy reporting in the IGMP snooping switch and the no form of the command disables proxy reporting in the IGMP snooping switch.

ip igmp snooping proxy-reporting

no ip igmp snooping proxy-reporting

Mode
Global Configuration Mode

Defaults
Proxy-reporting is enabled

Example:
SMIS(config)# ip igmp snooping proxy-reporting

Related Command
show ip igmp snooping globals - Displays the IGMP snooping information for all VLANs or a specific VLAN
14.3 snooping multicast-forwarding-mode

This command specifies the snooping multicast forwarding mode (IP based or MAC based).

snooping multicast-forwarding-mode {ip | mac}

Syntax Description
ip - IP Address based
mac - MAC Address based

Mode
Global Configuration Mode

Defaults
ip

Example:
SMIS(config)# snooping multicast-forwarding-mode mac

Related Command
show ip igmp snooping globals - Displays the IGMP snooping information for all VLANs or a specific VLAN
14.4 ip igmp snooping mrouter-time-out

This command sets the IGMP snooping router port purge time-out after which the port gets deleted if no IGMP router control packets are received. The no form of the command sets the IGMP snooping router port purge time-out to default value.

```
ip igmp snooping mrouter-time-out <(60 – 600) seconds>
```

```
no ip igmp snooping mrouter-time-out
```

Mode
Global Configuration Mode

Defaults
125

Example:
```
SMIS(config)#ip igmp snooping mrouter-time-out 70
```

Related Command
```
show ip igmp snooping mrouter - Displays the router ports for all VLANs or specific VLAN
```
14.5 ip igmp snooping port-purge-interval

This command sets the IGMP snooping port purge time interval after which the port gets deleted if no IGMP reports are received. The no form of the command sets the IGMP snooping port purge time to default value.

```
ip igmp snooping port-purge-interval <(130 - 1225) seconds>
```

```
no ip igmp snooping port-purge-interval
```

Mode
Global Configuration Mode

Defaults
260

Example:
```
iss (config)# ip igmp snooping port-purge-interval 150
```

Related Command
- `show ip igmp snooping globals` - Displays the IGMP snooping information for all VLANs or a specific VLAN
14.6 ip igmp snooping report-suppression interval

This command sets the IGMP snooping report-suppression time interval for which the IGMPv2 report messages for the same group will not get forwarded onto the router ports. The no form of the command sets the IGMP snooping report-suppression interval time to the default value.

```
ip igmp snooping report-suppression-interval <(1 - 25) seconds>
```

```
o ip igmp snooping report-suppression-interval
```

Mode
Global Configuration Mode

Defaults
5

Example:
```
SMIS(config)# ip igmp snooping report-suppression-interval 20
```

Related Command
- `show ip igmp snooping globals` - Displays the IGMP snooping information for all VLANs or a specific VLAN
14.7 ip igmp snooping retry-count

This command sets the maximum number of group specific queries sent on a port on reception of a IGMPv2 leave message. The no form of the command sets the number of group specific queries sent on a port on reception of leave message to default value.

```
ip igmp snooping retry-count <1 - 5>
```

```
no ip igmp snooping retry-count
```

Mode

Global Configuration Mode

Defaults

2

Example:

```
iss (config)# ip igmp snooping retry-count 4
```

Related Command

show ip igmp snooping globals - Displays the IGMP snooping information for all VLANs or a specific VLAN
14.8 **ip igmp snooping group-query-interval**

This command sets the time interval after which the switch sends a group specific query on a port. The no form of the commands sets the group specific query interval time to default value.

```
ip igmp snooping group-query-interval <2-5) seconds>
```

```
no ip igmp snooping group-query-interval
```

Mode
Global Configuration Mode

Defaults
2

Example:
```
SMIS(config)# ip igmp snooping group-query-interval 3
```

Related Commands
- `show ip igmp snooping globals` - Displays the IGMP snooping information for all VLANs or a specific VLAN
- `show ip igmp snooping statistics` - Displays IGMP snooping statistics for all VLANs or a specific VLAN
- `show ip igmp snooping groups` - Displays IGMP group information for all VLANs or a specific VLAN
14.9 ip igmp snooping report-forward

This command specifies if IGMP reports must be forwarded on all ports or router ports of a VLAN and the no form of the command sets IGMP report-forwarding status to default value.

```
ip igmp snooping report-forward {all-ports | router-ports}

no ip igmp snooping report-forward
```

Syntax Description

- `all-ports` - IGMP reports forwarded on all the ports of a VLAN
- `router-ports` - IGMP reports forwarded on router ports of a VLAN

Mode
Global Configuration Mode

Defaults
router-ports

Example:
```
SMIS(config)# ip igmp snooping report-forward all-ports
```

Related Command
- `show ip igmp snooping globals` - Displays the IGMP snooping information for all VLANs or a specific VLAN
14.10 ip igmp snooping version

This command sets the operating version of the IGMP snooping switch for a specific VLAN.

ip igmp snooping version { v1 | v2 | v3}

Syntax Description
v1 - IGMP snooping Version 1
v2 - IGMP snooping Version 2
v3 - IGMP snooping Version 3

Mode
Config-VLAN Mode

Defaults
v3

Example:
SMIS(config-vlan)#ip igmp snooping version v2

Related Command
show ip igmp snooping - Displays IGMP snooping information for all VLANs or a specific VLAN
14.11 ip igmp snooping fast-leave

This command enables fast leave processing for a specific VLAN and the no form of the command disables fast leave processing for a specific VLAN.

```
ip igmp snooping fast-leave

no ip igmp snooping fast-leave
```

Mode

Config-VLAN Mode

Defaults

Disabled

Example:

```
iss (config-vlan)# ip igmp snooping fast-leave
```

Related Command

`show ip igmp snooping` - Displays IGMP snooping information for all VLANs or a specific VLAN
14.12 ip igmp snooping querier

This command configures the IGMP snooping switch as a querier for a specific VLAN. The no form of the command configures the IGMP snooping switch as non-querier for a specific VLAN.

ip igmp snooping querier

no ip igmp snooping querier

Mode
Config-VLAN Mode

Defaults
Non-querier

Example:
iss (config-vlan)# ip igmp snooping querier

Related Command
show ip igmp snooping - Displays IGMP snooping information for all VLANs or a specific VLAN
14.13 ip igmp snooping query-interval

This command sets the time period with which the general queries are sent by the IGMP snooping switch when configured as querier on a VLAN. The no form of the command sets the IGMP querier interval to default value.

```
ip igmp snooping query-interval <(60 - 600) seconds>
```

```
no ip igmp snooping query-interval
```

Mode

Config-VLAN Mode

Defaults

125

Example:

```
iss (config-vlan) # ip igmp snooping query-interval 200
```

Related Command

- `show ip igmp snooping` - Displays IGMP snooping information for all VLANs or a specific VLAN
14.14 ip igmp snooping mrouter

This command configures statically the router ports for a VLAN and the no form of the command deletes the statically configured router ports for a VLAN.

ip igmp snooping mrouter <interface-type> <0/a-b, 0/c, ...>

no ip igmp snooping mrouter <interface-type> <0/a-b, 0/c, ...>

Mode
Config-VLAN Mode

Example:
iss (config-vlan)# ip igmp snooping mrouter gigabitethernet 0/1-3

Related Command
show ip igmp snooping mrouter - Displays the router ports for all VLANs or specific VLAN
14.15 **ip igmp snooping send-query**

This command configures IGMP snooping send-query function. When send-query is enabled, switch sends IGMP query messages on all the ports when spanning tree topology changes.

\[\text{ip igmp snooping send-query \{ enable | disable \}} \]

Mode

Global Configuration Mode

Default

Disable

Example:

iss (config)# ip igmp snooping send-query enable

Related Command

show ip igmp snooping globals - Displays IGMP snooping global configuration parameters
14.16 ip igmp snooping clear counters
This command clears the IGMP snooping statistics. If any VLAN identifier is provided it clears the
IGMP snooping statistics for the given VLAN.

ip igmp snooping clear counters [Vlan <vlan-id>]

Syntax
<vlan-id> - Any valid VLAN identifier between 1 to 4069

Mode
Global Configuration Mode

Example:
iss (config)# ip igmp snooping clear counters

Related Command
show ip igmp snooping statistics - Displays IGMP snooping statistics
14.17 shutdown snooping

This command shuts down snooping in the switch and the no form of the command starts and enables snooping in the switch.

shutdown snooping

no shutdown snooping

Mode
Global Configuration Mode

Defaults
no shutdown snooping

Example:
SMIS(config)# shutdown snooping

When shutdown, all resources acquired by the Snooping Module are released to the system.

For the IGS feature to be functional on the switch, the 'system-control' status must be set as 'start' and the 'state' must be 'enabled'

Related Command
ip igmp snooping - Enables IGMP snooping in the switch/a specific VLAN
14.18 debug ip igmp snooping

This command specifies the debug levels for IGMP snooping module and the no form of the command resets debug options for IGMP snooping module.

```
debug ip igmp snooping {[init][resources][tmr][src][grp][qry]
[vlan][pkt][fwd][mgmt][redundancy]  | all }

no debug ip igmp snooping {[init][resources][tmr][src][grp][qry]
[vlan][pkt][fwd][mgmt][redundancy]  | all }
```

Syntax Description

- **Init** - Init and Shutdown Messages
- **resources** - System Resources management Messages
- **tmr** - Timer Messages
- **src** - Source Information Messages
- **grp** - Group Information Messages
- **qry** - Query Related Messages
- **vlan** - VLAN Information Messages
- **pkt** - Packet Dump Messages
- **fwd** - Forwarding Database Messages
- **mgmt** - Management Related Messages
- **redundancy** - Redundancy Related messages
- **all** - All Messages

Mode

Privileged EXEC Mode

Defaults

Debugging is Disabled.

Example:

```
SMIS# debug ip igmp snooping fwd
```

Related Command

- **show debugging** - Displays state of each debugging option
show ip igmp snooping mrouter

This command displays the router ports for all VLANs or a specific VLAN.

`show ip igmp snooping mrouter [Vlan <vlan index>]`

Syntax Description

Vlan - Vlan ID value

Mode

Privileged EXEC Mode

Example:

Single Instance

SMIS# show ip igmp snooping mrouter
Vlan Ports
----- ------
1 Gi0/1(dynamic), Gi0/2(static)
2 Gi0/1(static), Gi0/2(dynamic)

Multiple Instance

SMIS# show ip igmp snooping mrouter
Switch cust1
Vlan Ports
----- ------
1 Gi0/1(static)
2 Gi0/1(static)
Switch cust2
Vlan Ports
----- ------
1 Gi0/9(static)
2 Gi0/9(static)

Related Command

`ip igmp snooping mrouter` - Configures statically the router ports for a VLAN
14.20 show ip igmp snooping globals

This command displays the IGMP snooping information for all VLANs or a specific VLAN.

```
show ip igmp snooping globals
```

Syntax

Mode
Privileged EXEC Mode

Example:

Single Instance

SMIS# show ip igmp snooping globals
IGMP Snooping Configuration

IGMP Snooping globally enabled
Proxy reporting globally enabled
Multicast forwarding mode
is MAC based

Router port purge interval is 125 seconds
Port purge interval is 260 seconds
Report forward interval is 5 seconds
Group specific query interval is 2 seconds
IGMP reports are forwarded to router ports
Group specific query retry count is 2

Multiple Instance

SMIS# show ip igmp snooping globals
Switch default
Snooping Configuration

IGMP Snooping globally disabled
IGMP Snooping is operationally disabled
Multicast forwarding mode
is MAC based
Proxy reporting globally enabled
Router port purge interval is 125 seconds
Port purge interval is 260 seconds
Report forward interval is 5 seconds
Group specific query interval is 2 seconds
Reports are forwarded on router ports
Group specific query retry count is 2
Switch cust1
Snooping Configuration

IGMP Snooping globally enabled
IGMP Snooping is operationally enabled
Multicast forwarding mode
is MAC based

Proxy reporting globally enabled
Router port purge interval is 125 seconds
Port purge interval is 260 seconds
Report forward interval is 5 seconds
Group specific query interval is 2 seconds
Reports are forwarded on router ports
Group specific query retry count is 2
Switch cust2
Snooping Configuration

IGMP Snooping globally enabled
IGMP Snooping is operationally enabled
Multicast forwarding mode
is MAC based

Proxy reporting globally enabled
Router port purge interval is 125 seconds
Port purge interval is 260 seconds
Report forward interval is 5 seconds

Group specific query interval is 2 seconds
Reports are forwarded on router ports
Group specific query retry count is 2

Related Commands

ip igmp snooping - Enables IGMP snooping in the switch/a specific VLAN

ip igmp snooping proxy-reporting - Enables proxy reporting in the IGMP snooping switch

snooping multicast-forwarding-mode - Specifies the forwarding mode (IP based or MAC based) that will be effective on switch restart

ip igmp snooping port-purge-interval - Sets the IGMP snooping port purge time interval after which the port gets deleted if no IGMP reports are received

ip igmp snooping report-suppression interval - Sets the IGMP report-suppression interval

ip igmp snooping retry-count - Sets the maximum number of group specific queries sent on a port on reception of a IGMPV2 leave message

ip igmp snooping version - Specifies the IGMP snooping operating mode of the switch

ip igmp snooping report-forward - Specifies if IGMP reports must be forwarded on all ports or router ports of a VLAN
14.21 show ip igmp snooping

This command displays IGMP snooping information for all VLANs or a specific VLAN.

```
show ip igmp snooping [Vlan <vlan id>]
```

Syntax Description

`vlan` - VLAN ID

Mode

Privileged EXEC Mode

Example:

Single Instance

SMIS# show ip igmp snooping vlan 2

IGMP Snooping VLAN Configuration for VLAN 2
IGMP Snooping enabled
IGMP Operating version is V3
Fast leave is disabled
IGMP snooping switch is Non-Querier
Query interval is 125 seconds

Multiple Instance

SMIS# show ip igmp snooping

Switch cust1

Snooping VLAN Configuration for the VLAN 1
IGMP Snooping enabled
IGMP configured version is V2
IGMP Operating version is V2
Fast leave is disabled
Snooping switch is acting as Non-Querier
Query interval is 125 seconds

Snooping VLAN Configuration for the VLAN 2
IGMP Snooping enabled
IGMP configured version is V2
IGMP Operating version is V2
Fast leave is disabled
Snooping switch is acting as Non-Querier
Query interval is 125 seconds
Switch cust2
Snooping VLAN Configuration for the VLAN 1
IGMP Snooping enabled
IGMP configured version is V2
IGMP Operating version is V2
Fast leave is disabled
Snooping switch is acting as Non-Querier
Query interval is 125 seconds
Snooping VLAN Configuration for the VLAN 2
IGMP Snooping enabled
IGMP configured version is V2
IGMP Operating version is V2
Fast leave is disabled
Snooping switch is acting as Non-Querier
Query interval is 125 seconds

Related Commands
ip igmp snooping - Enables IGMP snooping in the switch/a specific VLAN
ip igmp snooping version - Specifies the IGMP snooping operating mode of switch
ip igmp snooping fast-leave - Enables fast leave processing for a specific VLAN
ip igmp snooping querier - Configures the IGMP snooping switch as a querier for a specific VLAN
ip igmp snooping query-interval - Sets the time period with which the general queries are sent by the IGMP snooping switch when configured as querier on a VLAN
14.22 show ip igmp snooping groups

This command displays IGMP group information for all VLANs or a specific VLAN or a specific VLAN and group address.

show ip igmp snooping groups [Vlan <vlan id> [Group <Address>]]

Syntax Description
Vlan - VLAN index value
Group - Group Address of the VLAN ID

Mode
Privileged EXEC Mode

Example:
Single Instance
/* IP based */
SMIS# show ip igmp snooping groups
IGMP Snooping Group information

VLAN ID:2 Group Address: 227.1.1.1

Filter Mode
EXCLUDE

Exclude sources: None
V1/V2 Receiver Ports:
Gi0/4
V3 Receiver Ports:
Port Number: Gi0/2
Include sources: None
Exclude sources:
12.0.0.10, 12.0.0.20
Port Number: Gi0/3
Include sources: None
Exclude sources:
12.0.0.40, 12.0.0.30
/* MAC based */
SMIS# show ip igmp snooping groups
IGMP Snooping Group information

VLAN ID:2 Group Address: 227.1.1.1

Filter Mode
 EXCLUDE

Exclude sources: None
Receiver Ports:
Gi0/2, Gi0/3, Gi0/4, Gi0/5

Multiple Instance
SMIS# show ip igmp snooping groups
Switch cust1
Snooping Group information

VLAN ID:2 Group Address: 227.2.2.2

Filter Mode
 EXCLUDE

Exclude sources: None
Receiver Ports:
Gi0/3, Gi0/5, Gi0/6
Switch cust2
Snooping Group information

VLAN ID:2 Group Address: 227.2.2.2

Filter Mode
 EXCLUDE

Exclude sources: None
Receiver Ports:
Gi0/10

Related Command

\texttt{ip igmp snooping} - Enables IGMP snooping in the switch/a specific VLAN
14.23 show ip igmp snooping forwarding-database

This command displays the multicast forwarding entries for all VLANs or a specific VLAN.

```
show ip igmp snooping forwarding-database [Vlan <vlan id>]
```

Syntax Description

Vlan - VLAN ID

Mode

Privileged EXEC Mode

Example:

Single Instance

/* IP based */

SMIS# show ip igmp snooping forwarding-database

```
Vlan Source Address Group Address Ports
---- ----------- ----------- ------
2 12.0.0.10 227.1.1.1 Gi0/1, Gi0/3, Gi0/4
2 12.0.0.20 227.1.1.1 Gi0/1, Gi0/3, Gi0/4
2 12.0.0.30 227.1.1.1 Gi0/1, Gi0/2, Gi0/4
2 12.0.0.40 227.1.1.1 Gi0/1, Gi0/2, Gi0/
```

/* MAC based */

SMIS# show ip igmp snooping forwarding-database

```
Vlan MAC-Address Ports
---- ----------- ------
2 01:00:5e:01:01:01 Gi0/2, Gi0/3, Gi0/4, Gi0/5
2 01:00:5e:02:02:02 Gi0/2, Gi0/3
```

Multiple Instance

SMIS# show ip igmp snooping forwarding-database

```
Switch cust1
Vlan MAC-Address Ports
---- ----------- ------
2 01:00:5e:02:02:02 Gi0/2, Gi0/3, Gi0/5, Gi0/6
```
Switch cust2

Vlan MAC-Address Ports

---- ----------------- -----
2 01:00:5e:02:02:02 Gi0/9, Gi0/10

IGS must be enabled in the switch prior to the execution of this command.

Related Command

ip igmp snooping - Enables IGMP snooping in the switch/a specific VLAN
14.24 show ip igmp snooping statistics

This command displays IGMP snooping statistics for all VLANs or a specific VLAN.

```
show ip igmp snooping statistics [Vlan <vlan id>]
```

Syntax Description

Vlan - VLAN index

Mode

Privileged EXEC Mode

Example:

Single Instance

SMIS# show ip igmp snooping statistics
IGMP Snooping Statistics for VLAN 1
IGMP Snooping General queries received : 3
IGMP Snooping Group specific queries received : 0
IGMP Snooping Group and source specific queries received : 0
IGMP Snooping V1/V2 reports received : 10
IGMP Snooping V3 reports received : 0
IGMP Snooping V3 IS_INCLUDE messages received : 0
IGMP Snooping V3 IS_EXCLUDE messages received : 0
IGMP Snooping V3 TO_INCLUDE messages received : 0
IGMP Snooping V3 TO_EXCLUDE messages received : 0
IGMP Snooping V3 ALLOW messages received : 0
IGMP Snooping V3 Block messages received : 0
IGMP Snooping V2 Leave messages received : 0
IGMP Snooping General queries transmitted : 0
IGMP Snooping V1/V2 reports transmitted : 0
IGMP Snooping V3 reports transmitted : 3
IGMP Snooping V2 leaves transmitted : 0
IGMP Snooping Packets dropped : 1

Multiple Instance

SMIS# show ip igmp snooping statistics
Switch cust1
Snooping Statistics for VLAN 1
General queries received : 0
Group specific queries received : 0
Group and source specific queries received : 0
ASM reports received : 20
SSM reports received : 0
IS_INCLUDE messages received : 0
IS_EXCLUDE messages received : 0
TO_INCLUDE messages received : 0
TO_EXCLUDE messages received : 0
ALLOW messages received : 0
Block messages received : 0
Leave messages received : 0
General queries transmitted : 0
Group specific queries transmitted : 0
ASM reports transmitted : 1
SSM reports transmitted : 0
Leaves transmitted : 0
Packets dropped : 0
Snooping Statistics for VLAN 2
General queries received : 0
Group specific queries received : 0
Group and source specific queries received : 0
ASM reports received : 19
SSM reports received : 18
IS_INCLUDE messages received : 0
IS_EXCLUDE messages received : 0
TO_INCLUDE messages received : 0
TO_EXCLUDE messages received : 0
ALLOW messages received : 0
Block messages received : 0
Leave messages received : 0
General queries transmitted : 0
Group specific queries transmitted : 0
ASM reports transmitted : 2
SSM reports transmitted : 0
Leaves transmitted : 0
Packets dropped : 0
Switch cust2
Snooping Statistics for VLAN 1
General queries received : 0
Group specific queries received : 0
Group and source specific queries received : 0
ASM reports received : 0
SSM reports received : 0
IS_INCLUDE messages received : 0
IS_EXCLUDE messages received : 0
TO_INCLUDE messages received : 0
TO_EXCLUDE messages received : 0
ALLOW messages received : 0
Block messages received : 0
Leave messages received : 0
General queries transmitted : 0
Group specific queries transmitted : 0
ASM reports transmitted : 0
SSM reports transmitted : 0
Leaves transmitted : 0
Packets dropped : 0
Snooping Statistics for VLAN 2
General queries received : 0
Group specific queries received : 0
Group and source specific queries received : 0
ASM reports received : 0
SSM reports received : 0
IS_INCLUDE messages received : 0
IS_EXCLUDE messages received : 0
TO_INCLUDE messages received : 0
TO_EXCLUDE messages received : 0
ALLOW messages received : 0
Block messages received : 0
Leave messages received : 0
General queries transmitted : 0
Group specific queries transmitted : 0
ASM reports transmitted : 0
SSM reports transmitted : 0
Leaves transmitted : 0
Packets dropped : 0

Related Command

`ip igmp snooping` - Enables IGMP snooping in the switch/a specific VLAN
15 VLAN

VLANs (Virtual LANs) can be viewed as a group of devices on different physical LAN segments which can communicate with each other as if they were all on the same physical LAN segment, i.e. a network of computers that behave as if they are connected to the same wire even though they may actually be physically located on different segments of a LAN. VLANs are configured through software rather than hardware, which makes them extremely flexible.

VLAN provides the following benefits for switched LANs: Improved administration efficiency Optimized Broadcast/Multicast Activity Enhanced network security

The list of commands to configure VLAN are:

```plaintext
vlan
protocol-vlan
map protocol
set gvrp
set port gvrp
set gmrp
set port gmrp
mac-vlan
mac-address-table static unicast
mac-address-table static multicast
mac-address-table aging-time
wildcard mac-address
ports
name
vlan active
switchport pvid
switchport access vlan
switchport trunk native vlan
switchport trunk allowed vlan
switchport acceptable-frame-type
switchport ingress-filter
port protocol-vlan
switchport map protocols-group
switchport priority default
```
switchport mode
switchport protected
set garp timer
vlan restricted
group restricted
vlan map-priority
shutdown garp
debug vlan
debug garp
show vlan
show vlan device info
show vlan device capabilities
show vlan traffic-classes
show garp timer
show vlan port config
show vlan protocols-group
show switchport protected
show protocol-vlan
show mac-vlan
show mac-address-table
show mac-address-table count
show mac-address-table static unicast
show mac-address-table static multicast
show mac-address-table dynamic unicast
show mac-address-table dynamic multicast
show mac-address-table aging-time
show wildcard
15.1 vlan

This command configures a VLAN in the switch and is also used to enter into the config-VLAN mode. The no form of the command deletes a VLAN from the switch.

`vlan <vlan-list>`

`no vlan <vlan-list>`

Syntax

`vlan-list` – may be any VLAN number between 1 to 4069 or list of VLAN numbers. Multiple VLAN numbers can be provided as comma separated values. Consecutive VLAN numbers can be provided as ranges such as 5-10.

Mode

Global Configuration Mode

Defaults

`vlan-id - 1`

Example:

```
SMIS(config)# vlan 4
```

Related Command

`show vlan` - Displays VLAN information in the database
15.2 protocol-vlan

This command enables Protocol-VLAN based classification on all the ports. The no form of the command disables Protocol-VLAN based classification on all ports.

protocol-vlan

no protocol-vlan

Mode
Global Configuration Mode

Defaults
Enabled

Example:
SMIS(config)# protocol-vlan

Related Commands
show vlan device info - Displays the VLAN related global status variables
show protocol-vlan - Displays the entries in the protocol-VLAN database
15.3 map protocol

This command configures the group ID for a specific encapsulation and protocol value combination. This command adds a protocol to a protocol group for protocol based VLAN learning. The no form of the command removes the protocol from the entire group.

map protocol {ip | novell | netbios | appletalk | other <aa:aa or aa:aa:aa:aa:aa>} {enet-v2 | snap | llcOthers | snap8021H | snapOther} protocols-group <Group id>

no map protocol {ip | novell | netbios | appletalk | other <aa:aa or aa:aa:aa:aa:aa>} {enet-v2 | snap | llcOthers | snap8021H | snapOther}

Syntax Description

ip | novell | netbios | appletalk | - Protocol types
other - MAC address of any other protocol type not included in the list
enet-v2 | snap | llcOthers | snap8021H | snapOther - Encapsulation Frame Types
protocols-group - Group ID

Mode

Global Configuration Mode

Example:

SMIS(config)# map protocol ip enet-v2 protocols-group 1

Related Command

show vlan protocols-group - Displays the protocol group database
15.4 set gvrp

This command enables or disables GVRP on a global basis.

set gvrp { enable | disable }

Syntax Description

enable - Enables GVRP in the switch
disable - Disables GVRP in the switch

Mode
Global Configuration Mode

Defaults
disable

Example:
SMIS(config)# set gvrp disable
GVRP needs to be explicitly enabled even after GARP is enabled.

Related Commands
show vlan - Displays VLAN information in the database
show vlan device info - Displays the VLAN related global status variables
15.5 set port gvrp

This command enables or disables GVRP on the interface.

```
set port gvrp <interface-type> <interface-id> { enable | disable }
```

Syntax Description
- **interface-type** - Interface type
- **interface-id** - Interface Id
- **enable** - Enables GVRP on the interface
- **disable** - Disables GVRP on the interface

Mode
Global Configuration Mode

Defaults
disable

Example:
```
SMIS(config)# set port gvrp gigabitethernet 0/1 disable
```

- The value enable indicates that GVRP is enabled on the current port, as long as global GVRP status is also enabled for the device.

 If port GVRP state is disabled, but global GVRP status is still enabled, then GVRP is disabled on current port. Any GVRP packet received will be discarded and no GVRP registrations will be propagated from other ports

Related Command
- **show vlan port config** - Displays the vlan related parameters specific for ports
15.6 set gmrp

This command enables or disables GMRP globally on the device.

```
set gmrp { enable | disable }
```

Syntax Description
- **enable** - Enables GMRP on the device
- **disable** - Disables GMRP on the device

Mode
Global Configuration Mode

Defaults
disable

Example:
```
SMIS(config)# set gmrp disable
```

GMRP needs to be explicitly enabled even after GARP is enabled.

Related Commands
- **show vlan** - Displays VLAN information in the database
- **show vlan device info** - Displays the VLAN related global status variables
15.7 set port gmrp

This command enables or disables GMRP on the port.

```
set port gmrp <interface-type> <interface-id> { enable | disable }
```

Syntax Description

- **interface-type** - Interface type
- **interface-id** - Interface ID
- **enable** - Enables GMRP on the interface
- **disable** - Disables GMRP on the interface

Mode

Global Configuration Mode

Defaults

disable

Example:

```
SMIS(config)# set port gmrp gigabitethernet 0/1 disable
```

- The value **enable** indicates that GMRP is enabled on this port in all VLANs as long as GMRP Status is also enabled globally.

- The value **disable** indicates that GMRP is disabled on this port in all VLANs; any GMRP packet received will be silently discarded and no GMRP registrations will be propagated from other ports

Related Command

`show vlan port config` - Displays the vlan related parameters specific for ports
15.8 mac-vlan
This command configures the VLAN-MAC address mapping. The no form of this command is used to delete the specific vlan mac mapping entry. User also need to configure port membership for the mapped VLAN to allow MAC-Based Vlan to work properly.

```
mac-vlan <aa:aa:aa:aa:aa:aa> vlan <vlan-id(1-4069)>
```

```
no mac-vlan <aa:aa:aa:aa:aa:aa>
```

Syntax Description

- **aa:aa:aa:aa:aa:aa** - MAC address
- **vlan** - VLAN Identifier

Mode

Global Configuration Mode

Example:

```
SMIS(config)# mac-vlan 00:11:22:33:44:55 vlan 2
```

Related Commands

- **show mac-vlan** - Displays the entries in the MAC-VLAN database
- **vlan** – Create or access a vlan.
- **ports** – Configure a port membership for a VLAN.
15.9 mac-address-table static unicast

This command configures a static unicast MAC address in the forwarding database. The no form of the command deletes a configured static Unicast MAC address from the forwarding database.

mac-address-table static unicast <aa:aa:aa:aa:aa:aa> vlan <vlan-id(1-4069)> [recv-port <interface-type> <interface-id>] interface ([<interface-type> <0/ab, 0/c, ...>] [<interface-type> <0/a-b, 0/c, ...>] [port-channel <a,b,c-d>]) [status { permanent | deleteOnReset | deleteOnTimeout }]

no mac-address-table static unicast <aa:aa:aa:aa:aa:aa> vlan <vlan-id(1-4069)> [recv-port <interface-type> <interface-id>]

Syntax Description

aa:aa:aa:aa:aa:aa - Destination MAC address
vlan - VLAN Identifier
recv-port - Received port's Interface type and ID
interface - Member Ports Interface type and ID. Interface can be of fastethernet type [or gigabitethernet type]
<interface-type> <0/a-b, 0/c, ...> - Member Ports Interface type and ID. Interface can be of gigabitethernet type [or fastethernet type]
port-channel - Port-channel ID
status - Status of the Static unicast entry

Mode

Global Configuration Mode

Defaults

status
- permanent

Example:

SMIS(config)# mac-address-table static unicast 00:11:22:33:44:55 vlan 3 recv-port gigabitethernet 0/2 interface gigabitethernet 0/1 status deleteOnTimeout
VLAN must have been configured and member ports must have been configured for the specified VLAN.

Related Commands

`show mac-address-table static unicast` - Displays the statically configured unicast address from the MAC address table
15.10 mac-address-table static multicast

This command configures a static multicast MAC address in the forwarding database.

([<interface-type> <0/ab, 0/c, ...>] [<interface-type> <0/a-b, 0/c, ...>] [port-channel <a,b,c-d>]) [forbidden-ports ([<interface-type> <0/a-b, 0/c, ...>] [<interface-type> <0/ab, 0/c, ...>] [port-channel <a,b,c-d>])]) [status { permanent | deleteOnReset | deleteOnTimeout }]

no mac-address-table static multicast <aa:aa:aa:aa:aa:aa> vlan <vlan-id(1-4069)> [recv-port <interface-type> <interface-id>]

Syntax Description

aa:aa:aa:aa:aa:aa - Multicast MAC address
vlan - VLAN Identifier
recv-port - Received port's Interface type and ID
interface - Member Ports Interface type and ID. Interface can be of fastethernet type [or gigabitethernet type]
<interface-type> <0/a-b, 0/c, ...> - Member Ports Interface type and ID. Interface can be of gigabitethernet type [or fastethernet type]
port-channel - Port channel ID
forbidden-ports - Forbidden ports interface type and ID. Interface can be of fastethernet type [or gigabitethernet type]
<interface-type> <0/a-b, 0/c, ...> - Forbidden ports interface type and ID. Interface can be of gigabitethernet type [or fastethernet type]
port-channel - Port-channel ID
status - Status of the static multicast entry

Mode
Global Configuration Mode

Defaults
Status - permanent
Example:

SMIS(config)# mac-address-table static multicast
01:02:03:04:05:06 vlan 2 interface gigabitethernet 0/1

- VLAN must have been configured and member ports must have been configured for the specified VLAN.

Related Command

show mac-address-table static multicast - Displays the statically configured multicast entries
15.11 mac-address-table aging-time

This command sets the maximum age of a dynamically learnt entry in the MAC address table. The no form of the command sets the maximum age of an entry in the MAC address table to its default value.

```
mac-address-table aging-time <10-1000000 seconds>

no mac-address-table aging-time
```

Mode

Global Configuration Mode

Defaults

300

Example:

```
SMIS(config)# mac-address-table aging-time 200
```

- If traffic on an interface is not very frequent, then the aging time must be increased to record the dynamic entries for a longer time. Increasing the time can reduce the possibility of flooding.

Related Command

`show mac-address-table aging-time` - Displays the MAC address-table with ageing time
15.12 wildcard mac-address

This command adds wildcard or broadcast MAC address to layer 2 MAC table with the given interfaces.

The no form of this command removes the wildcard MAC addresses from layer 2 MAC table.

wildcard \{mac-address <mac_addr> | broadcast\} interface
((<interface-type> <0/a-b, 0/c, ...>) [<interface-type> <0/a-b, 0/c, ...
porte-channel <a,b,c-d>])

no wildcard \{mac-address <mac_addr> | broadcast\}

Mode
Global Configuration Mode

Example:
SMIS(config)# wildcard mac-address 03:04:06 int gi 0/1

Related Command
show wildcard - Displays the wildcard entries from layer 2 MAC table.
15.13 ports

This command configures a static VLAN entry with the required member ports, untagged ports and forbidden ports.

```bash
ports <ports-list> {tagged | untagged | forbidden}
```

```bash
no ports [<ports-list>] {tagged | untagged | forbidden}
```

Syntax Description

- `<ports-list>` - List of member ports – up to three ranges or ports separated by spaces. The range of ports is provided in a format like gi 0/1-10, which refer to ports from gi 0/1 to gi 0/10. The ports can be gigabit ethernet, extreme-ethernet, qx-ethernet or port channel interfaces.
- **Note:** All of ports in `<ports-list>` must be in hybrid mode. If any port in list is not a hybrid mode port, use switchport mode command to set the port to hybrid mode.
- `tagged` – The given ports will be configured as tagged ports to the vlan.
- `untagged` – The given ports will be configured as untagged ports to the vlan.
- `forbidden` – The given ports will be configured as forbidden ports to the vlan.

Mode

Config-VLAN Mode

Example:

```bash
SMIS(config-vlan)# ports gigabitethernet 0/1 untagged
```

Related Command

- `show vlan` - Displays VLAN information in the database
15.14 name
This command configures name to static VLANs. The no form of this command removes the configured name from static VLANs.

name <string(32)>

no name

Syntax Description
<string> - Alphanumeric string up to 32 characters long

Mode
Config-VLAN Mode

Example:
SMIS(config-vlan)# name devstack_vlan

Related Command
show vlan - Displays VLAN information in the database
15.15 switchport pvid

This command configures the PVID (VLAN Identifier) that would be assigned to untagged/priority-tagged frames. The no form of this command sets the PVID to the default value. Usually the default PVID is 1. Note: This command only work when the port is in hybrid mode. If it is not a hybrid port, the command only set the configuration value without changing hardware setup. The no form of this command resets the PVID to default PVID.

```
switchport pvid <vlan-id(1-4096)>
```

```
no switchport pvid
```

Mode

Interface Configuration Mode

Defaults

```
vlan-id - 1
```

Example:

```
SMIS(config-if)# switchport pvid 3
```

Related Command

```
show vlan port config - Displays the VLAN related parameters specific for ports
```
15.16 switchport access vlan

This command configures the access vlan for the port. The no form of this command resets the access vlan to the default management vlan 1.

\texttt{switchport access vlan <vlan-id(1-4069)>}

\texttt{no switchport access vlan}

\textbf{Mode}
Interface Configuration Mode

\textbf{Defaults}
\texttt{vlan-id - 1}

\textbf{Example:}
\texttt{SMIS(config-if)# switchport access vlan 3}

\textbf{Related Command}
\texttt{show vlan port config} - Displays the VLAN related parameters specific for ports
15.17 Switchport trunk native vlan

This command configures the trunk native vlan for the port. The no form of this command resets the trunk native vlan to the default vlan 1.

```
switchport trunk native vlan <vlan-id(1-4094)>
```

```
no switchport trunk native vlan
```

Mode

Interface Configuration Mode

Defaults

Vlan 1

Example:

```
SMIS(config-if)# switchport trunk native vlan 3
```

Related Command

show vlan port config - Displays the VLAN related parameters specific for ports
15.18 switchport trunk allowed vlan

This command configures the allowed vlans for trunk ports. By default, all the VLANs configured on a switch are allowed on the trunk interfaces. User can limit the allowed vlans on the trunk ports using this command.

```
switchport trunk allowed vlan { <vlan-list> | add <vlan-list> | all | none | except <vlan-list> | remove <vlan-list> }
```

Syntax

- `<vlan-list>` - This can be any VLAN number or list of VLAN numbers. Multiple VLAN numbers can be provided as comma-separated values. Consecutive VLAN numbers can be provided as a range, such as 5-10.
- add – Adds the given vlans to the allowed vlans list
- all – Configures all the vlans on the switches as the allowed vlans on this port
- none – Removes the all the allowed vlans configured on this port
- except – Configures all the vlans of the switch except the given vlans as the allowed vlan on this port
- remove – Removes the given vlans from the allowed vlans list configured on this port

Mode

Interface Configuration Mode

Defaults

All vlans

Example:

```
SMIS(config-if)# switchport trunk allowed vlan 3-10
```

Related Command

```
show vlan port config
```
- Displays the VLAN related parameters specific for ports
15.19 switchport acceptable-frame-type

This command configures the acceptable frame type for the port. The no form of this command sets the default value of acceptable frame type - "all" where all frames will be accepted.

switchport acceptable-frame-type {all | tagged | untaggedAndPrioritytagged }

no switchport acceptable-frame-type

Syntax Description
all - All frames
tagged - Tagged frames
untaggedAndPrioritytagged - Un tagged and priority tagged frames

Mode
Interface Configuration Mode

Defaults
all

Example:
SMIS(config-if)# switchport acceptable-frame-type tagged

 segurança When set to "tagged" the device will discard untagged and priority tagged frames received on the port and will process only the VLAN tagged frames.

 When set to "all" untagged frames or priority-tagged frames received on the port are also accepted.

 When set to “untaggedAndPrioritytagged”, untagged and priority tagged frames alone are accepted and tagged frames are dropped.

Related Command
show vlan port config - Displays the VLAN related parameters specific for ports
15.20 switchport ingress-filter

This command enables ingress filtering on the port. The no form of this command disables ingress filtering on the port.

switchport ingress-filter

no switchport ingress-filter

Mode
Interface Configuration Mode

Defaults
Disabled

Example:
SMIS(config-if)# switchport ingress-filter

⇒ When ingress-filtering is enabled, the device discards those incoming frames for VLANs which do not include this port in its member set.
When the ingress filtering is disabled using the no form of the command, the device accepts all incoming frames.

Related Command
show vlan port config - Displays the VLAN related parameters specific for ports
15.21 port protocol-vlan

This command enables port protocol based VLANs. The no form of the command disables port Protocol based VLANs.

```
port protocol-vlan

no port protocol-vlan
```

Mode

Interface Configuration Mode

Defaults

Enabled

Example:

```
SMIS(config-if)# port protocol-vlan
```

- The value enable indicates that the VLAN classification on this port is port and protocol based as long as the port and protocol based classification is enabled globally for the device.

Related Command

`show vlan port config` - Displays the VLAN related parameters specific for ports
15.22 switchport map protocols-group

This command maps the protocol group configured to a particular VLAN identifier for the specified interface. The no form of the command un-maps the VLAN identifier to group Id mapping.

```
switchport map protocols-group <Group id> vlan <vlan-id(1-4069)>
```

```
no switchport map protocols-group <Group id>
```

Syntax Description

- **Group id** - Group ID
- **Vlan** - VLAN ID

Mode

Interface Configuration Mode

Example:
```
SMIS(config-if)# switchport map protocols-group 1 vlan 2
```
Protocol group must have been configured.

Related Commands
- `map protocol` - Adds a protocol to a protocol group for protocol based VLAN learning
- `show protocol-vlan` - Displays the entries in protocol-VLAN database
- `show vlan protocols-group` - Displays the protocol group database
15.23 switchport priority default

This command sets the default user priority for the port. The no form of the command sets the default user priority for the port to the default value.

switchport priority default <priority value(0-7)>

no switchport priority default

Mode
Interface Configuration Mode

Defaults
0

Example:
SMIS(config-if)# switchport priority default 5

Related Command
show vlan port config - Displays the VLAN related parameters specific for ports
15.24 switchport mode

This command configures the VLAN port mode. The no form of the command configures the default VLAN port mode.

```
switchport mode { access | trunk | hybrid }
```

```
no switchport mode
```

Syntax Description

- **access** - Access port Mode
- **trunk** - Trunk port Mode
- **hybrid** - Hybrid VLAN port Mode
- **Mode** - Interface Configuration Mode

Defaults

Hybrid Mode

Example:

```
SMIS(config-if)# switchport mode access
```

- It is not possible to configure the switchport mode status to trunk if the port is an untagged member of a VLAN.

Related Commands

- switchport mode
- dot1q-tunnel - Enables dot1q-tunneling on the specified interface
- show vlan port config - Displays the VLAN related parameters specific for ports
15.25 switchport protected

This command configures the given port as the protected port. If the group option is provided, it configures the given port as a community port. The "no" form of this command configures the given port as an unprotected port.

The unprotected port can communicate with all the unprotected ports, protected ports and community ports. The protected port can communicate only with unprotected ports. The protected port is also called an isolated port. The community port can communicate with other ports in same community as well as with unprotected ports.

switchport protected [group <integer(1-1000000)>]

no switchport protected

Syntax Description

- group – Community group number

Defaults

Unprotected

Example:

SMIS(config-if)# switchport protected group 10

Related Commands

- show switchport protected - Displays the protected ports configuration

Note:

This command is supported only for the physical interfaces. It is not supported for port channel and layer 3 VLAN interfaces.
15.26 set garp timer

This command configures the GARP join time, leave time, and leave all time in milli-seconds.

```
set garp timer {join | leave | leaveall} <time in milli seconds>
```

Syntax Description
- `join` - Join Time
- `leave` - Leave Time
- `leaveall` - Leaveall Time

Mode
Interface Configuration Mode

Defaults
- Join - 20
- leave - 60
- leaveall - 1000

Example:
```
SMIS(config-if)# set garp timer join 500
```

- Leave Timer must be greater than 2 times Join Timer and Leaveall Timer must be greater than Leave Timer.
- Timer values cannot be set to zero.
- The GARP timer configuration will be applied to the GARP applications (GMRP and GVRP) on the specified interface.

Related Command
- `show garp timer` - Displays the GARP timer information of the available interfaces
15.27 vlan restricted

This command enables/disables restricted VLAN registration on the port.

`vlan restricted {enable | disable}`

Syntax Description
- **enable** - Enables restricted VLAN registration
- **disable** - Disables restricted VLAN registration

Mode
Interface Configuration Mode

Defaults
disable

Example:

```
SMIS(config-if)# vlan restricted enable
```

- If restricted VLAN registration rules are enabled, then a VLAN is learnt dynamically from the GVRP frame only if the specific VLAN is statically configured in the switch. If restricted VLAN registration rules are disabled, then GVRP packets are processed normally and the VLANs are learnt dynamically even if they are not statically configured in the switch.

Related Command
- `show vlan port config` - Displays the VLAN related parameters specific for ports
15.28 group restricted

This command enables or disables restricted group registration on a port.

\[\text{group restricted \{enable | disable\}} \]

Syntax Description
- **enable** - Enables restricted group registration
- **Disable** - Disables restricted group registration

Mode
Interface Configuration Mode

Defaults
disable

Example:
```
SMIS(config-if)# group restricted enable
```

- If restricted group registration rules are enabled, then a multicast group attribute/service requirement attribute is learnt dynamically from the GMRP frame only if the specific multicast group attribute/service requirement attribute is statically configured in the switch. If restricted group registration rules are disabled, then GMRP packets are processed normally and the multicast group attribute/service requirement attribute are learnt dynamically even if they are not statically configured in the switch.

Related Command
- `show vlan port config` - Displays the VLAN related parameters specific for ports
15.29 vlan map-priority

This command maps a priority to a traffic class. The frame received with the configured priority
will be processed in the configured traffic class..
The no form of the command maps the default priority to traffic class value.

```
vlan map-priority <priority value(0-7)> traffic-class <Traffic class value(0-7)>
```

```
no vlan map-priority <priority value (0-7)>
```

Syntax Description

- `traffic-class` - Traffic class value

Mode

Global Configuration Mode

Example:

```
SMIS(config)# vlan map-priority 2 traffic-class 2
```

The default traffic class value depends upon the configured priority value.
Following is the list of default traffic class values for different priority values

<table>
<thead>
<tr>
<th>Priority</th>
<th>Default traffic class</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
</tr>
</tbody>
</table>

Related Command

- `show vlan traffic-classes` - Displays the traffic classes information
15.30 shutdown garp

This command shuts down the GARP Module. The no form of the command starts and enables the GARP Module.

`shutdown garp`

`no shutdown garp`

Mode
Global Configuration Mode

Defaults
GARP Module is Started and enabled by default

Example:
```
SMIS(config)# shutdown garp
```

- GARP cannot be started if VLAN is shutdown.
- GARP cannot be shutdown if GVRP and/or GMRP are enabled

Related Command
`shutdown vlan` - Shuts down VLAN switching
15.31 debug vlan

This command enables module-wise debug traces, which can be any of the following: Forwarding or Priority.

```
depbug vlan { global | [{fwd | priority | | redundancy} [initshut] [mgmt] [data] [ctpl] [dump] [os] [failall] [buffer] [all]] } 
```

```
no debug vlan { global | [{fwd | priority | | redundancy} [initshut] [mgmt] [data] [ctpl] [dump] [os] [failall] [buffer] [all]] } 
```

Syntax Description
- **global** - Global related debug messages
- **fwd** - Forwarding Module
- **priority** - VLAN Priority Module
- **redundancy** - Redundancy related debug messages
- **initshut** - Init and Shutdown
- **mgmt** - Management
- **data** - Data path
- **ctpl** - Control Plane
- **dump** - Packet dump
- **os** - Traces related to all Resources except Buffer
- **failall** - All Failures
- **buffer** - Buffer
- **all** - All Traces

Mode
- Privileged Exec Mode

Defaults
- Disabled

Example:
```
SMIS# debug vlan fwd all 
```

Related Command
- `show debugging` - Displays state of each debugging option
15.32 debug garp
This command enables module-wise debug traces, which can be GARP, GVRP or GMRP.

debuge garp { global | [{protocol | gmrp | gvrp | redundancy} [initshut] [mgmt] [data] [ctpl] [dump] [os] [failall] [buffer] [all] }

no debug garp { global | [{protocol | gmrp | gvrp | redundancy} [initshut] [mgmt] [data] [ctpl] [dump] [os] [failall] [buffer] [all] }

Syntax Description
 global - Global related debug messages
 protocol - Protocol related traces
 gmrp - GMRP related traces
 gvrp - GVRP related traces
 redundancy - Redundancy related debug messages
 initshut - Init and Shutdown
 mgmt - Management
 data - Data path
 ctpl - Control Plane
 dump - Packet dump
 os - Traces related to all Resources except Buffer
 failall - All Failures
 buffer - Buffer
 all - All Traces

Mode
Privileged Exec Mode

Defaults
Disabled

Example:
SMIS# debug garp fwd all

Related Command
show debugging - Displays state of each debugging option
15.33 show vlan

This command displays the VLAN information in the database.

```
show vlan [brief | id <vlan-id(1-4069)> | summary]
```

Syntax Description
- **brief** - Information about all the VLANs in brief
- **id** - Information specific to the VLAN Id
- **summary** - Summary of the VLAN

Mode
Privileged EXEC Mode

Example:

Single Instance:
```
SMIS# show vlan brief
Vlan database
-------------
Vlan ID           : 1
Member Ports      : gi 0/1-48 ex 0/1-4
Tagged Ports      : None
Untagged Ports    : gi 0/1-48 ex 0/1-4
Forbidden Ports   : None
Access Ports      : None
Trunk Ports       : None
Name              :
Status            : Permanent

SMIS# show vlan summary
```

Multiple Instance:
```
SMIS# show vlan
Switch - default
Vlan database
-------------
```

Release : 1.1i
Vlan ID : 1
Member Ports : Gi0/49
Untagged Ports : Gi0/49
Forbidden Ports : None
Name :
Status : Permanent

Switch - cust1
Vlan database

Vlan ID : 1
Member Ports : Gi0/1-6
Tagged Ports : None
Untagged Ports : Gi0/1-6
Forbidden Ports : None
Access Ports : None
Trunk Ports : None
Name :
Status : Permanent

Vlan ID : 20
Member Ports : Gi0/1
Tagged Ports : None
Untagged Ports : Gi0/1
Forbidden Ports : None
Access Ports : None
Trunk Ports : None
Name :
Status : Permanent

Vlan ID : 30
Member Ports : Gi0/2
Tagged Ports : None
Untagged Ports : None
Forbidden Ports : None
Access Ports : None
Trunk Ports : None
Name :
Status : Dynamic Gvrp
If the optional parameter is not specified then this command displays the VLAN information of all the available interfaces.

Related Commands

- **shutdown vlan** - Shuts down VLAN switching. The no form of the command starts and enables VLAN switching.
- **set vlan** - Enables/disables VLAN in the switch.
- **vlan** - Configures a VLAN in the switch and is also used to enter into the config-VLAN mode.
- **ports** - Configures a static VLAN entry with the required member ports, untagged ports and forbidden ports.
15.34 show vlan device info

This command displays the VLAN related global status variables.

show vlan device info

Syntax Description

Mode
Privileged EXEC Mode

Example:

Single Instance:
SMIS# show vlan device info
Vlan device configurations

Vlan Status : Enabled
Vlan Oper status : Enabled
Gvrp status : Enabled
Gmrp status : Disabled
Gvrp Oper status : Enabled
Gmrp Oper status : Disabled
Mac-Vlan Status : Disabled
Protocol-Vlan Status : Enabled

Bridge Mode
: Provider Edge

Bridge
Traffic Classes : Enabled

Vlan Operational Learning Mode
: IVL

Version number : 1
Max Vlan id : 4069
Max supported vlans : 1024
Multiple Instance:
SMIS# show vlan device info
Switch default
Vlan device configurations

Vlan Status : Enabled
Vlan Oper status : Enabled
Gvrp status : Enabled
Gmrp status : Disabled
Gvrp Oper status : Enabled
Gmrp Oper status : Disabled
Mac-Vlan Status : Disabled
Protocol-Vlan Status : Enabled

Bridge Mode
: Provider Edge

Bridge
Traffic Classes : Enabled

Vlan Operational Learning Mode
: IVL

Version number : 1
Max Vlan id : 4069
Max supported vlans : 1024

Related Commands
shutdown vlan - Shuts down VLAN switching. The no form of the command starts and enables VLAN switching
set vlan - Enables/disables VLAN in the switch
vlan - Configures a VLAN in the switch and is also used to enter in to the config-VLAN mode
ports - Configures a static VLAN entry with the required member ports, untagged ports and forbidden ports
set gvrp - Enables or disables GVRP on a global basis
set port gvrp - Enables or disables GVRP on the interface
set gmrp - Enables or disables GMRP on a global basis
set port gmrp - Enables or disables GMRP on the interface
set vlan traffic-classes - Enables or disables traffic classes
port protocol-vlan - Enables port protocol based VLANs
vlan learning mode - Configures the VLAN learning mode
show vlan traffic-classes - Displays the traffic classes information of all the available interfaces.
show protocol-vlan - Displays the entries in the protocol-VLAN database.
15.35 show vlan device capabilities

This command displays VLAN capabilities of the device.

show vlan device capabilities

Syntax Description

Mode
Privileged EXEC Mode

Example:

Single Instance:
SMIS# show vlan device capabilities
Vlan device capabilities

Extended filtering services
Traffic classes
Static Entry Individual port
IVL capable
SVL capable
Hybrid capable
Configurable Pvid Tagging

Multiple Instance:

SMIS# show vlan device capabilities
Switch - default
Vlan device capabilities

Extended filtering services
Traffic classes
Static Entry Individual port
IVL capable
SVL capable
Hybrid capable
Configurable Pvid Tagging
Switch - cust1
Vlan device capabilities

Extended filtering services
Traffic classes
Static Entry Individual port
IVL capable
SVL capable
Hybrid capable
Configurable Pvid Tagging
15.36 show vlan traffic-classes

This command displays the VLAN traffic classes mapping.

show vlan traffic-classes

Syntax Description

Mode
Privileged EXEC Mode

Example:
SMIS# show vlan traffic-classes

Related Commands
vlan - Configures a VLAN in the switch and is used to enter into the VLAN mode
ports - Configures a static VLAN entry with the required member ports, untagged ports and forbidden ports
set vlan traffic-classes - Enables / disables traffic classes
15.37 show garp timer

This command displays the GARP timer information of the available interfaces.

\texttt{show garp timer \{ port <interface-type> <interface-id>\}}

Syntax Description

\textbf{Port} - Interface type and ID of the port

Mode

Privileged EXEC Mode

Example:

Single Instance:

\texttt{SMIS\# show garp timer port gigabitethernet 0/1}

Garp Port Timer Info (in milli seconds)

\begin{verbatim}

Port Join-time Leave-time Leave-all-time

Gi0/1 200 600 10000
\end{verbatim}

Multiple Instance:

\texttt{SMIS\# show garp timer}

Switch - default

Garp Port Timer Info (in milli seconds)

\begin{verbatim}

Port Join-time Leave-time Leave-all-time

Gi0/49 200 600 10000
Gi0/1 200 600 10000
Gi0/2 200 600 10000
Gi0/3 200 600 10000
Gi0/4 200 600 10000
\end{verbatim}
Gi0/5 200 600 10000
Gi0/6 200 600 10000

- The timer information is the same for GVRP and GMRP.

Related Commands

ports - Configures a static VLAN entry with the required member ports, untagged ports and forbidden ports

show vlan device info - Displays the VLAN related global status variables

set garp timer - Configures the GARP join time, leave time, and leave all time in milliseconds
15.38 show vlan port config

This command displays the VLAN related parameters specific for ports.

```
show vlan port config [{port <interface-type> <interface-id> }]
```

Syntax Description

Port - Interface type and ID of the port

Mode
Privileged EXEC Mode

Example:

```
SMIS# show vlan port config port gi 0/1
Vlan Port configuration table
-----------------------------
Port Gi0/1
  Port Vlan ID : 1
  Port Access Vlan ID : 1
  Port Acceptable Frame Type : Admit All
  Port Ingress Filtering : Enabled
  Port Mode : Hybrid Port
  Gvrp Status : Enabled
  Port Gmrp Status : Enabled
  Port Gvrp Failed Registrations : 0
  Gvrp last pdu origin : 00:01:02:03:04:21
  Port Restricted Vlan Registration : Disabled
  Port Restricted Group Registration : Disabled
  Mac Based Support : Enabled
  Port-and-Protocol Based Support : Enabled
  Default Priority : 0
  Allowed Vlans on Trunk : 1-4069
  Trunk Native Vlan Id : 1
-----------------------------
Port Gi0/2
  Port Vlan ID : 1
  Port Access Vlan ID : 1
  Port Acceptable Frame Type : Admit All
```

Release : 1.1i
<table>
<thead>
<tr>
<th>Configuration</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port Ingress Filtering</td>
<td>Enabled</td>
</tr>
<tr>
<td>Port Mode</td>
<td>Hybrid</td>
</tr>
<tr>
<td>Port Gvrp Status</td>
<td>Enabled</td>
</tr>
<tr>
<td>Port Gmrp Status</td>
<td>Enabled</td>
</tr>
<tr>
<td>Port Gvrp Failed Registrations</td>
<td>0</td>
</tr>
<tr>
<td>Gvrp last pdu origin</td>
<td>01:02:03:04:05:06</td>
</tr>
<tr>
<td>Port Restricted Vlan Registration</td>
<td>Disabled</td>
</tr>
<tr>
<td>Port Restricted Group Registration</td>
<td>Disabled</td>
</tr>
<tr>
<td>Mac Based Support</td>
<td>Disabled</td>
</tr>
<tr>
<td>Port-and-Protocol Based Support</td>
<td>Enabled</td>
</tr>
<tr>
<td>Default Priority</td>
<td>5</td>
</tr>
<tr>
<td>Allowed Vlans on Trunk</td>
<td>1-4069</td>
</tr>
<tr>
<td>Trunk Native Vlan Id</td>
<td>1</td>
</tr>
</tbody>
</table>

- If executed without the optional parameter this command displays the port information of all the available ports.

Related Commands

set port gvrp - Enables or disables GVRP on the interface
set port gmrp - Enables or disables GMRP on the interface
switchport pvid - Configures the PVID (VLAN ID) that would be assigned to untagged/prioritytagged frames/VLAN tagged frames
switchport acceptable-frame-type - Configures the acceptable frame type for the port
switchport ingress-filter - Enables ingress filtering on the port
port mac-vlan - Enables MAC-based VLAN on the port
port protocol-vlan - Enables port protocol based VLANs
vlan restricted - Enables/disables restricted VLAN registration on the port
15.39 show vlan protocols-group

This command displays the protocol group database.

show vlan protocols-group

Syntax Description

Mode
Privileged EXEC Mode

Example:

Single Instance:
SMIS# show vlan protocols-group
Protocol Group Table

Frame Type Protocol Group
Enet-v2 IP 1
Snap Novell 2

Multiple Instance:
SMIS# show vlan protocols-group
Switch - default
Protocol Group Table

Frame Type Protocol Group
Enet-v2 IP 1
Snap Novell 2

Related Commands

map protocol - Configures the group ID for a specific encapsulation and protocol value combination
show protocol-vlan - Displays the entries in the protocol-VLAN database

switchport map protocols-group - Maps the protocol group configured to a particular VLAN identifier for the specified interface
15.40 show switchport protected

This command displays the protected port configuration. If the group number is provided, it displays the protected port configuration for the given community group number.

`show switchport protected [group <integer(1-1000000)>]`

Syntax Description
- `group` – Community number

Mode
- Privileged EXEC Mode

Example:
```
SMIS# show switchport protected
```

Related Commands
- `switchport protected` – Configures the protected port parameters for the given port.
15.41 show protocol-vlan

This command displays the entries in protocol-VLAN database.

show protocol-vlan

Syntax Description

Mode
Privileged EXEC Mode

Example:

Single Instance:
SMIS# show protocol-vlan
Port Protocol Table

Port Group Vlan ID

Gi0/2 1 2
Gi0/1 2 3

Multiple Instance:
SMIS# show protocol-vlan
Switch - default
Port Protocol Table

Port Group Vlan ID

Gi0/2 1 2
Gi0/1 2 3

Related Command

switchport map protocols-group - Maps the protocol group configured to a particular VLAN identifier for the specified interface
15.42 show mac-vlan

This command displays the entries in the MAC-VLAN database.

show mac-vlan

Syntax Description

Mode
Privileged EXEC Mode

Example:
SMIS# show mac-vlan
Mac Address Vlan ID
------------- ------
00:25:90:13:6a:15 10
00:25:90:13:6a:8c 10
00:25:90:13:6a:9b 10

Related Commands
mac-vlan - Enables MAC-based VLAN for all the available interfaces of the VLAN
show vlan device info - Displays the VLAN global status variables
15.43 **show mac-address-table**

This command displays the static and dynamic unicast and multicast MAC address table.

```
show mac-address-table [vlan <vlan-id(1-4069)>] [address
```

Syntax Description

- **vlan** - VLAN ID
- **address** - MAC address
- **interface** - Interface type and ID

Mode

Privileged EXEC Mode

Example:

Single Instance:

```
SMIS# show mac-address-table vlan 2
Vlan Mac Address Type Ports
---- ----------- ----- ----- 
2 00:01:02:03:04:21 Learnt Gi0/1
Total Mac Addresses displayed: 1
```

```
SMIS# show mac-address-table interface gigabitethernet 0/1
Vlan Mac Address Type Ports
---- ----------- ----- ----- 
2 00:01:02:03:04:21 Learnt Gi0/1
1 01:02:03:04:05:06 Static Gi0/1
Total Mac Addresses displayed: 2
```

- If executed without the optional parameters this command displays all the static and dynamic MAC entries.

Related Commands

- **vlan** - Configures a VLAN in the switch and is also used to enter in to the config-VLAN mode
- **ports** - Configures a static VLAN entry with the required member ports, untagged ports and forbidden ports
- **mac-address-table static unicast** - Configures a static unicast MAC address in the
forwarding database

mac-address-table static multicast - Configures a static multicast MAC address in the forwarding database
15.44 **show mac-address-table count**

This command displays the number of MAC addresses present on all the VLANs or on the specified VLAN.

```
show mac-address-table count [vlan <vlan-id(1-4069)>]
```

Syntax Description

- **vlan** - VLAN ID

Mode

Privileged EXEC Mode

Example:

Single Instance:

```
SMIS# show mac-address-table count
Mac Entries for Vlan 1:
------------------------
Dynamic Unicast Address Count : 1
Dynamic Multicast Address Count : 0
Static Unicast Address Count : 1
Static Multicast Address Count : 1
------------------------
Mac Entries for Vlan 2:
------------------------
Dynamic Unicast Address Count : 1
Dynamic Multicast Address Count : 0
Static Unicast Address Count : 1
Static Multicast Address Count : 0
------------------------
```

Multiple Instance:

```
SMIS# show mac-address-table count switch cust1
Switch - cust1
Mac Entries for Vlan 1:
------------------------
Dynamic Unicast Address Count : 1
Dynamic Multicast Address Count : 0
------------------------
```
Static Unicast Address Count : 0
Static Multicast Address Count : 0

Mac Entries for Vlan 20:

Dynamic Unicast Address Count : 0
Dynamic Multicast Address Count : 0
Static Unicast Address Count : 0
Static Multicast Address Count : 0

Mac Entries for Vlan 30:

Dynamic Unicast Address Count : 0
Dynamic Multicast Address Count : 0
Static Unicast Address Count : 0
Static Multicast Address Count : 0

If executed without the optional parameter this command displays the MAC addresses present on all the VLANs.

Related Commands

- **vlan** - Configures a VLAN in the switch and is also used to enter in to the config-VLAN mode
- **ports** - Configures a static VLAN entry with the required member ports, untagged ports and forbidden ports
- **mac-address-table static unicast** - Configures a static unicast MAC address in the forwarding database
- **mac-address-table static multicast** - Configures a static multicast MAC address in the forwarding database
15.45 show mac-address-table static unicast

This command displays the statically configured unicast addresses from the MAC address table.

```
show mac-address-table static unicast [vlan <vlan-id(1-4069)>] [address <aa:aa:aa:aa:aa:aa>] [{interface <interface-type> <interface-id>}]
```

Syntax Description

- **Vlan** - VLAN Id
- **Address** - MAC address
- **interface** - Interface type and ID

Mode

Privileged EXEC Mode

Example:

Single Instance:

SMIS# show mac-address-table static unicast

```
Vlan  Mac Address RecvPort Status Ports
----  ----------- ------- ------ -----
 2  00:11:22:33:44:55  Gi0/2 Del-OnTimeout Gi0/3
```

Multiple Instance:

SMIS# sh mac-address-table static unicast switch cust1

```
Switch - cust1
Vlan  Mac Address RecvPort Status Ports
----  ----------- ------- ------ -----
 1  00:11:22:33:44:55  Gi0/2 Permanent Gi0/3
Total Mac Addresses displayed: 1
```

If executed without the optional parameters this command displays the MAC address table for all the available interfaces.

Related Commands

- **vlan** - Configures a VLAN in the switch and is also used to enter in to the config-VLAN mode
- **ports** - Configures a static VLAN entry with the required member ports, untagged ports and forbidden ports
mac-address-table static unicast - Configures a static unicast MAC address in the forwarding database

show mac-address-table dynamic unicast - Displays the dynamic MAC address table for the specified address or for all the addresses
15.46 show mac-address-table static multicast

This command displays the statically configured multicast entries.

```
show mac-address-table static multicast [vlan <vlan-id(1-4096)>]
[address <aa:aa:aa:aa:aa:aa>] [{interface <interface-type> <interface-id>}
```

Syntax Description
- `vlan` - VLAN Id
- `address` - MAC address
- `interface` - Interface type and ID

Mode
Privileged EXEC Mode

Example:
Single Instance:
```
SMIS# show mac-address-table static multicast
Static Multicast Table
----------------------
Vlan : 1
Mac Address : 01:02:03:04:05:06
Receive Port : Gi0/1
Member Ports : Gi0/1
Forbidden Ports : Gi0/2
Status : Permanent
```
```
Total Mac Addresses displayed: 1
```

Multiple Instance:
```
SMIS# sh mac-address-table static multicast switch cust1
Switch - cust1
Static Multicast Table
----------------------
Vlan : 1
Mac Address : 01:02:03:04:05:06
```
Receive Port : Gi0/2
Member Ports : Gi0/3
Status : Permanent

Total Mac Addresses displayed: 1

Related Commands

vlan - Configures a VLAN in the switch and is also used to enter in to the config-VLAN mode

ports - Configures a static VLAN entry with the required member ports, untagged ports and forbidden ports

mac-address-table static multicast - Configures a static multicast MAC address in the forwarding database

show mac-address-table dynamic multicast - Displays the dynamic MAC address table for the specified address or for all the addresses
15.47 **show mac-address-table dynamic unicast**

This command displays the dynamically learnt unicast entries from the MAC address table.

```plaintext
show mac-address-table dynamic unicast [vlan <vlan-id(1-4096)>] [address <aa:aa:aa:aa:aa:aa>] [{interface <interface-type> <interface-id> }]
```

Syntax Description

- **vlan** - VLAN Id
- **address** - MAC address
- **interface** - Interface type and ID

Mode

Privileged EXEC Mode

Example:

Single Instance:

```
SMIS# show mac-address-table dynamic unicast vlan 2
Vlan Mac Address Type Ports
---- ----------- ---- ----
2 00:01:02:03:04:21 Learnt Gi0/1
Total Mac Addresses displayed: 1
```

Multiple Instance:

```
SMIS# show mac-address-table dynamic unicast
Switch - default
Vlan Mac Address Type Ports
---- ----------- ---- ----
1 00:02:02:03:04:04 Learnt Gi0/2
1 00:03:02:03:04:04 Learnt Gi0/3
2 00:02:02:03:04:04 Learnt Gi0/2
2 00:03:02:03:04:04 Learnt Gi0/3
3 00:02:02:03:04:04 Learnt Gi0/2
3 00:03:02:03:04:04 Learnt Gi0/3
Total Mac Addresses displayed: 6
```
If executed without the optional parameters this command displays the MAC address table of all the available interfaces

Related Commands

- **`vlan`** - Configures a VLAN in the switch and is also used to enter in to the config-VLAN mode
- **`ports`** - Configures a static VLAN entry with the required member ports, untagged ports and forbidden ports
- **`mac-address-table static unicast`** - Configures a static unicast MAC address in the forwarding database
- **`show mac-address-table static unicast`** - Displays the statically configured unicast address from the MAC address table
15.48 show mac-address-table dynamic multicast
This command displays the dynamically learnt multicast MAC address.

show mac-address-table dynamic multicast [vlan <vlan-id(1-4069)>] [address <aa:aa:aa:aa:aa:aa>] [{interface <interface-type> <interface-id> }]

Syntax Description
vlan - VLAN Id
address - MAC address
interface - Interface type and ID

Mode
Privileged EXEC Mode

Example:
Single Instance:
SMIS# show mac-address-table dynamic multicast
Vlan Mac Address Type Ports
---- --------------- ---- -----
2 01:03:05:07:09:04 Learnt Gi0/1
Total Mac Addresses displayed: 1

Multiple Instance:

SMIS# show mac-address-table dynamic multicast
Switch - default
Vlan Mac Address Type Ports
---- --------------- ---- -----
2 01:02:02:02:02:02 Learnt Gi0/2, Gi0/3
2 01:02:02:02:02:02 Learnt Gi0/2
3 01:03:03:03:03:03 Learnt Gi0/3
Total Mac Addresses displayed: 3

If executed without the optional parameters this command displays the MAC address table of all the available interfaces.
Related Commands

- **vlan** - Configures a VLAN in the switch and is also used to enter into the config-VLAN mode
- **ports** - Configures a static VLAN entry with the required member ports, untagged ports and forbidden ports
- **mac-address-table static multicast** - Configures a static multicast MAC address in the forwarding database
- **show mac-address-table static multicast** - Displays the statically configured multicast entries
15.49 *show mac-address-table aging-time*

This command displays the MAC address-table ageing time.

```
show mac-address-table aging-time
```

Syntax Description

Mode

Privileged EXEC Mode

Example:

Single Instance:

```
SMIS# show mac-address-table aging-time
Mac Address Aging Time: 300
```

Related Commands

- `show mac-address-table` - Displays the static and dynamic MAC entries
- `mac-address-table aging-time` - Configures the MAC address table entry maximum age
15.50 show wildcard
This command displays the wildcard MAC address entries from MAC table.

show wildcard {mac-address <mac_addr> | broadcast}

Syntax Description
<mac_addr> - MAC address

Mode
Privileged EXEC Mode

Example:
SMIS# show wildcard mac-address 03:04:06
Wild Card Entries:

<table>
<thead>
<tr>
<th>Mac Address</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:03:00:04:00:06</td>
<td>Gi0/1</td>
</tr>
</tbody>
</table>

Related Commands
wildcard mac-address – Add wildcard MAC address entries to MAC address table.
16 DHCP

DHCP (Dynamic Host Configuration Protocol) allows dynamic configuration of a host computer. When a DHCP client is turned on, it initially does not have an IP address assigned to it. It issues a broadcast message to any DHCP servers which are on the network. An exchange takes place during which the DHCP server assigns an IP address to the client and tells the client certain key network configuration parameters.

Many Internet service providers (ISPs) require that their customers use a DHCP client so the ISP may dynamically assign IP addresses and control other network settings. Another use is for laptop computers which may be connected to more than one network. For example: a laptop may be connected to a network in the office and also at home. This is an ideal use for DHCP as the laptop doesn't need to be manually reconfigured for use in the 2 different networks. In this case, there needs to be a DHCP server both on the office network and the home network and the laptop needs a DHCP client.

The list of CLI commands for the configuration of DHCP is as follows:

DHCP Client

release

renew

debug ip dhcp client

show ip dhcp client stats

DHCP Relay

service dhcp-relay

ip dhcp server

ip dhcp relay information option

ip dhcp relay circuit-id

ip dhcp relay remote-id

debug ip dhcp relay

show ip dhcp relay information

show dhcp server
DHCP Server

- `service dhcp-server`
- `ip dhcp pool`
- `ip dhcp next-server`
- `ip dhcp bootfile`
- `ip dhcp`
- `ip dhcp option`
- `network`
- `excluded-address`
- `domain-name`
- `dns-server`
- `netbios-name-server`
- `netbios-node-type`
- `default-router`
- `option`
- `lease`
- `utilization threshold`
- `host hardware-type`
- `host hardware-type mac binding`
- `interface ip binding`
- `debug ip dhcp server`
- `show ip dhcp server information`
- `show ip dhcp server pools`
- `show ip dhcp server binding`
- `show ip dhcp server statistics`
16.1 DHCP Client

16.1.1 release

This command immediately releases the DHCP lease on the interface specified.

release dhcp [{ vlan <short (1-4069)> | <iftype> <ifnum> }]

Syntax Description

vlan - VLAN Identifier
iftype - Interface type, can either be a gi, ex or qx ethernet interfaces
ifnum - Physical interface ID including slot and port number

Mode
Privileged EXEC Mode

Defaults
Disabled by default

Example:
SMIS# release dhcp vlan 1

- VLAN interface must have an IP address assigned by the DHCP server.

- If the router interface was not assigned a DHCP IP address by the DHCP server, the release dhcp command fails and displays the following error message: Interface does not have a DHCP originated address

Related Commands
ip address - Configures the current VLAN interface to dynamically acquire an IP address from the DHCP server
show ip dhcp client stats - Displays the DHCP client statistics information
show ip interface - Displays the IP interface statistics and configuration
16.1.2 renew

This command immediately renews the DHCP lease for the interface specified.

```
renew dhcp [{ vlan <short (1-4069)> | <iftype> <ifnum> }]
```

Syntax Description

- **vlan-id** - VLAN Identifier
- **iftype** - Interface type, can either be a gi, ex or qx ethernet interfaces
- **ifnum** - Physical interface ID including slot and port number

Mode

Privileged EXEC Mode

Defaults

Disabled

Example:

```
SMIS# renew dhcp vlan 1
```

- VLAN interface must have an IP address assigned by the DHCP server
- If the router interface was not assigned an IP address by the DHCP server, the **renew DHCP** command fails and displays the following error message:

  ```
  Interface does not have a DHCP originated address
  ```

Related Commands

- **ip address** - Configures the current VLAN interface to dynamically acquire an IP address from the DHCP server
- **show ip dhcp client stats** - Displays the DHCP client statistics information
16.1.3 debug ip dhcp client

This command sets the debug level for tracing the DHCP client module. The no form of the command disables the debug level for the DHCP client.

```
debug ip dhcp client { all | event | packets | errors | bind }
```

```
no debug ip dhcp client { all | event | packets | errors | bind }
```

Syntax Description

- **all** - All trace messages
- **event** - Trace management messages
- **packets** - Packets related messages
- **errors** - Trace error code debug messages
- **bind** - Trace bind messages

Mode

Privileged EXEC Mode

Defaults

Debugging is Disabled

Example:

```
SMIS# debug ip dhcp client all
```

Related Command

- **show ip dhcp client stats** - Displays the DHCP client statistics information
16.1.4 show ip dhcp client stats

This command displays the DHCP client statistics.

show ip dhcp client stats

Mode
Privileged EXEC Mode

Example:
SMIS# show ip dhcp client stats
 Dhcp Client Statistics

 Interface : vlan3
 Client IP Address : 0.0.0.0
 Client Lease Time : 0
 Client Remain Lease Time : 0
 Message Statistics

 DHCP DISCOVER : 1
 DHCP REQUEST : 0
 DHCP DECLINE : 0
 DHCP RELEASE : 0
 DHCP INFORM : 0
 DHCP OFFER : 1

Related Commands
ip address - Configures the current VLAN interface to dynamically acquire an IP address from the DHCP server
release - Releases the DHCP lease on the interface specified
renew - Renews the DHCP lease for the interface specified
16.2 DHCP Relay

16.2.1 service dhcp-relay

This command enables the DHCP Relay agent in the switch. The no form of the command disables the DHCP relay agent.

```
service dhcp-relay

no service dhcp-relay
```

Mode
Global Configuration Mode

Defaults
Disabled

Example:
```
SMIS(config)# service dhcp-relay
```

The relay agent becomes active only after it is enabled

Related Commands
- `show dhcp server` - Displays the DHCP server information
- `show ip dhcp relay information` - Displays the DHCP relay information
16.2.2 ip dhcp server

This command sets the IP address of the DHCP server. The Relay Agent will now start forwarding the packets from the client to a specific DHCP server. The no form of the command deletes the DHCP server IP address.

\[\text{ip dhcp server } <\text{ip address}> \]

\[\text{no ip dhcp server } <\text{ip address}> \]

Mode

Global Configuration Mode

Defaults

Disabled

Example:

SMIS(config)# ip dhcp server 12.0.0.1

Only when the relay agent is enabled, the Relay Agent shall forward the packets from the client to a specific DHCP server.

Related Commands

- `show ip dhcp relay information` - Displays the DHCP relay information
- `show dhcp server` - Displays the DHCP server information
16.2.3 ip dhcp relay information option

This command enables the Relay Agent to perform any processing related to relay agent Information Options. When this option is enabled, the agent will insert and remove DHCP relay information in forwarded DHCP request messages to the DHCP server. The no form of this command disables the insertion of relay information.

ip dhcp relay information option

no ip dhcp relay information option

Mode
Global Configuration Mode

Defaults
Disabled

Example:
SMIS(config)# ip dhcp relay information option

- Only when enabled, the Relay Agent does any processing related to Relay Agent Information Options - like inserting the necessary options while relaying a packet from a client to a server and examining/stripping of options when relaying a packet from a server to a client.

Related Commands
show ip dhcp relay information - Displays the DHCP relay information
show dhcp server - Displays the DHCP server information
16.2.4 ip dhcp relay circuit-id

This command configures circuit identifier value to be used by the relay agent on the sub option 1 of the relay information option 82 to DHCP servers. The no form of this command clears the circuit identifier configuration. This is interface specific configuration.

```
ip dhcp relay circuit-id <id>
```

```
no ip dhcp relay circuit-id
```

Syntax

- `<id>` - Any number between 1 to 2147483647

Mode

Interface Configuration Mode

Defaults

No circuit id option sent

Example:

```
SMIS(config-if)# ip dhcp relay circuit-id 1000
```

Related Commands

- `show ip dhcp relay information` - Displays the DHCP relay information
- `show dhcp server` - Displays the DHCP server information
16.2.5 ip dhcp relay remote-id

This command configures remote identifier string to be used by the relay agent on the sub option 1 of the relay information option 82 to DHCP servers. The no form of this command clears the remote identifier configuration. This is interface specific configuration.

```
   ip dhcp relay remote-id <name>
```

```
   no ip dhcp relay remote-id
```

Syntax

`<name>` - Any alphanumerical string up to 32 characters length

Mode

Interface Configuration Mode

Defaults

None

Example:

```
SMIS(config-if)# ip dhcp relay remote-id dhc_rell
```

Related Commands

- `show ip dhcp relay information` - Displays the DHCP relay information
- `show dhcp server` - Displays the DHCP server information
16.2.6 debug ip dhcp relay

This command enables the debug level for tracing the DHCP Relay Module. The no form of the command disables the debug level for tracing the DHCP relay Module.

```
debug ip dhcp relay {all | errors}
```

```
no debug ip dhcp relay {all | errors}
```

Syntax Description
- **all** - All trace messages
- **errors** - Trace error code debug messages

Mode
Privileged EXEC Mode

Defaults
Debugging is disabled

Example:
```
SMIS# debug ip dhcp relay all
```

Related Commands
- `show ip dhcp relay information` - Displays the DHCP relay information
- `show dhcp server` - Displays the DHCP server information
16.2.7 show ip dhcp relay information

This command displays the DHCP Relay Information.

```plaintext
show ip dhcp relay information [vlan <integer (1-4069)>] [<iftype> <ifnum>]
```

Syntax Description

- **Vlan** - VLAN ID
- **iftype** - Interface type, can either be a gi, ex or qx ethernet interfaces
- **ifnum** - Physical interface ID including slot and port number

Mode

Privileged EXEC Mode

Example:

```
SMIS# show ip dhcp relay information
Dhcp Relay : Enabled
Dhcp Relay Servers only : Enabled
Server Ip Address : 40.0.0.4
Dhcp Relay RAI option : Enabled
Debug Level : 0x1
No of Packets inserted RAI option : 0
No of Packets inserted circuit ID suboption : 0
No of Packets inserted remote ID suboption : 0
No of Packets inserted subnet mask suboption : 0
No of Packets dropped : 0
No of Packets which did not inserted RAI option : 0
```

Related Commands

- **service dhcp-relay** - Enables the DHCP relay agent in the switch
- **ip dhcp server** - Sets the IP address of the DHCP server
- **ip dhcp relay information option** - Enables the Relay Agent to perform any processing related to relay agent Information Options
16.2.8 show dhcp server

This command displays the DHCP server information.

show dhcp server

Mode
Privileged EXEC Mode

Example:
SMIS# show dhcp server
DHCP server: 40.0.0.4

Related Commands
- `service dhcp-relay` - Enables the DHCP relay agent in the switch
- `ip dhcp server` - Sets the IP address of the DHCP server
- `ip dhcp relay information option` - Enables the Relay Agent to perform any processing related to relay agent Information Options
16.3 DHCP Server

16.3.1 service dhcp-server

This command enables the DHCP server. The no form of this command disables the DHCP server.

```
service dhcp-server
```

```
no service dhcp-server
```

Mode

Global Configuration Mode

Defaults

Disabled

Example:

```
iss (config)# service dhcp-server
```

- DHCP Relay must be disabled before enabling the DHCP server.

Related Command

- `show ip dhcp server information` - Displays the DHCP server information
16.3.2 ip dhcp pool

This command creates a DHCP server address pool and places the user in the DHCP pool configuration mode.

The no form of the command deletes the DHCP server address pool.

```
ip dhcp pool <index (1-2147483647)>
```

```
o dhcp pool <index (1-2147483647)>
```

Syntax Description

Index - Pool Number

Mode

Global Configuration Mode

Defaults

Address pools are not created by default

Example:

```
iss (config)# ip dhcp pool 1
```

- On execution of this command, the configuration mode changes to DHCP pool configuration mode identified by the (config-dhcp)# prompt. In this mode, the administrator can configure pool parameters.

Related Commands

- **network** - Sets the network number and mask in DHCP server configuration parameters
- **excluded-address** - Creates an excluded pool to prevent DHCP from assigning certain addresses
- **domain-name** - Sets the domain name in the DHCP server configuration parameters
- **dns-server** - Specifies the IP address of a DNS server
- **netbios-name-server** - Sets the NetBIOS (WINS) name servers in the DHCP server configuration parameters
- **netbios-node-type** - Sets the NetBios node type in the DHCP server configuration parameters
- **default-router** - Sets the default router in the DHCP server configuration parameters
option - Sets the pool specific DHCP server option
lease - Sets the lease period
host hardware-type - Specifies the hardware address of a Dynamic Host Configuration Protocol (DHCP) client

code{show ip dhcp server information} - Displays the DHCP server information

code{show ip dhcp server pools} - Displays the DHCP server pools
16.3.3 ip dhcp next-server

This command sets the next boot server in the DHCP server configuration parameters. The no form of this command deletes the next boot server from the DHCP server configuration parameters.

 ip dhcp next-server <ip address>

 no ip dhcp next-server

Syntax Description

 ip address - IP address of the server (TFTP server)

Mode

Global Configuration Mode

Example:

 iss (config)# ip dhcp next-server 12.0.0.1

Related Commands

 service dhcp-server - Enables the DHCP server
 show ip dhcp server information - Displays the DHCP server information
 show ip dhcp server binding - Displays the DHCP server binding information
 show ip dhcp server pools - Displays the DHCP server pools
 show ip dhcp server statistics - Displays the DHCP server statistics
16.3.4 ip dhcp bootfile

This command sets the boot file name in the DHCP server configuration parameters. The no form of this command deletes the boot file name from the DHCP server configuration parameters.

`ip dhcp bootfile <bootfile (63)>`

`no ip dhcp bootfile`

Syntax Description

boot file - Name of the file that specifies the boot image

Mode

Global Configuration Mode

Example:

`iss (config)# ip dhcp bootfile 53`

Related Commands

service dhcp-server - Enables the DHCP server

show ip dhcp server information - Displays the DHCP server information
16.3.5 ip dhcp

This command sets the DHCP server parameters such as enabling ICMP echo mechanism or offer-reuse timeout. The no form of this command is used to set the DHCP server parameters like disabling ICMP echo mechanism or server offer-reuse to its default value or removing a bind entry from the server binding table.

```
ip dhcp { ping packets | server offer-reuse <timeout (1-120)> }
```

```
no ip dhcp { ping packets | server offer-reuse | binding <ip address> }
```

Syntax Description

- `ping packets` - Enable icmp echoes prior to assigning a pool address. The no form of this command option prevents the server from pinging pool addresses
- `server offer-reuse` - The amount of time the DHCP server entity would wait for the DHCP REQUEST from the client before reusing the offer
- `binding` - The binding option if specified deletes the specified address from binding

Mode

Global Configuration Mode

Defaults

server offer-reuse - 10

Example:

```
is (config)# ip dhcp ping packets
```

- The DHCP server pings a pool address before assigning the address to a requesting client. If the ping is unanswered, the DHCP server assumes (with a high probability) that the address is not in use and assigns the address to the requesting client.

Related Commands

- `service dhcp-server` - Enables the DHCP server
- `show ip dhcp server information` - Displays the DHCP server information
- `show ip dhcp server binding` - Displays the DHCP server binding information
- `show ip dhcp server pools` - Displays the DHCP server pools
- `show ip dhcp server statistics` - Displays the DHCP server statistics
16.3.6 ip dhcp option

This command sets the DHCP server options.

```
ip dhcp option <code (1-2147483647)> { ascii <string> | hex <Hex String> | ip <address> }
```

```
oip dhcp option <code (1-2147483647)>
```

Syntax Description

- `code` - Option Code
- `ascii` - ASCII string
- `hex` - Hexadecimal string
- `ip` - IP address

Mode

Global Configuration Mode

Example:

```
SMIS(config)# ip dhcp option 19 hex d
```

RFC 2132 provides details about option code to option name mapping and the option length information.

The following is the list of supported/configurable DHCP options with their corresponding option length values:

- Options 19, 20, 27, 29, 30, 31, 34, 36, 39, 46 must have length 1
- Options 12, 14, 15, 17, 18, 40, 43, 47, 64, 66, 67 must have length >=1
- Option 16 must have minimum length 4 and the value for this option must be an IP address and Option 25 can have a length of 2 and 2*n
- Option 68 must have length 4 and the value for this option must be an IP address
- Options 1-11, 41, 42, 44, 45, 48, 49, 65, 69, 70-76 must have a length of 4. Value for these options must be an IP address
- Options 21, 33 must have minimum length as 8 and 8*n
- Options 0, 255, 50-60 are non-configurable options

Related Commands

- `service dhcp-server` - Enables the DHCP server
show ip dhcp server pools - Displays the DHCP server pools

option - Sets the pool specific DHCP server option
16.3.7 network

This command sets the network IP address and mask in DHCP server configuration parameters. The no form of the command deletes the network IP address and mask from DHCP server configuration.

```
network <network-IP> [ { <mask> | / <prefix-length (1-31)> } ] [end ip]
```

no network

Syntax Description

- `network-IP` - Network IP address of the DHCP pool
- `mask` - Subnet mask of the DHCP pool
- `prefix-length` - The number of bits that comprise the address prefix. Prefix is an alternative way of specifying the network mask of the client. The prefix length must be preceded by a forward slash (/).
- `end ip` - End IP address of the pool

Mode

DHCP Pool Configuration Mode

Example:

```
SMIS(dhcp-config)# network 20.0.0.0 255.0.0.0 20.0.0.10
```

- This command is valid for DHCP sub network address pools only.

Related Commands

- `service dhcp-server` - Enables the DHCP server
- `show ip dhcp server information` - Displays the server information
- `show ip dhcp server pools` - Displays the DHCP server pools
- `show ip dhcp server binding` - Displays the DHCP server binding information
- `show ip dhcp server statistics` - Displays the DHCP server statistics
16.3.8 excluded-address

This command creates an excluded pool to prevent DHCP Server from assigning certain addresses. The no form of the command deletes the excluded pool.

```
excluded-address <low-address> <high-address>
```

```
no excluded-address <low-address> [<high-address>]
```

Syntax Description

- **low-address** - The excluded IP address, or first IP address in an excluded address range
- **high-address** - The last IP address in the excluded address range

Mode

DHCP Pool Configuration Mode

Example:

```
SMIS(dhcp-config)# excluded-address 20.0.0.1 20.0.0.30
```

- The DHCP server assumes that all pool addresses may be assigned to clients. This command is used to exclude a single IP address or a range of IP addresses.

Related Commands

- **network** - Sets the network IP and mask in DHCP server configuration parameters
- **service dhcp-server** - Enables the DHCP server
- **show ip dhcp server information** - Displays the server information
- **show ip dhcp server pools** - Displays the DHCP server pools
- **show ip dhcp server binding** - Displays the DHCP server binding information
- **show ip dhcp server statistics** - Displays the DHCP server statistics
16.3.9 domain-name

This command sets the domain name in the DHCP server configuration parameters. The no form of the command deletes the domain name from the DHCP server configuration parameters.

```
domain-name <domain (63)>
```

```
no domain-name
```

Syntax Description

domain - Client's domain name string

Mode

DHCP Pool Configuration Mode

Example:

```
SMIS(dhcp-config)# domain-name supermicro
```

The configuration of this command will take effect only after configuring the network address pool using network command.

Related Commands

- `service dhcp-server` - Enables the DHCP server
- `show ip dhcp server information` - Displays the server information
- `show ip dhcp server pools` - Displays the DHCP server pools
- `show ip dhcp server binding` - Displays the DHCP server binding information
- `show ip dhcp server statistics` - Displays the DHCP server statistics
- `network` - Configures the network IP address of the DHCP Address Pool
16.3.10 dns-server

This command is used to specify the IP address of a DNS server that is available to a DHCP client. The no form of the command deletes the DNS server from the DHCP server configuration parameters.

dns-server <ip address>

no dns-server

Mode

DHCP Pool Configuration Mode

Example:

SMIS(dhcp-config)# dns-server 20.0.0.1

- If DNS IP servers are not configured for a DHCP client, the client cannot correlate host names to IP addresses.
- The configuration of this command will take effect only after configuring the network address pool using network command.

Related Commands

- **service dhcp-server** - Enables the DHCP server
- **show ip dhcp server information** - Displays the server information
- **show ip dhcp server pools** - Displays the DHCP server pools
- **show ip dhcp server binding** - Displays the DHCP server binding information
- **show ip dhcp server statistics** - Displays the DHCP server statistics
- **network** - Configures the Network IP for the DHCP Pool
16.3.11 netbios-name-server

This command sets the NetBIOS (WINS) name servers in the DHCP server configuration parameters. The no form of the command deletes the NetBIOS name server from the DHCP configuration parameters.

netbios-name-server <ip address>

no netbios-name-server

Mode
DHCP Pool Configuration Mode

Example:
SMIS(dhcp-config)# netbios-name-server 20.0.0.3

The configuration of this command will take effect only after configuring the network address pool using network command.

Related Commands

service dhcp-server - Enables the DHCP server
show ip dhcp server information - Displays the server information
show ip dhcp server pools - Displays the DHCP server pools
show ip dhcp server binding - Displays the DHCP server binding information
show ip dhcp server statistics - Displays the DHCP server statistics
network - Configures the Network IP of the address pool
16.3.12 netbios-node-type

This command is used to set the NetBios node type in the DHCP server configuration parameters. The no form of this command is used to delete the NetBios node type from the DHCP server configuration parameters.

The NetBIOS node type for Microsoft DHCP clients can be one of the four settings: broadcast, peer-to-peer, mixed, or hybrid.

```
netbios-node-type { <0-FF> | b-node | h-node | m-node | p-node }
```

```
o netbios-node-type
```

Syntax Description

- **0-FF** - Node type value
- **b-node** - Broadcast node
- **h-node** - Hybrid node
- **m-node** - Mixed node
- **p-node** - Peer-to-peer node

Mode

DHCP Pool Configuration Mode

Example:

```
SMIS(dhcp-config)# netbios-node-type h-node
```

The recommended type is hybrid node.

The configuration of this command will take effect only after configuring the network address pool using network command.

Related Commands

- `service dhcp-server` - Enables the DHCP server
- `show ip dhcp server information` - Displays the server information
- `show ip dhcp server pools` - Displays the DHCP server pools
- `show ip dhcp server binding` - Displays the DHCP server binding information
- `show ip dhcp server statistics` - Displays the DHCP server statistics
- `network` - Configures the Network IP of the address pool
16.3.13 default-router

This command sets the default router in the DHCP server configuration parameters. The no form of the command deletes the default router from the DHCP server configuration parameters.

`default-router <ip address>`

`no default-router`

Mode
DHCP Pool Configuration Mode

Example:
```
SMIS(dhcp-config)# default-router 10.23.2.99
```

- The configuration of this command will take effect only after configuring the network address pool using network command.

Related Commands
- `service dhcp-server` - Enables the DHCP server
- `show ip dhcp server information` - Displays the server information
- `show ip dhcp server pools` - Displays the DHCP server pools
- `show ip dhcp server binding` - Displays the DHCP server binding information
- `show ip dhcp server statistics` - Displays the DHCP server statistics
- `network` - Configures the Network IP of the address pool
16.3.14 option

This command sets the pool specific DHCP server option. The no form of the command deletes the pool specific DHCP server option.

 option <code (1-2147483647)> { ascii <string> | hex <Hex String> | ip <address> }

 no option <code (1-2147483647)>

Syntax Description

code - Option Code
ascii - ASCII string
hex - Hexadecimal string
ip - IP address

Mode

DHCP Pool Configuration Mode

Example:

SMIS(dhcp-config) # option 19 hex f

RFC 2132 provides details about option code to option name mapping and the option length information.

The following is the list of supported/configurable DHCP options with their corresponding option length values:

- Options 19, 20, 27, 29, 30, 31, 34, 36, 39, 46 must have length 1
- Options 12, 14, 15, 17, 18, 40, 43, 47, 64, 66, 67 must have length>=1
- Option 16 must have minimum length 4 and the value for this option must be an IP address and Option 25 can have a length of 2 and 2^n
- Option 68 must have length 4 and the value for this option must be an IP address
- Options 1-11, 41, 42, 44, 45, 48, 49, 65, 69, 70-76 must have a length of 4. Value for these options must be an IP address
- Options 21, 33 must have minimum length as 8 and 8^n
- Options 0, 255, 50-60 are non-configurable options
Network pool must be configured prior to the execution of this command. Only then the configured option will be visible to the user in the show command output. If the network pool is deleted, then the option configured for that network pool will also get deleted.

Related Commands

- **service dhcp-server** - Enables the DHCP server
- **ip dhcp pool** - Creates a DHCP server address pool and places the user in the DHCP pool configuration mode
- **ip dhcp option** - Sets the DHCP server options
- **network** - Sets the network IP and mask in DHCP server configuration parameters
- **show ip dhcp server pools** - Displays the DHCP server pools
16.3.15 lease

This command configures the duration of the lease for an IP address that is assigned from ISS
Dynamic Host Configuration Protocol (DHCP) Server to a DHCP client. The no form of this command
restores the default value of 3600 seconds.

```
lease { <days (0-365)> [ <hours (0-23)> [ <minutes (0-59)> ]] | infinite }
```

no lease

Syntax Description
- **days** - Duration of the lease in number of days
- **hours** - Number of hours in lease
- **minutes** - Number of minutes in lease
- **infinite** - Duration of the lease is unlimited

Mode
DHCP Pool Configuration Mode

Defaults
3600 seconds

Example:
```
SMIS(dhcp-config)# lease 1
```

Related Commands
- **service dhcp-server** - Enables the DHCP server
- **show ip dhcp server information** - Displays the server information
- **show ip dhcp server pools** - Displays the DHCP server pools
- **show ip dhcp server binding** - Displays the DHCP server binding information
- **show ip dhcp server statistics** - Displays the DHCP server statistics
16.3.16 utilization threshold

This command sets the pool utilization threshold value in percentage. If the pool utilization reaches this threshold level, a syslog event and an SNMP trap message will be generated. The no form of this command sets pool utilization threshold to its default value.

utilization threshold { <integer (0-100)> }

no utilization threshold

Mode
DHCP Pool Configuration Mode

Defaults
75

Example:
SMIS(dhcp-config)# utilization threshold 76

Related Commands
show ip dhcp server pools - Displays the DHCP server pools
logging - Enables Syslog server and configures the Syslog Server IP address, the log-level and other Syslog related parameters
16.3.17 host hardware-type

This command specifies the hardware address of a Dynamic Host Configuration Protocol (DHCP) client and host specific DHCP options. The no form of the command deletes the host option.

```
host hardware-type <type (1-2147483647)> client-identifier <mac-address> option <code (1-2147483647)> { ascii <string> | hex <Hex String> | ip <address> }
```

```
no host hardware-type <host-hardware-type (1-2147483647)> client-identifier <client-mac-address> option <code (1-2147483647)>
```

Syntax Description

- **type**: Host hardware address type
- **client identifier**: Host MAC address
- **option**: The tag octet of the DHCP option
- **ascii**: ASCII String
- **hex**: Hex String
- **ip**: Host IP address

Mode

DHCP Pool Configuration Mode

Example:

```
SMIS(dhcp-config)# host hardware-type 1 client-identifier 00:11:22:33:44:55 option 254 ip 10.0.0.1
```

The current valid values are only 0 and 1.

Related Commands

- **service dhcp-server**: Enables the DHCP server
- **ip dhcp pool**: Creates a DHCP server address pool and places the user in the DHCP pool configuration mode
16.3.18 host hardware-type mac binding

This command configures a fixed IP address to specific client devices based on their MAC address. The "no" form of this command removes the fixed IP address configured for the given client MAC.

```
host hardware-type <type> client-identifier <mac-address> ip <ip-address>
```

```
no host hardware-type <type> client-identifier <mac-address> ip <ip-address>
```

Syntax Description

- **type**: Host hardware address type – Currently supported type is 1 (MAC address)
- **client identifier**: Client host MAC address
- **ip-address**: Fixed IP address to be assigned to this client host. This IP address must be part of the pool network and also not configured as exclude IP.

Mode

DHCP Pool Configuration Mode

Example:

```
SMIS(dhcp-config)# host hardware-type 1 client-identifier 00:11:22:33:44:55 ip 1.2.3.4
```

Related Commands

- **show ip dhcp server pools**: Displays the DHCP server pools configuration
- **ip dhcp pool**: Creates a DHCP server address pool and places the user in the DHCP pool configuration mode
16.3.19 interface ip binding

This command configures a fixed IP address to the client devices connected to the given specific ports. The “no” form of this command removes the fixed IP address configured for the given port.

```
interface <interface-type> <interface-id> ip <ip-address>
no interface <interface-type> <interface-id> ip <ip-address>
```

Syntax Description
- **interface-type** - Interface type, e.g: ex.
- **interface-id** - Physical interface ID including slot and port number.
- **ip-address** - Fixed IP address to be assigned to this client host. This IP address must be part of the pool network and also not configured as exclude IP.

Mode
DHCP Pool Configuration Mode

Example:
```
SMIS(dhcp-config)# interface gi 0/1 ip 192.168.1.1
```

Related Commands
- `show ip dhcp server pools` - Displays the DHCP server pools configuration
- `ip dhcp pool` - Creates a DHCP server address pool and places the user in the DHCP pool configuration mode

Note:
This command is suitable mainly for the cases where only one device is connected to a port. If multiple devices are connected to the same port (through another switch), the configured IP address will be assigned to the first DHCP DISCOVER sent by the client host.
16.3.20 debug ip dhcp server

This command enables the debug level for tracing the DHCP server Module. The "no" form of this command disables the debug level for tracing the DHCP server Module.

 debug ip dhcp server { all | events | packets | errors | bind }

 no debug ip dhcp server { all | events | packets | errors | bind }

Syntax Description
all - All trace messages
events - Trace management messages
packets - Packet related messages
errors - Trace error code debug messages
bind - Trace bind messages

Mode
Privileged EXEC Mode

Defaults
Debugging is disabled

Example:
SMIS# debug ip dhcp server all

Related Commands
service dhcp-server - Enables the DHCP server
show ip dhcp server information - Displays the server information
show ip dhcp server binding - Displays the DHCP server binding information
16.3.21 show ip dhcp server information

This command displays the DHCP server information.

show ip dhcp server information

Mode
Privileged EXEC Mode

Example:
SMIS# show ip dhcp server information
DHCP server status : Enable
Send Ping Packets : Disable
Debug level : None
Server Address Reuse Timeout : 5 secs
Next Server Address : 0.0.0.0
Boot file name : None

Related Commands
service dhcp-server - Enables the DHCP server
ip dhcp next-server - Sets the next boot server in the DHCP server configuration parameters
ip dhcp bootstrap - Sets the boot file name in the DHCP server configuration parameters
ip dhcp - Sets the DHCP server parameters such as enabling ICMP echo mechanism or offer-reuse timeout
16.3.22 show ip dhcp server pools

This command displays the DHCP server pools.

show ip dhcp server pools

Mode
Privileged EXEC Mode

Example:
SMIS# show ip dhcp server pools
Pool Id : 1

Subnet : 12.0.0.0
Subnet Mask : 255.0.0.0
Lease time : 180 secs
Start Ip : 12.0.0.1
End Ip : 12.255.255.255
Exclude Address Start IP : 12.0.0.1
Exclude Address End IP : 12.0.0.10
Pool Id : 2

Subnet : 20.0.0.0
Subnet Mask : 255.0.0.0
Lease time : 7200 secs
Start Ip : 20.0.0.1
End Ip : 20.255.255.255

Related Commands
service dhcp-server - Enables the DHCP server
ip dhcp pool - Creates a DHCP server address pool and places the user in the DHCP pool configuration mode
lease - Configures the duration of the lease for an IP address that is assigned from ISS Dynamic Host Configuration Protocol (DHCP) Server to a DHCP client
network - Sets the network IP and mask in DHCP server configuration parameters
16.3.23 show ip dhcp server binding

This command displays the DHCP server binding information.

```
show ip dhcp server binding
```

Mode

Privileged EXEC Mode

Example:

```
SMIS# show ip dhcp server binding
Ip Hw Hw Alloc Expire Binding
Address Type Address Method Time State
(Secs)
------- ---- ------- ------- ------- ------- -------
12.0.0.11 Ethernet 00:01:02:03:04:41 Dynamic 161 Assigned
20.0.0.1 Ethernet 00:01:02:03:04:31 Dynamic 7152 Assigned
```

Binding refers to the state of binding. This can be “offered”, “assigned” or “probing”. In the
“offered” state an offer is sent, but no “req” has been received from the client. In the “assigned”
state the address is assigned to the client. In the “probing” state the address is currently being probed
by the DHCP server.

Related Commands

```
service dhcp-server - Enables the DHCP server
host hardware-type - Specifies the hardware address of a Dynamic Host Configuration Protocol
(DHCP) client
ip dhcp option - Sets the DHCP server options
```
16.3.24 show ip dhcp server statistics

This command displays the DHCP server statistics.

show ip dhcp server statistics

Mode
Privileged EXEC Mode

Example:
SMIS# show ip dhcp server statistics
Address pools : 2
Message Received
--------- ---------
DHCPDISCOVER 6
DHCPRREQUEST 2
DHCПDECLINE 0
DHCПRELEASE 0
DHCПINFORM 0
Message Sent
--------- ----
DHCПOFFER 6
DHCПACK 2
DHCПNAK 0

Related Commands
service dhcp-server - Enables the DHCP server
ip dhcp pool - Creates a DHCP server address pool and places the user in the DHCP pool configuration mode
ip dhcp - Sets the DHCP server parameters such as enabling ICMP echo mechanism or offer-reuse
timeout
show ip dhcp server pools - Displays the DHCP server pools
17 SNMPv3

SNMP (Simple Network Management Protocol) is the most widely-used network management protocol on TCP/IP-based networks. SNMPv3 is designed mainly to overcome the security shortcomings of SNMPv1/v2. USM (User based Security Mode) and VACM (View based Access Control Model) are the main features added as part of the SNMPv3 specification. USM provides for both encryption and authentication of the SNMP PDUs, while VACM specifies a mechanism for defining access policies for different users with different MIB trees. Also, SNMPv3 specifies a generic management framework, which is expandable for adding new Management Engines, Security Modes, Access Control Models, etc. With SNMPv3, the SNMP communication is completely safe and secure.

SNMPv3 is a multi-lingual Agent supporting all three versions of SNMP (SNMPv1, SNMPv2c and SNMPv3) while conforming to the latest specifications. It is available as a portable source code product, which can be easily integrated to any platform (any OS and any Processor). MIB integration is made simple with the aid of a tool called Middle Level Code Generator (MIDGEN), which is available along with SMIS SNMP. MIDGEN generates the interface stubs required for every object in the MIB for the SET, GET and GETNEXT operations.

These stubs can be implemented by the respective modules supporting the MIB. SMIS SNMP is provided as source code available for licensing to OEMs and VARs who wish to incorporate the multilingual SNMP functionality into their products.

The list of CLI commands for the configuration of SNMPv3 is as follows:

- `snmp community index`
- `snmp group`
- `snmp access`
- `snmp engineid`
- `snmp view`
- `snmp targetaddr`
- `snmp targetparams`
- `snmp user`
- `snmp notify`
- `snmp-server enable traps snmp authentication`
- `snmp-server trap udp-port`
- `enable snmpagent`
disable snmpagent
enable snmpsubagent
disable snmpsubagent
show snmp agentx information
show snmp agentx statistics
show snmp
show snmp community
show snmp group
show snmp group access
show snmp engineID
show snmp viewtree
show snmp targetaddr
show snmp targetparam
show snmp user
show snmp notif
show snmp inform statistics
show snmp-server traps
17.1 snmp community index

This command configures the SNMP community details. The no form of this command removes the SNMP community details.

```
snmp community index <CommunityIndex> name <CommunityName> security <SecurityName> [context <ContextName | none>] [{volatile | nonvolatile}] [transporttag <TransportTagIdentifier | none>]
```

```
no snmp community index <CommunityIndex>
```

Syntax Description

- **CommunityIndex** - Community index identifier
- **Name** - Community name
- **Security** - User Name
- **Context** - Context name through which the management information is accessed when using the community string specified by the corresponding instance of SNMP community name
- **volatile | nonvolatile** - Storage type
- **transporttag** - Transport tag identifier

Mode

Global Configuration Mode

Defaults

- Community Index - NETMAN/PUBLIC
- CommunityName - NETMAN/PUBLIC
- Security Name - None
- ContextName - Null
- Transport Tag - Null
- Storage type - Volatile

Example:

```
SMIS(config)# snmp community index myv3com name myv3com security xyz context myinst nonvolatile transporttag myv3tag
```

> The community index identifier must be unique for every community name entry.
Related Commands

show snmp - Displays the status information of SNMP communications
show snmp community - Displays the configured SNMP community details
17.2 snmp group

This command configures SNMP group details. The no form of the command removes the SNMP group details.

```
snmp group <GroupName> user <UserName> security-mode {v1 | v2c | v3 }
[volatile | nonvolatile]
```

```
o snmp group <GroupName> user <UserName> security-mode {v1 | v2c | v3 }
```

Syntax Description

- **GroupName** - Name of the SNMP group
- **User** - User Name
- **security-mode** - Security Model
- **volatile | nonvolatile** - Storage Type

Mode

Global Configuration Mode

Defaults

- Group Name - iso/initial

Example:

```
SMIS(config)# snmp group myv3group user myv3user securitymode v1 volatile
```

Related Commands

- **show snmp group** - Displays the configured SNMP groups
- **show snmp user** - Displays the configured SNMP users
17.3 snmp access

This command configures the SNMP group access details. The no form of the command removes the SNMP group access details.

```
snmp access <GroupName> {v1 | v2c | v3 {auth | noauth | priv}} [read <ReadView | none>] [write <WriteView | none>] [notify <NotifyView | none>] [{volatile | nonvolatile}]

no snmp access <GroupName> {v1 | v2c | v3 {auth | noauth | priv}}
```

GroupName - Name of the group

v1 | v2c | v3 - Version of the SNMP

Syntax Description

- **auth** - Authentication - Enables Message digest (MD5) or Secure Hash Algorithm (SHA) packet authentication
- **noauth** - no-authentication
- **priv** - Specifies both authentication and privacy
- **read** - A read view identifier
- **write** - A write view identifier
- **notify** - A notification view identifier
- **volatile | nonvolatile** - Storage type

Mode

Global Configuration Mode

Defaults

Group Name - iso
Read/Write/Notify view - iso
Storage Type - volatile
Group Name - initial
Read/Write/Notify View - restricted
Storage Type - non-volatile
Group Name - initial
Read/Write/Notify View - iso
Storage Type - non-volatile
Example:
SMIS(config)# snmp access myv2group v2 read v2readview write
v2writeview notify v2notifyview nonvolatile

To configure an SNMP access along with the group, a group must have already been
created using the snmp group command.
Version 3 is the most secure mode as it allows packet encryption with the priv key word.

Related Commands
snmp group - Configures SNMP group details
snmp view - Configures the SNMP view
show snmp group - Displays the configured SNMP groups
show snmp group access - Displays the configured SNMP group access details
show snmp viewtree - Displays the configured SNMP Tree views
17.4 snmp engineid

This command configures the engine identifier. The no form of the command removes the configured engine identifier.

```
snmp engineid <EngineIdentifier>
```

```
no snmp engineid
```

Syntax Description

- **EngineIdentifier** - Engine Id

Mode

Global Configuration Mode

Defaults

80.00.08.1c.04.46.53

Example:

```
SMIS(config)# snmp engineid 80.0.08.1c.04.5f.a9
```

- The Engine ID must be given as octets in hexadecimal separated by dots and the allowed length is 5 to 32 octets.
- SNMP engine ID is an administratively unique identifier.
- Changing the value of the SNMP engine ID has significant effects.
- All the user information will be updated automatically to reflect the change

Related Commands

- `show snmp engineID` - Displays the Engine Identifier
- `show snmp user` - Displays the configured SNMP users
17.5 snmp view

This command configures the SNMP view. The no form of the command removes the SNMP view.

```bash
snmp view <ViewName> <OIDTree> [mask <OIDMask>] {included | excluded}
[ {volatile | nonvolatile}]
no snmp view <ViewName> <OIDTree>
```

Syntax Description
- **ViewName**: View Name
- **OIDTree**: Object Identifier
- **OIDMask | none**: Defines views’ subtrees
- **included | excluded**: Type of view
- **volatile | nonvolatile**: Type of storage

Mode
- Global Configuration Mode
 - View Name: iso/restricted
 - OIDTree: 1
 - OIDMask: None
 - View type: included

Defaults
- Storage type: non-volatile

Example:
```bash
SMIS(config)# snmp view v2readview 1.3.6.1 mask 1.1.1.1 included nonvolatile
```

- To configure an SNMP view (read/write/notify), a group must have already been created using the snmp group command and SNMP group access must be configured using the snmp access command.

Related Commands
- **snmp access**: Configures the SNMP group access details
- **show snmp viewtree**: Displays the configured SNMP Tree views
show snmp group access - Displays the configured SNMP group access details
17.6 snmp targetaddr

This command configures the SNMP target address. The no form of the command removes the configured SNMP target address.

```
snmp targetaddr <TargetAddressName> param <ParamName> {<IPAddress> | <IP6Address>} [timeout <TimeoutValue(1-1500)>] [retries <RetryCount(1-3)>] [taglist <TagIdentifier | none>] [{volatile | nonvolatile}]
```

```
no snmp targetaddr <TargetAddressName>
```

Syntax Description

TargetAddressName - Name of the Target address (host)

Param - SNMP parameter Name

IPAddress/ IP6Address - IP/IP6 Address of the host

Timeout - The time the SNMP agent waits for a response from the SNMP Manager before retransmitting the Inform Request Message

retries - The Maximum number of times the agent can retransmit the Inform Request Message

taglist - Tag Identifier

volatile | nonvolatile - Storage type

Mode

Global Configuration Mode

Defaults

ParamName - Internet

IPAddress - 10.0.0.10

Taglist - snmp

Storage type - volatile

Example:

```
SMIS(config)# snmp targetaddr issmgr param issd 10.0.0.10 taglist
mytag nonvolatile
```

Target param must have been configured.
Related Commands

show snmp targetaddr - Displays the configured SNMP target Addresses
snmp targetparams - Configures the SNMP target parameters
show snmp targetparam - Displays the configured SNMP Target Address Params
17.7 snmp targetparams

This command configures the SNMP target parameters. The no form of the command removes
the SNMP target Params

```bash
snmp targetparams <ParamName> user <UserName> security-mode {v1 | v2c
| v3 {auth | noauth | priv}} message-processing {v1 | v2c | v3}
[{volatile | nonvolatile}]
```

```bash
no snmp targetparams <ParamName>
```

Syntax Description

- **ParamName** - SNMP Parameter Name
- **User** - User Name
- **security-mode** - Security Mode
- **auth** - Authentication - Enables Message digest (MD5) or Secure Hash Algorithm (SHA) packet authentication
- **noauth** - no-authentication
- **priv** - Specifies both authentication and privacy
- **messageprocessing** - Message processing mode
- **volatile | nonvolatile** - Storage type

Mode

Global Configuration Mode

Defaults

- ParamName - internet
- User/Security Name - None
- Security Mode - v2c
- Security Level - NoauthNoPriv
- Message Processing Mode - v2c
- Storage Type - Non-volatile
- ParamName - test1
- User/Security Name - None
- Security Mode - v1
- Security Level - NoauthNoPriv
Message Processing Mode - v1
Storage Type - Non-volatile

Example:
SMIS(config)# snmp targetparams param1 user user1 securitymode v3
noauth message-processing v3

User information must have been configured prior to the configuration of SNMP target parameters

Related Commands
snmp user - Configures the SNMP user details
show snmp targetparam - Displays the configured SNMP Target Address Params
show snmp user - Displays the configured SNMP users.
17.8 **snmp user**

This command configures the SNMP user details. The no form of the command removes the SNMP user details.

```
snmp user <UserName> [auth {md5 | sha} <passwd> [priv DES <passwd>]]
{volatile | nonvolatile}
```

```
no snmp user <UserName>
```

Syntax Description

UserName - Name of the User
Auth - Authentication Algorithm - can be Message Digest 5 or Secure Hash Algorithm
Passwd - Password associated with the Authentication type
priv DES - Private encryption password
volatile | nonvolatile - Storage type - can be either volatile or non-volatile

Mode

Global Configuration Mode

Defaults

UserName - Initial
Authentication Protocol - None
Privacy Protocol - None
Storage type - Non-volatile
Storage type - Non-volatile

Example:

```
SMIS(config)# snmp user user1
```

SNMP passwords are localized using the local SNMP engine ID

Related Commands

show snmp engineID - Displays the Engine Identifier
show snmp user - Displays the configured SNMP users
17.9 snmp notify

This command configures the SNMP notification details. The no form of this command removes
the SNMP notification details.

```
snmp notify <NotifyName> tag <TagName> type {Trap | Inform} [{volatile
| nonvolatile}]
```

```
no snmp notify <NotifyName>
```

Syntax Description

- **NotifyName** - Notification Name
- **tag** - Tag Name
- **type** - Type of Notification
- **volatile** | **nonvolatile** - Storage type of the notification details

Mode

Global Configuration Mode

Defaults

- Notify Name - iss/iss1
- Notify Tag - iss/iss1
- Storage type - volatile

Example:

```
SMIS(config)# snmp notify note1 tag tag1 type Inform
```

Related Commands

- **show snmp notif** - Displays the configured SNMP Notifications
- **show snmp targetaddr** - Displays the configured SNMP target Addresses
17.10 snmp-server enable traps snmp authentication

This command enables generation of authentication traps for SNMPv1 and SNMPv2c. The "no" form of the command disables generation of authentication traps for SNMPv1 and SNMPv2c.

```bash
snmp-server enable traps snmp authentication

no snmp-server enable traps snmp authentication
```

Mode
Global Configuration Mode

Defaults
Generation of authentication traps is disabled by default.

Example:
```
SMIS(config)# snmp-server enable traps snmp authentication
```
17.11 snmp-server trap udp-port

This command configures UDP port number to be used to send SNMP traps.

The "no" form of this command resets the UDP port number to the default value 162.

```
no snmp-server trap udp-port
```

Mode

Global Configuration Mode

Defaults

UDP port 162

Example:

```
SMIS(config)# snmp-server trap udp-port 165
```

Related Commands

- `show snmp-server traps` - Displays the SNMP server trap configuration details
17.12 enable snmpagent

This command enables the SNMP agent on the switch.
SNMP agent feature is enabled by default.

enable snmpagent

Mode
Global Configuration Mode

Defaults
Enabled

Example:
SMIS(config)# enable snmpagent

Related Commands
show snmp - Displays the SNMP details

⚠️ If SNMP sub agent feature is enabled, disable the sub agent first before enabling the SNMP agent feature.
17.13 disable snmpagent

This command disables the SNMP agent on the switch. SNMP agent feature is enabled by default.

disable snmpagent

Mode
Global Configuration Mode

Defaults
SNMP feature is enabled.

Example:
SMIS(config)# disable snmpagent

Related Commands
show snmp - Displays the SNMP details
17.14 enable snmpsubagent

This command enables the SNMP sub agent on the switch.

The Switch can either operate as a SNMP agent or sub agent. Hence, to enable an SNMP sub agent the SNMP agent feature needs to be disabled. Use the command “disable snmpagent” to disable the SNMP agent feature before enabling the SNMP sub agent feature.

The SNMP sub agent feature is disabled by default.

```
enable snmpsubagent { master { ip4 <ipv4_address> | ip6 <ipv6_address> } [port <number>] }
```

Syntax Description
- `ipv4_address` – IP address of the master agent
- `ip6_address` – IPv6 address of the master agent
- `<number>` - TCP port number to be used to reach master agent

Mode
Global Configuration Mode

Defaults
Disabled

Example:
```
SMIS(config)# enable snmpsubagent
```

Related Commands
- `show snmp agentx information` - Displays the SNMP sub agent details

- Disabled SNMP agent feature before enabling the SNMP sub agent feature.
17.15 disable snmpsubagent

This command disables the SNMP sub agent on the switch.
SNMP sub agent feature is disabled by default.

disable snmpsubagent

Mode
Global Configuration Mode

Defaults
SNMP sub agent feature is disabled.

Example:
SMIS(config)# disable snmpsubagent

Related Commands
show snmp agentx information - Displays the SNMP sub agent details
17.16 show snmp agentx information

This command displays the information about SNMP sub agent configuration.

show snmp agentx information

Mode
Privileged EXEC Mode

Example:
SMIS# show snmp agentx information
Agentx Subagent is enabled
TransportDomain :TCP
Master IP Address :192.168.5.89
Master PortNo :705
SMIS#
17.17 **show snmp agentx statistics**

This command displays the SNMP sub agent related counters.

show snmp agentx statistics

Mode
Privileged EXEC Mode

Example:
SMIS# show snmp agentx statistics

Tx Statistics
- Transmitted Packets : 1
- Open PDU : 1
- Index Allocate PDU : 0
- Index DeAllocate PDU : 0
- Register PDU : 0
- Add Agent Capabilities PDU : 0
- Notify PDU : 0
- Ping PDU : 0
- Remove Agent Capabilities PDU : 0
- UnRegister PDU : 0
- Close PDU : 0
- Response PDU : 0

Rx Statistics
- Rx Packets : 0
- Get PDU : 0
- GetNext PDU : 0
- GetBulk PDU : 0
- TestSet PDU : 0
- Commit PDU : 0
- Cleanup PDU : 0
- Undo PDU : 0
- Dropped Packets : 0
- Parse Drop Errors : 0
- Open Fail Errors : 0
- Close PDU : 0
Response PDU : 0
17.18 show snmp

This command displays the status information of SNMP communications.

show snmp

Mode
Privileged EXEC Mode

Example:

SMIS# show snmp
0 SNMP Packets Input
 0 Bad SNMP Version errors
 0 Unknown community name
 0 Get request PDUs
 0 Get Next PDUs
 0 Set request PDUs

0 SNMP Packets Output
 0 Too big errors
 0 No such name errors
 0 Bad value errors
 0 General errors
 0 Trap PDUs

SNMP Manager-role output packets
0 Drops

SNMP Informs:
 0 Inform Requests generated
 0 Inform Responses received
 0 Inform messages Dropped
 0 Inform Requests awaiting Acknowledgement
17.19 show snmp community

This command displays the configured SNMP community details.

show snmp community

Mode
Privileged EXEC Mode

Example:
SMIS# show snmp community
Community Index: NETMAN
Community Name: NETMAN
Security Name: none
Context Name:
Transport Tag:
Storage Type: volatile
Row Status: active

Community Index: PUBLIC
Community Name: PUBLIC
Security Name: none
Context Name:
Transport Tag:
Storage Type: volatile
Row Status: active

Related Command

snmp community index - Configures the SNMP community details
17.20 show snmp group

This command displays the configured SNMP groups.

show snmp group

Mode
Privileged EXEC Mode

Example:

SMIS# show snmp group

```plaintext
Security Model : v1
Security Name  : none
Group Name     : iso
Storage Type   : Volatile
Row Status     : Active

Security Model : v2c
Security Name  : none
Group Name     : iso
Storage Type   : Volatile
Row Status     : Active

Security Model : v3
Security Name  : initial
Group Name     : initial
Storage Type   : Non-volatile
Row Status     : Active

Security Model : v3
Security Name  : templateMD5
Group Name     : initial
Storage Type   : Non-volatile
Row Status     : Non-volatile

Security Model : v3
Security Name  : templateSHA
```

Release : 1.1i
Group Name : initial
Storage Type : Non-volatile
Row Status : Active

Related Commands

snmp group - Configures the SNMP group details
snmp user - Configures the SNMP user details
17.21 show snmp group access

This command displays the configured SNMP group access details.

show snmp group access

Mode
Privileged EXEC Mode

Example:

```
SMIS# show snmp group access
Group Name  : iso
Read View   : iso
Write View  : iso
Notify View : iso
Storage Type: Volatile
Row Status  : Active

Group Name  : iso
Read View   : iso
Write View  : iso
Notify View : iso
Storage Type: Volatile
Row Status  : Active

Group Name  : initial
Read View   : restricted
Write View  : restricted
Notify View : restricted
Storage Type: Non-volatile
Row Status  : Active

Group Name  : initial
Read View   : iso
Write View  : iso
Notify View : iso
Storage Type: Non-volatile
```
Row Status : Active

Group Name : initial
Read View : iso
Write View : iso
Notify View : iso
Storage Type : Non-volatile
Row Status : Active

Related Commands

`snmp access` - Configures the SNMP group access details

`snmp view` - Configures the SNMP view
17.22 show snmp engineID

This command displays the Engine Identifier.

`show snmp engineID`

Mode
Privileged EXEC Mode

Example:
SMIS# show snmp engineID
 EngineId: 80.00.08.1c.04.46.53

Related Command
`snmp engineid` - Configures the engine identifier
17.23 show snmp viewtree

This command displays the configured SNMP Tree views.

show snmp viewtree

Mode
Privileged EXEC Mode

Example:
SMIS# show snmp viewtree
View Name: iso
Subtree OID: 1
Subtree Mask:
View Type: included
Storage Type: nonVolatile
Row Status: active

View Name: restricted
Subtree OID: 1
Subtree Mask:
View Type: included
Storage Type: nonVolatile
Row Status: active

Related Command

snmp view - Configures the SNMP view
17.24 show snmp targetaddr

This command displays the configured SNMP target Addresses.

show snmp targetaddr

Mode
Privileged EXEC Mode

Example:
SMIS# show snmp targetaddr
Target Address Name: issmanager
IP Address: 10.0.0.10
Tag List: snmp
Parameters: internet
Storage Type: volatile
Row Status: active

Related Commands
snmp targetaddr - Configures the SNMP target address
snmp targetparams - Configures the SNMP target parameters
snmp notify - Configures the SNMP notification details
17.25 show snmp targetparam

This command displays the configured SNMP Target Address Params.

show snmp targetparam

Mode
Privileged EXEC Mode

Example:
SMIS# show snmp targetparam
Target Parameter Name : internet
Message Processing Model : v2c
Security Model : v2c
Security Name : none
Security Level : No Authentication, No Privacy
Storage Type : Volatile
Row Status : Active

Target Parameter Name : test1
Message Processing Model : v2c
Security Model : v1
Security Name : none
Security Level : No Authentication, No Privacy
Storage Type : Volatile
Row Status : Active

Related Commands

snmp targetparams - Configures the SNMP target parameters

snmp user - Configures the SNMP user details
17.26 show snmp user

This command displays the configured SNMP users.

show snmp user

Mode
Privileged EXEC Mode

Example:
SMIS# show snmp user
Engine ID: 80.00.08.1c.04.46.53
User: initial
Authentication Protocol: none
Privacy Protocol: none
Storage Type: nonVolatile
Row Status: active

Engine ID: 80.00.08.1c.04.46.53
User: templateMD5
Authentication Protocol: MD5
Privacy Protocol: none
Storage Type: nonVolatile
Row Status: active

Engine ID: 80.00.08.1c.04.46.53
User: templateSHA
Authentication Protocol: SHA
Privacy Protocol: DES_CBC
Storage Type: nonVolatile
Row Status: active

Related Commands
snmp user - Configures the SNMP user details
show snmp community - Displays the configured SNMP community details

17.27 show snmpnotif

This command displays the configured SNMP Notification types.

show snmp notif

Mode
Privileged EXEC Mode

Example:
SMIS# show snmp notif
Notify Name: iss
Notify Tag: iss
Notify Type: trap
Storage Type: volatile
Row Status: active

Notify Name: iss1
Notify Tag: iss1
Notify Type: trap
Storage Type: volatile
Row Status: active

Related Commands
snmp notify - Configures the SNMP notification details
snmp targetparams - Configures the SNMP target parameters
17.28 show snmp inform statistics

This command displays the inform message statistics.

show snmp inform statistics

Mode
Privileged EXEC Mode

Example:
SMIS# show snmp inform statistics
Target Address Name : issmanager
IP Address : 10.0.0.10
Inform messages sent : 20
Acknowledgement awaited for : 2 Inform messages
Inform messages dropped : 0
Acknowledgement failed for : 0 Inform messages
Informs retransmitted: 0
Inform responses received: 18

SNMP Manager must have been configured and Inform type notifications must have been generated.
17.29 show snmp-server traps

This command displays the SNMP trap information.

show snmp-server traps

Mode
Privileged EXEC Mode

Example:
SMIS# show snmp-server traps
SNMP Trap Listen Port is 162
Currently enabled traps:

linkup, linkdown,
Login Authentication Traps DISABLED.
17.30 debug ip snmp

This command enables the display of SNMP module debug messages on the console.

The no form of this command disables the SNMP debug messages display.

d debug ip snmp

no debug ip snmp

Mode
Privileged EXEC Mode

Example:
SMIS# debug ip snmp
18 IP

IP (Internet Protocol) is an identifier for a computer or device on a TCP/IP network. Networks using the TCP/IP protocol route messages based on the IP address of the destination. The format of an IP address is a 32-bit numeric address written as four numbers separated by periods. Each number can be zero to 255. Example:: 10.5.25.180.

Every computer that communicates over the Internet is assigned an IP address that uniquely identifies the device and distinguishes it from other computers on the Internet. Within an isolated network, IP addresses can be assigned at random as long as each one is unique. However, to connect a private network to the Internet, the registered IP addresses must be used (called Internet addresses) to avoid duplicates. The four numbers in an IP address are used in different ways to identify a particular network and a host on that network.

Four regional Internet registries -- ARIN, RIPE NCC, LACNIC and APNIC -- assign Internet addresses from the following three classes.

Class A - supports 16 million hosts on each of 126 networks
Class B - supports 65,000 hosts on each of 16,000 networks
Class C - supports 254 hosts on each of 2 million networks

The number of unassigned Internet addresses is running out, so a new classless scheme called CIDR (Classless Inter-Domain Routing) is gradually replacing the system based on classes A, B, and C and is tied to adoption of IPv6.

The list of CLI commands for the configuration of IP is as follows:

ping
ip route
ip routing
ip default-ttl
arp timeout
arp – ip address
ip arp max-retries
show ip traffic
show ip route
show ip arp
18.1 show ip information

This command displays IP configuration information.

show ip information

Mode
Privileged EXEC Mode

Example:
SMIS# show ip information
Global IP Configuration:

IP routing is enabled
Default TTL is 64
IGMP is globally disabled
ICMP redirects are always sent
ICMP unreachables are always sent
ICMP echo replies are always sent
ICMP mask replies are always sent
Number of aggregate routes is 10
Number of multi-paths is 2
Load sharing is disabled
Path MTU discovery is disabled

Related Commands
ip redirects – Enables sending ICMP
ip unreachables – Enables sending ICMP unreachable message
ip mask-reply – Enables sending ICMP Mask Reply messages
ip echo-reply – Enables sending ICMP Echo Reply messages
maximum-paths – Sets the maximum number of multipaths
ip aggregate-route – Sets the maximum number of aggregate routes
ip path mtu discover – Enables path mtu discovery
traffic-share - Enables traffic sharing
18.2 ping

This command sends echo messages.

```
ping [ip] destination-address [size packet_size (0-2080)] [count packet_count (1-10)] [timeout time_out (1-100)]
```

Syntax Description
- `ip` - IP address of the node to be pinged
- `size packet_size` - Size of the data portion of the PING PDU
- `count packet_count` - Number of times the given node address is to be pinged
- `timeout` - Time in seconds after which the entity waiting for the ping response times out

Mode
User EXEC Mode

Defaults
- `size packet_size` - 500
- `count packet_count` - 3
- `timeout time_out` - 5

Example:
```
SMIS# ping 10.0.0.2
Reply Received From :10.0.0.2, TimeTaken : 20 msecs
Reply Received From :10.0.0.2, TimeTaken : 10 msecs
Reply Received From :10.0.0.2, TimeTaken : 10 msecs
--- 10.0.0.2 Ping Statistics ---
3 Packets Transmitted, 3 Packets Received, 0% Packets Loss
```
18.3 ip route

This command adds a static route and the no form of the command deletes a static route.

```
ip route <prefix> <mask> {<next-hop> | Vlan <vlan-id (1-4069)> | <interface-type> <interface-id> | null0 } [<distance (1-255)>] [private]
```

```
o ip route <prefix> <mask> { <next-hop> | Vlan <vlan-id(1-4069)> | <interface-type> <interface-id> | null0 } [private]
```

Syntax Description
- **prefix** - IP route prefix for the destination. (Destination IP address)
- **mask** - Subnet mask for the destination
- **next-hop** - IP address or IP alias of the next hop that can be used to reach that network
- **Vlan** - VLAN ID
- **interface-type** - Interface type, can either be a gi, ex or qx ethernet interfaces
- **interface-id** - Physical interface ID including slot and port number
- **null0** – Null0 routes make the switch drop all the packets matching this route entry
- **distance** - Administrative distance
- **private** – Private routes are not distributed to other routers through routing protocols

Mode
- Global Configuration Mode

Defaults
- distance - 1

Example:
```
SMIS(config)# ip route 30.0.0.2 255.255.255.255 Vlan 1
```

When the next-hop object is unknown or not relevant its value must be set to zero.
Physical Interface must be a router port.

Related Commands
- **show ip route** – Displays the IP routing table
- **no switchport** – Configures the port as a router port
18.4 ip routing

This command enables IP routing and the no form of the command disables IP routing.

ip routing

no ip routing

Mode
Global Configuration Mode

Defaults
Enabled

Example:
SMIS(config)# ip routing

A static route is appropriate when SMIS cannot dynamically build a route to the destination.

Related Commands
show ip information – Displays IP configuration information
show ip route – Displays the IP routing table
18.5
18.6 ip default-ttl
This command sets the Time-To-Live (TTL) value and the no form of the command sets the TTL to the default value.

`ip default-ttl <value (1-255)>`

`no ip default-ttl`

Mode
Global Configuration Mode

Defaults
64 seconds

Example:
SMIS(config)# ip default-ttl 1

- Time-to-live (TTL) is a value in an Internet Protocol (IP) packet that tells a network router whether or not the packet has been in the network too long and must be discarded
- The default Windows 95/98 TTL value is 32 seconds.

Related Command
`show ip information` – Displays IP configuration information
18.7 \texttt{arp timeout}

This command sets the ARP (Address Resolution Protocol) cache timeout and the no form of the command sets the ARP cache timeout to its default value.

\texttt{arp timeout \langle seconds \ (30-86400) \rangle}

\texttt{no arp timeout}

\textbf{Mode}

Global Configuration Mode

\textbf{Defaults}

7200

\textbf{Example:}

\texttt{SMIS(config)# arp timeout 35}

\textbf{Related Command}

\texttt{show ip arp} – Displays IP ARP table for the given VLAN ID/IP Address of ARP entry/MAC Address of ARP entry/IP ARP summary table/ARP configuration information
18.8 arp – ip address

This command adds a static entry in the ARP cache and the “no” form of the command deletes a static entry from the ARP cache.

```
arp <ip address> <hardware address> {Vlan <vlan-id(1-4069)} | <interface-type> <interface-id>
```

```
no arp <ip address>
```

Syntax Description

- **ip address** - IP address or IP alias to map to the specified MAC address
- **hardware address** - MAC address to map to the specified IP address or IP alias
- **vlan** - VLAN ID
- **interface-type** – Physical interface type like gi,ex which are configured as routed port using “no switchport” command.
- **interface-id** – Physical interface port number like 0/1 which are configured as routed port using “no switchport” command.

Mode

Global Configuration Mode

Example:

```
SMIS(config)# arp 10.203.120.21 00:11:22:33:44:55 Vlan 1
```

The address resolution protocol (ARP) is a protocol used by the Internet Protocol (IP), specifically IPv4, to map IP network addresses to the hardware addresses used by a data link protocol. The term address resolution refers to the process of finding an address of a computer in a network. Interface must be a router port.

Related Commands

- **show ip arp** – Displays IP ARP table for the given VLAN ID/IP Address of ARP entry/MAC Address of ARP entry/IP ARP summary table/ARP configuration information
- **no switchport** - Configures the port as a router port
18.9 ip arp max-retries

This command sets the maximum number of ARP request retries. The “no” form of the command sets the maximum number of ARP request retries to its default value.

`ip arp max-retries <value (2-10)>`

`no ip arp max-retries`

Mode
Global Configuration Mode

Defaults
3

Example:
SMIS(config)# ip arp max-retries 2
The command configures the maximum number of ARP requests that the switch will generate before deleting an un-resolved ARP entry.

Related Command
show ip arp – Displays IP ARP table for the given VLAN ID/IP Address of ARP entry/MAC Address of ARP entry/IP ARP summary table/ARP configuration information
18.10 show ip traffic

This command displays the IP protocol statistics.

```
show ip traffic
```

Mode
Privileged EXEC Mode

Example:
```
SMIS# show ip traffic
IP Statistics:
-------------
Rcvd: 0 total, 0 header error discards
0 bad ip address discards, 0 unsupported protocol discards
Frags: 0 reassembled, 30 timeouts, 0 needs reassembly
0 fragmented, 0 couldn't fragment
Bcast: Sent: 0 forwarded, 0 generated requests
Drop:
ICMP Statistics:
-------------
Rcvd: 0 total, 0 checksum errors, 0 unreachable, 0 redirects
0 time exceeded, 0 param problems, 0 quench
0 echo, 0 echo reply, 0 mask requests, 0 mask replies,
0 timestamp, 0 time stamp reply,
Sent: 0 total, 0 checksum errors, 0 unreachable, 0 redirects
0 time exceeded, 0 param problems, 0 quench
0 echo, 0 echo reply, 0 mask requests, 0 mask replies,
0 timestamp, 0 time stamp reply,
```
18.11 show ip route

This command displays the IP routing table.

```
show ip route [ { <ip-address> [mask] | bgp | connected | ospf | rip | static | summary } ]
```

Syntax Description

- **ip-address** - Destination IP Address
- **mask** - Prefix Mask for the destination
- **bgp** - Border Gateway Protocol
- **connected** - Directly Connected Network Routes
- **ospf** - Open Shortest Path First (OSPF)
- **rip** - Routing Information Protocol (RIP)
- **static** - Static Routes
- **summary** - Summary of all routes

Mode

Privileged EXEC Mode

Example:

```
SMIS# show ip route
S 20.0.0.0/8 [1] via 100.20.6.20
S 30.0.0.0/8 [4] via 120.20.6.20
S 40.0.0.0/8 is directly connected, vlan1
S 50.0.0.0/8 [1] via 100.20.6.21
C 100.0.0.0/8 is directly connected, vlan1
C 110.0.0.0/8 is directly connected, vlan2
C 120.0.0.0/8 is directly connected, vlan3

SMIS# show ip route 20.0.0.0
Codes: C - connected, S - static, R - RIP, B - BGP, O - OSPF
S 20.0.0.0/8 [1] via 100.20.6.20

SMIS# show ip route 30.0.0.0 255.0.0.0
Codes: C - connected, S - static, R - RIP, B - BGP, O - OSPF
S 30.0.0.0/8 [4] via 120.20.6.20
```
Related Commands

- `ip route` – Adds a static route
- `ip routing` – Enables IP routing
18.12 show ip arp

This command displays IP ARP table.

```
show ip arp [ { Vlan <vlan-id(1-4096)> | <ip-address> | <mac-address> |
                summary | information }]
```

Syntax Description

- **Vlan** - VLAN ID
- **ip-address** - IP Address of ARP Entry
- **mac-address** - MAC Address of ARP Entry
- **summary** - IP ARP Table summary
- **information** - ARP Configuration information

Mode

Privileged EXEC Mode

Example:

```
SMIS# show ip arp
Address Hardware Address Type Interface Mapping
------------ ---------------- ------ -------- -------
110.20.6.99 00:11:22:44:55:66 ARPA vlan1 Static
100.20.6.99 00:11:22:33:44:55 ARPA vlan2 Static
110.20.6.101 00:5e:01:00:11:55 ARPA vlan2 Static

SMIS# show ip arp vlan 1
Address Hardware Address Type Interface Mapping
------------ ---------------- ------ -------- -------
110.20.6.99 00:11:22:44:55:66 ARPA vlan1 Static

SMIS# show ip arp 00:10:b5:66:a7:0e
Address Hardware Address Type Interface Mapping
------------ ---------------- ------ -------- -------
100.20.6.20 00:10:b5:66:a7:0e ARPA vlan1 Dynamic

SMIS# show ip arp 100.20.6.99
Address Hardware Address Type Interface Mapping
------------ ---------------- ------ -------- -------
```
SMIS# show ip arp summary
3 IP ARP entries, with 0 of them incomplete

SMIS# show ip arp information
ARP Configurations:

Maximum number of ARP request retries is 10
ARP cache timeout is 7200 seconds

Related Commands
arp timeout – Sets the ARP (Address Resolution Protocol) cache timeout
arp – ip address – Adds a static entry in the ARP cache
ip arp max-retries – Sets the maximum number of ARP request retries
19 IGMP

SMIS IGMP (Internet Group Management Protocol) is a portable implementation of the Internet Group Management Protocol Version 3. It implements the IGMP router functionalities required by the Multicast Routing Protocol.

SMIS IGMP conforms with RFC 3376 for IGMP v3 router functionality. SMIS IGMP supports the MIB defined in draft-ietf-magma-rfc2933-update-00.txt. The deployment of the SMIS IGMP router can be within a routing domain that uses any Multicast Routing Protocol. SMIS IGMP informs MRPs about group membership messages and leave messages.

The list of CLI commands for the configuration of IGMP is as follows:

- `set ip igmp`
- `ip igmp immediate-leave`
- `ip igmp version`
- `ip igmp query-interval`
- `ip igmp query-max-response-time`
- `ip igmp robustness`
- `ip igmp last-member-query-interval`
- `ip igmp static-group`
- `no ip igmp`
- `debug ip igmp`
- `show ip igmp global-config`
- `show ip igmp interface`
- `show ip igmp groups`
- `show ip igmp sources`
- `show ip igmp statistics`
19.1 set ip igmp

This command enables or disables IGMP.

```
set ip igmp {enable|disable}
```

Syntax Description

enable - Enables IGMP

disable - Disables IGMP

Mode

Global Configuration Mode

Defaults

disable

Example:

```
SMIS(config)# set ip igmp enable
```

Related Commands

show ip igmp global-config - Displays the global configuration of IGMP
19.2 set ip igmp

This command enables or disables IGMP on the interface.

`set ip igmp {enable|disable}`

Syntax Description

- **enable** - Enables IGMP
- **disable** - Disables IGMP

Mode

Interface Configuration Mode

Defaults

disable

Example:

```
SMIS(config-if)# set ip igmp enable
```

Related Commands

- `show ip igmp interface` - Displays the interface configuration of IGMP
19.3 ip igmp immediate-leave

This command enables immediate leave processing on the interface and the "no" form of the command disables immediate-leave processing.

ip igmp immediate-leave

no ip igmp immediate-leave

Mode
Interface Configuration Mode

Defaults
disable

Example:
SMIS(config-if)# ip igmp immediate-leave

Related Commands
show ip igmp interface - Displays the interface configuration of IGMP
19.4 ip igmp version

This command sets the IGMP version on the interface and the “no” form of the command sets the default IGMP version on the interface.

```
ip igmp version { 1 | 2 | 3 }
```

```
no ip igmp version
```

Syntax Description

- `1 | 2 | 3` - IGMP versions

Mode

Interface Configuration Mode

Defaults

2

Example:

```
SMIS(config-if)# ip igmp version 1
```

Related Commands

- `show ip igmp interface` - Displays the interface configuration of IGMP
19.5 ip igmp query-interval

This command sets the IGMP query interval for the interface and the “no” form of the command sets the query interval to the default value.

```
ip igmp query-interval <value (1-65535) seconds>

no ip igmp query-interval
```

Mode

Interface Configuration Mode

Defaults

125

Example:

```
SMIS(config-if)# ip igmp query-interval 30
```

Related Commands

- `show ip igmp interface` - Displays the interface configuration of IGMP
19.6 ip igmp query-max-response-time

This command sets the IGMP max query response value for the interface and the "no" form of the command sets the max query response to the default value.

```
ip igmp query-max-response-time <value (1-255) seconds>
```

```
o ip igmp query-max-response-time
```

Mode
Interface Configuration Mode

Defaults
100

Example:
```
SMIS(config-if)# ip igmp query-max-response-time 20
```

Related Commands
- `show ip igmp interface` - Displays the interface configuration of IGMP
19.7 ip igmp robustness

This command sets the IGMP robustness value for the interface and the “no” form of the command sets the robustness value to default value.

```
ip igmp robustness <value(1-255)>
```

```
no ip igmp robustness
```

Mode
Interface Configuration Mode

Defaults
2

Example:
```
SMIS(config-if)# ip igmp robustness 100
```

Related Commands
- `show ip igmp interface` - Displays the interface configuration of IGMP
19.8 ip igmp last-member-query-interval

This command sets the IGMP last member query interval for the interface and the “no” form of the command sets the last member query interval to the default value.

```
ip igmp last-member-query-interval <value(1-255)>
```

```
no ip igmp last-member-query-interval
```

Mode
Interface Configuration Mode

Defaults
10

Example:
```
SMIS(config-if)# ip igmp last-member-query-interval 100
```

The **igmp version** on this interface must be set to 2.

Related Commands
- `show ip igmp interface` - Displays the interface configuration of IGMP
19.9 ip igmp static-group

This command adds the static group membership on the interface and the “no” form of the command deletes the static group membership on the interface.

```plaintext
ip igmp static-group <Group Address> [source <Source Address>]

no ip igmp static-group <Group Address> [source <Source Address>]
```

Syntax Description

- **Group Address** - Group IP address
- **source** - Source IP address

Mode

Interface Configuration Mode

Example:

```plaintext
SMIS(config-if)# ip igmp static-group 224.1.2.3 source 12.0.0.1
```

The **igmp version** on this interface must be set to 3 for configuring static group along with source information.

Related Commands

- **show ip igmp groups** - Displays the IGMP groups information
- **show ip igmp sources** - Displays the IGMP sources information
- **show ip igmp interface** - Displays the interface configuration of IGMP
19.10 no ip igmp interface

This command deletes the IGMP capable interface.

no ip igmp interface

Mode
Interface Configuration Mode

Example:
SMIS(config-if)# no ip igmp interface

Related Commands
show ip igmp interface - Displays the interface configuration of IGMP
19.11 **debug ip igmp**

This command enables the IGMP trace and the “no” form of the command disables the IGMP trace.

```
debug ip igmp { [i/o][grp][qry][tmr][mgmt] | [all] }
```

```
no debug ip igmp { [i/o][grp][qry][tmr][mgmt] | [all] }
```

Syntax Description

- **i/o** - Input/Output messages
- **grp** - Group Related messages
- **qry** - Query Related messages
- **tmr** - Timer Related messages
- **mgmt** - Management Configuration messages
- **all** - All Traces

Mode

Privileged EXEC Mode

Defaults

Debugging is disabled by default.

Example:

```
SMIS# debug ip igmp all
```
19.12 show ip igmp global-config

This command displays the global configuration of IGMP.

`show ip igmp global-config`

Mode
Privileged EXEC Mode

Example:
SMIS# show ip igmp global-config
`IGMP is globally enabled`

Related Commands
- `set ip igmp` - Enables or disables IGMP
- `ip igmp proxy-service` - Enables IGMP Proxy service in the system
19.13 show ip igmp interface

This command displays the interface configuration of IGMP.

show ip igmp interface [Vlan <vlan-id> | <iftype> <ifnum>]

Syntax Description
Vlan - VLAN ID
iftype - Interface type, can either be a gi, ex or qx ethernet interfaces
ifnum - Physical interface ID including slot and port number

Mode
Privileged EXEC Mode

Example:
SMIS# show ip igmp interface
vlan1, line protocol is up
Internet Address is 10.0.0.1/8
IGMP is enabled on interface
Current IGMP router version is 2
IGMP query interval is 125 seconds
Last member query response interval is 10 seconds
IGMP querying router is 10.0.0.1 (this system)
Fast leave is disabled on this interface
No multicast groups joined
vlan2, line protocol is up
Internet Address is 20.0.0.1/8
IGMP is enabled on interface
Current IGMP router version is 2
IGMP query interval is 125 seconds
Last member query response interval is 10 seconds
IGMP querying router is 20.0.0.1 (this system)
Fast leave is disabled on this interface
No multicast groups joined

Related Commands
set ip igmp - Enables or disables IGMP on the interface
ip igmp immediate-leave - Enables immediate leave processing on the interface

ip igmp version - Sets the IGMP version on the interface

ip igmp query-interval - Sets the IGMP query interval for the interface

ip igmp query-max-response-time - Sets the IGMP max query response value for the interface

ip igmp robustness - Sets the IGMP robustness value for the interface

ip igmp last-member-query-interval - Sets the IGMP last member query interval for the interface

no ip igmp - Deletes the IGMP capable interface
19.14 show ip igmp groups

This command displays the IGMP groups information.

show ip igmp groups

Mode
Privileged EXEC Mode

Example:
SMIS# show ip igmp groups
I - Include Mode
E - Exclude Mode

S - Static Mbr, D - Dynamic Mbr
GroupAddress Flg Iface UpTime ExpiryTime LastReporter
--------------- ------- ----------------------- --------------
224.5.5.5 S vlan2 [0d 00:00:22.28] [0d 00:00:00.00] 20.0.0.1
226.7.7.7 IS vlan3 [0d 00:00:04.59] [0d 00:00:00.00] 30.0.0.1

Related Commands
ip igmp static-group - Adds the static group membership on the interface
19.15 show ip igmp sources

This command displays the IGMP source information.

show ip igmp sources

Mode
Privileged EXEC Mode

Example:
SMIS# show ip igmp sources

I - Include Mode
E - Exclude Mode

S - Static Mbr, D - Dynamic Mbr
F - Forward List, N - Non-Forward List

GroupAddress Iface SrcAddress Flg ExpiryTime LastReporter
-------------- ------- ----------- ----- --------------- ---------------
226.7.7.7 vlan3 12.0.0.1 ISF [0d 00:00:00.00] 30.0.0.1

Related Commands
ip igmp static-group - Adds the static group membership on the interface
19.16 show ip igmp statistics

This command displays the IGMP statistics information.

Syntax Description

Vlan - VLAN ID

iftype - Interface type, can either be a gi, ex or qx ethernet interfaces

ifnum - Physical interface ID including slot and port number

Mode

Privileged EXEC Mode

Example:

SMIS# show ip igmp statistics

IGMP Statistics for vlan1
Number of General queries received 1
Number of Group Specific queries received 0
Number of Group and Source Specific queries received 0
Number of v1/v2 reports received 0
Number of v3 reports received 8
Number of v2 leaves received 0
Number of General queries transmitted 1
Number of Group Specific queries transmitted 1
Number of Group and Source Specific queries transmitted 2
Number of v1/v2 reports transmitted 0
Number of v3 reports transmitted 0
Number of v2 leaves transmitted 0
IGMP Statistics for vlan3
Number of General queries received 0
Number of Group Specific queries received 0
Number of Group and Source Specific queries received 0
Number of v1/v2 reports received 0
Number of v3 reports received 6
Number of v2 leaves received 0
Number of General queries transmitted 1
Number of Group Specific queries transmitted 0
Number of Group and Source Specific queries transmitted 0
Number of v1/v2 reports transmitted 0
Number of v3 reports transmitted 0
Number of v2 leaves transmitted 0
20 RRD

RRD (Route Redistribution) allows different routing protocols to exchange routing information. Using a routing protocol to advertise routes that are learnt by other means, such as another routing protocol, static routes, or directly connected routes, is called redistribution. While running a single routing protocol throughout an entire IP internetwork is desirable, multi-protocol routing is widespread for a number of reasons, for example, company mergers, multiple departments managed by multiple network administrators, and multi-vendor environments. If a single routing protocol cannot be used, route redistribution is the only solution. Running different routing protocols is often part of a network design. In any case, having a multiple protocol environment makes redistribution a necessity.

Each routing protocol on a network is separated into an autonomous system (AS). All routers in the same autonomous system (running the same routing protocol) have complete knowledge of the entire AS. A router that connects two (or more) autonomous systems is known as a border router. A border router advertises routing information from one AS to the other AS(s). It is only possible to redistribute routing information for like routed protocols. Different routing protocols have different, and often incompatible algorithms and metrics.

The list of CLI commands for the configuration of RRD is as follows:

- `as-num`
- `router-id`
- `export ospf`
- `redistribute-policy`
- `default redistribute-policy`
- `show ip protocols`
- `show redistribute-policy`
- `show redistribute information`
20.1 as-num

This command sets the AS (Autonomous System) number for the router.

\textbf{as-num} \texttt{<value(1-65535)>}

\textbf{Mode}
Global Configuration Mode

\textbf{Defaults}
0

\textbf{Example:}
iss (config)# as-num 5

The RRD Module must be enabled before any routing protocol module is configured.

\textbf{Related Command}
\texttt{show redistribute information} – Displays RTM RRD status for registered protocols
20.2 router-id

This command sets the router ID’s address for the router.

router-id <addr>

Mode
Global Configuration Mode

Example:
iss (config)# router-id 12.0.0.1

The router-id must be one of the IP addresses of the IP interfaces configured in the switch.

Related Command
show redistribute information – Displays RTM RRD status for registered protocols
20.3 export ospf

This command enables redistribution of OSPF (Open Shortest Path First) area / External routes to the protocol and the "no" form of the command disables redistribution of OSPF area / External routes to the protocol.

`export ospf {area-route|external-route} {rip|bgp}`

`no export ospf {area-route|external-route} {rip|bgp}`

Syntax Description

- **area-route** - OSPF inter-area and intra-area address/mask pairs to be exported into the routing protocol
- **external-route** - OSPF Type 1 and Type 2 External address/mask pairs to be exported into the routing protocol
- **rip** - Routing Information Protocol
- **bgp** - Border Gateway Protocol

Mode

Global Configuration Mode

Example:

```
iss (config)# export ospf area-route rip
```

Related Command

- `show ip protocols` – Displays information about the active routing protocol process
20.4 redistribute-policy

This command adds the permit/deny Redistribution Policy and the "no" form of the command removes the permit/deny Redistribution Policy

```
redistribute-policy {permit|deny} <DestIp> <DestRange>
{connected|static|rip|ospf|bgp} {rip|bgp|ospf|all}
```

```
no redistribute-policy <DestIp> <DestRange>
```

Syntax Description
- **permit** - Sets the default rule for all prefixes to 'permit'
- **deny** - Sets the default rule for all prefixes to 'deny'
- **DestIp** - Destination IP address
- **DestRange** - Destination range
- **connected** - Connected routes
- **static** - Static routes
- **rip** - Routing Information Protocol
- **ospf** - Open Shortest Path First
- **bgp** - Border Gateway Protocol
- **all** - All

Mode
- **Global Configuration Mode**

Defaults
- **permit all**

Example:
```
iss (config)# redistribute-policy permit 10.0.0.0 0.0.0.255
connected ospf
```
The addresses learnt within the specified range through the specified routing protocol will be redistributed to other routing protocols, if `permit` is used and will not be redistributed to other routing protocols, if `deny` is used.

Related Command

`show redistribute-policy` – Displays route redistribution filters
20.5 default redistribute-policy

This command sets the default behavior of RRD Control Table.

default redistribute-policy {permit | deny}

Syntax Description
- permit - Sets the default rule for all prefixes to 'permit'
- deny - Sets the default rule for all prefixes to 'deny'

Mode
Global Configuration Mode

Example:
iss (config)# default redistribute-policy permit

Related Command
show redistribute-policy – Displays route redistribution filters
20.6 show ip protocols

This command displays information about the active routing protocol process.

show ip protocols

Mode
Privileged EXEC Mode

Example:
SMIS# show ip protocols
Routing Protocol is rip
RIP2 security level is Maximum
Redistributing : rip
Output Delay is disabled
Retransmission timeout interval is 5 seconds
Number of retransmission retries is 36
Default metric is 3
Auto-Summarisation of routes is enabled
Routing for Networks :
10.0.0.0
30.2.0.0
Routing Information Sources :
Interface Specifi Address Summarisation :
Interface vlan1
Sending updates every 30 seconds
Invalid after 180 seconds
Flushed after 120 seconds
Send version is 1 2, receive version is 1 2
Authentication type is none
Split Horizon with poisoned reverse is enabled
Installs default route received
Originate default route
Interface vlan2
Sending updates every 30 seconds
Invalid after 180 seconds
Flushed after 120 seconds
Send version is 2, receive version is 2
Authentication type is none
Split Horizon with poissoned reverse is enabled
Restricts default route installation
Restricts default route origination
Routing Protocol is "ospf" Router ID 0.0.0.0
Number of areas in this router is 0 . 0 normal 0 stub 0 nssa
Routing for Networks:
Passive Interface(s):
Routing Information Sources:
Gateway Distance Last Update(secs)
Distance: (default is 121)
Routing Protocol is "bgp 0"
Outgoing update filter list for all interfaces is not set
Incoming update filter list for all interfaces is not set
IGP synchronization is disabled
Neighbor(s):
Address
Routing Information sources:
Gateway Last Update

The information displayed by this command is useful in debugging routing operations.

Related Command
export ospf – Enables redistribution of Ospf area/External routes to protocol
20.7 show redistribute-policy

This command displays route redistribution filters.

show redistribute-policy

Mode
Privileged EXEC Mode

Example:
SMIS# show redistribute-policy

<table>
<thead>
<tr>
<th>Destination Range</th>
<th>SrcProto</th>
<th>DestProto</th>
<th>Flag</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0.0.0 255.255.255.255</td>
<td>none</td>
<td>others</td>
<td>Deny</td>
</tr>
<tr>
<td>10.0.0.0 255.0.0.0</td>
<td>rip</td>
<td>all</td>
<td>Allow</td>
</tr>
</tbody>
</table>

Related Commands
redistribute-policy – Adds the permit/Deny Redistribution Policy
default redistribute-policy – Sets the default behavior of RRD Control Table
20.8 show redistribute information

This command displays RTM (Route Table Manager) RRD status for registered protocols.

show redistribute information

Mode
Privileged EXEC Mode

Example:
SMIS# show redistribute information
Router ID is 0.0.0.0
AS Number is 0
Current State is disabled
ProtoName OspfAreaRoutes OspfExtRoutes
--------- ----------------- ------------
other Disable Disable
local Disable Disable
static Disable Disable
rip Disable Disable
bgp Disable Disable

Related Commands
as-num – Sets the AS (Autonomous System) number for the router
router-id – Sets the router-id for the router
21 DVMRP

DVMRP (Distance Vector Multicast Routing Protocol) is an Internet Routing Protocol that provides an efficient mechanism for connectionless message multicasting to a group of hosts across an internetwork.

Distance Vector Multicast Routing Protocol is an interior gateway protocol (IGP) suitable for use within an autonomous system, but not between different autonomous systems.

DVMRP is based on RIP. DVMRP combines many of the features of RIP with the Truncated Reverse Path Broadcasting (TRPB) algorithm. To allow experiments to traverse networks that do not support multicasting a mechanism called tunneling was developed. DVMRP tunnels multicast transmission within unicast packets that are reassembled into multicast data when they arrive at their destination.

A key difference between DVMRP and RIP is that RIP routes and forwards datagrams to a particular destination. The purpose of DVMRP is to keep track of the return paths to the source of the multicast datagrams.

The list of CLI commands for the configuration of DVMRP is as follows:

- `set ip dvmrp`
- `ip dvmrp prune-life-time`
- `set ip dvmrp - interface`
- `debug ip dvmrp`
- `show ip dvmrp`
21.1 set ip dvmrp

This command enables / disables DVMRP in the switch.

```
set ip dvmrp { enable | disable }
```

Syntax Description

`enable` - Enables DVMRP in the switch
`disable` - Disables DVMRP in the switch

Mode

Global Configuration Mode

Defaults

disable

Example:

```
SMIS(config)# set ip dvmrp enable
```

If DVMRP is disabled on an interface, the DVMRP parameters return to their default values.

Related Commands

`set ip dvmrp - interface` – Enables/disables DVMRP on the interface
`show ip dvmrp` – Displays the DVMRP details
21.2 ip dvmrp prune-life-time

This command sets the prune life time value. The “no” form of the command sets the prune life time to the default value (50 seconds).

`ip dvmrp prune-life-time <time(1-7200secs)>`

`no ip dvmrp prune-life-time`

Mode
Global Configuration Mode

Defaults
time - 50 seconds

Example:
SMIS(config)# ip dvmrp prune-life-time 100

DVMRP must be enabled globally prior to the execution of this command.

Related Commands
- `set ip dvmrp` – Enables / disables DVMRP in the switch
- `show ip dvmrp` – Displays the DVMRP details
21.3 set ip dvmrp - interface

This command enables/disables DVMRP on the interface.

```bash
set ip dvmrp { enable | disable }
```

Syntax Description

- **enable** - Enables DVMRP on the interface
- **disable** - Disables DVMRP on the interface

Mode

Interface Configuration Mode

Defaults

disable

Example:

```
SMIS(config-if)# set ip dvmrp enable
```

DVMRP must be enabled globally prior to the execution of this command.

Related Commands

- **set ip dvmrp** – Enables / disables DVMRP in the switch
- **show ip dvmrp** – Displays the DVMRP details
21.4 debug ip dvmrp

This command enables debugging support for DVMRP. The "no" form of the command disables debugging support for DVMRP.

```
debg ip dvmrp [[neighbor][group][join-prune][i/o][mrt][mdh][mgmt] | all }
```

```
no debug ip dvmrp { [neighbor][group][join-prune][i/o][mrt][mdh][mgmt]
| all}
```

Syntax Description
- **neighbor** - Neighbor Discovery messages
- **group** - Group Membership messages
- **join-prune** - Join or Prune messages
- **i/o** - Input/Output messages
- **mrt** - Multicast Route table update messages
- **mdh** - Multicast Data Handling messages
- **mgmt** - Management Configuration messages
- **all** - All traces

Mode
Privileged EXEC Mode

Defaults
Debugging is disabled by default.

Example:
```
SMIS# debug ip dvmrp all
```

DVMRP must be enabled in the device prior to the execution of this command.

Related Commands
- `set ip dvmrp` – Enables / disables DVMRP in the switch
- `set ip dvmrp - interface` – Enables DVMRP in the interface
- `show ip dvmrp` – Displays the DVMRP details
21.5 show ip dvmrp

This command displays the DVMRP details.

```
show ip dvmrp { routes [ vlan <vlan-id(1-4069)> ] | mroutes | nexthop | neighbor | info | prune }
```

Syntax Description
- **routes** - Unicast Routes for VLAN ID
- **mroutes** - Multicast Routes
- **nexthop** - Nexthop Routes
- **neighbor** - DVMRP neighbors
- **info** - Information
- **prune** - Prune

Mode
Privileged EXEC Mode

Example:
```
SMIS# show ip dvmrp routes
Dvmrp Routing Table
-------------------
2.0.0.0/8[2] uptime [0d 20:49:41.00], expires [0d 00:01:50.00]
Status: Active
via 10.0.0.2, vlan1
10.0.0.0/8[1] uptime [0d 22:20:00.00], expires [0d 00:02:00.00]
Status: Local/NeverExpire
via 10.0.0.1, vlan1

SMIS# show ip dvmrp mroutes
Dvmrp Forward Information
--------------------------
(2.0.0.0, 227.1.1.1)
Reverse Path Forwarding Neighbor/Interface : 10.0.0.2/(vlan1)
Interface State of Upstream neighbor : PRUNED Expiry Time : 6000
```
SMIS# show ip dvmrp nexthop
Dvmrp NextHop Information

SrcAddress/Mask : 2.0.0.0/255.0.0.0
NextHopIndex : 160 (vlan1), IfType : Branch, DF: True
Dependent Nbrs :10.0.0.1

SMIS# show ip dvmrp neighbor
Neighbour Information

Neighbor Interface Up Exp GenId Adjacency
Address Time Time
--------- ------- --------- ------- -------
10.0.0.2 vlan1 [0d 22:31:48.00] 3400 133 ESTABLISHED

SMIS# show ip dvmrp info
DVMRP is enabled in the switch
Dvmrp Version:0x3 (major) 0xff (minor)
GenerationId: 0, Total Routes: 0, Reachable Routes: 0
Prune Life Time: 50
Interface Information

IffaceName/Id Address Metric AdminStatus
--------- ----- --------- ------ ---------
vlan1/160 10.0.0.1 1 DVMRP_ENABLED

SMIS# show ip dvmrp prune
Prune List :
NbrAddress/PruneTime : 20.0.0.20/28
NbrAddress/PruneTime : 20.0.0.10/38

Related Commands
set ip dvmrp – Enables / disables DVMRP in the switch
ip dvmrp prune-life-time – Sets the prune life time value
set ip dvmrp - interface – Enables DVMRP in the interface
debug ip dvmrp – Enables debugging support for DVMRP
PIM (Protocol Independent Multicast) is a multicast routing architecture that allows the addition of IP multicast routing on existing IP networks. Multicast IP Routing protocols are used to distribute data to multiple recipients. Using multicast, a source can send a single copy of data to a single multicast address, which is then distributed to an entire group of recipients. A multicast group identifies a set of recipients that are interested in a particular data stream, and is represented by an IP address from a well-defined range. Data sent to this IP address is forwarded to all members of the multicast group.

PIM is unicast routing protocol independent and can be operated in two modes: dense and sparse. It is designed to provide scalable inter-domain multicast routing across the Internet. PIM provides multicast routing and forwarding capability to the switch. It maintains the integrity of the hardware based multicast forwarding table with respect to the forwarding table existing in the software. It is independent of the underlying unicast routing protocol and uses the information from the Unicast Routing protocol.

The list of CLI commands for the configuration of PIM is as follows:

- `set ip pim`
- `set ip pim threshold`
- `set ip pim spt-switchperiod`
- `set ip pim rp-threshold`
- `set ip pim rp-switchperiod`
- `set ip pim regstop-ratelimit-period`
- `set ip pim pmbr`
- `ip pim component`
- `set ip pim static-rp`
- `set mode`
- `rp-candidate rp-address`
- `rp-candidate holdtime`
- `rp-static rp-address`
- `ip pim query-interval`
ip pim message-interval
ip pim bsr-candidate
ip pim componentId
ip pim hello-holdtime
ip pim dr-priority
ip pim override-interval
ip pim lan-delay
set ip pim lan-prune-delay
no ip pim interface
debug ip pim
show ip pim interface
show ip pim neighbor
show ip pim rp-candidate
show ip pim rp-set
show ip pim bsr
show ip pim rp-static
show ip pim component
show ip pim thresholds
show ip pim mroute
22.1 set ip pim

This command enables or disables PIM globally.

```plaintext
set ip pim { enable | disable }
```

Syntax Description
- **enable** - Enables PIM
- **disable** - Disables PIM

Mode
Global Configuration Mode

Defaults
disable

Example:
```plaintext
iss (config)# set ip pim enable
```

► When PIM is enabled globally mode will be sparse.

Related Command
- **show ip pim interface** – Displays the routers PIM interfaces
22.2 set ip pim threshold

This command specifies the SPT group or source threshold when exceeded, switching to shortest path tree is initiated. To switch to SPT, the threshold MUST be configured.

```bash
set ip pim threshold { spt-grp | spt-src } < number of packets(0-2147483647)>
```

Syntax Description

- **spt-grp** - The threshold of data rate for any group when exceeded, source specific counters are initiated for that particular group. It is based on number of bits per second.
- **spt-src** - The switching to Shortest Path Tree is initiated, when the threshold of data rate for any source is exceeded. It is based on number of bits per second.
- **number of packets** - Number of packets

Mode

Global Configuration Mode

Defaults

0

Example:

```bash
iss (config)# set ip pim threshold spt-grp 50
```

Related Command

- **show ip pim thresholds** – Displays threshold configured for SPT, RP thresholds, rate limit values for both SM
22.3 set ip pim spt-switchperiod

This command specifies the period (in seconds) over which the data rate is to be monitored for switching to shortest path tree.

```
set ip pim spt-switchperiod <0-2147483647(in secs)>
```

Mode
Global Configuration Mode

Defaults
0

Example:
iss (config)# set ip pim spt-switchperiod 60

- The same period is used for monitoring the data rate for both source and group. To switch to SPT, this period must be configured.
- The SPT (Shortest Path Tree) is used for multicast transmission of packets with the shortest path from sender to recipients

Related Command
show ip pim thresholds – Displays threshold configured for SPT, RP thresholds, rate limit values for both SM and DM
22.4 set ip pim rp-threshold

This command specifies the threshold at which the RP (Rendezvous Point) initiates switching to source specific shortest path tree.

`set ip pim rp-threshold <0-2147483647 (number of reg packets)>`

Mode
Global Configuration Mode

Defaults
0

Example:
`iss (config)# set ip pim rp-threshold 50`

To switch to SPT, this threshold must be configured and this switching is based on the number of registered packets received.

Related Command
`show ip pim thresholds` – Displays threshold configured for SPT, RP thresholds, rate limit values for both SM and DM
22.5 set ip pim rp-switchperiod

This command specifies the period (in seconds) over which RP monitors register packets for switching to the source specific shortest path tree.

```
set ip pim rp-switchperiod <0-2147483647(in secs)>
```

Mode
Global Configuration Mode

Defaults
0

Example:
```
is (config)# set ip pim rp-switchperiod 100
```

- To switch to SPT, this period must be configured RP-tree is a pattern that multicast packets are sent to a PIM-SM router by unicast and then forwarded to actual recipients from RP

Related Command
```
show ip pim thresholds – Displays threshold configured for SPT, RP thresholds, rate limit values for both SM
```
22.6 set ip pim regstop-ratelimit-period

This command specifies the period over which RP monitors the number of register packets after sending the register stop message.

```
set ip pim regstop-ratelimit-period <0-2147483647(in secs)>
```

Mode
Global Configuration Mode

Defaults
5

Example:
```
iss (config)# set ip pim regstop-ratelimit-period 100
```

- Register stop message is used to avoid encapsulation of multicast data packets from the first hop router to the RP.

Related Command
```
show ip pim thresholds  -- Displays threshold configured for SPT, RP thresholds, rate limit values for both SM
```
22.7 set ip pim pmbr

This command enables or disables the PMBR (PIM Multicast Border Router) Status.

```
set ip pim pmbr { enable | disable }
```

Syntax Description
enable - Enables the PMBR Status
disable - Disables the PMBR Status

Mode
Global Configuration Mode

Defaults
disable

Example:
iss (config)# set ip pim pmbr enable

- A PMBR integrates two different PIM domains (either PIM -SM or PIM -DM).
- A PMBR connects a PIM domain to other multicast routing domain(s).

Related Command
show ip pim thresholds – Displays threshold configured for SPT, RP thresholds, rate limit values for both SM
22.8 ip pim component

This command configures the PIM component in the router and the no form of the command destroys the PIM component.

`ip pim component <ComponentId (1-255)>`

`no ip pim component <ComponentId (2-255)>`

Mode

Global Configuration Mode

Example:

```bash
iss (config)# ip pim component 1
```

- The PIM Component 1 cannot be deleted as it is the default component.
- The PIM Component corresponds to each instance of a PIM domain and classifies it as Sparse or Dense mode

Related Command

`show ip pim component` - Displays the component information
22.9 set ip pim static-rp

This command enables or disables the Static RP configuration Status. This command specifies whether to use the configured static- RP.

```
set ip pim static-rp { enable | disable }
```

Syntax Description

- **enable** - Enables the Static RP configuration Status
- **disable** - Disables the Static RP configuration Status

Mode

Global Configuration Mode

Defaults

disable

Example:

```
iss (config)# set ip pim static-rp enable
```

Related Commands

- `show ip pim rp-set` – Displays the RP-set information
- `show ip pim rp-static` – Displays the RP-static information
22.10 set mode

This command sets the component mode to sparse or dense.

```
set mode {sparse | dense}
```

Syntax Description
- **sparse** - Sparse mode
- **dense** - Dense mode

Mode
PIM Component Mode

Defaults
sparse

Example:
```
SMIS(pim-comp)# set mode dense
```

- Sparse-mode routing protocols use shared trees. In a shared tree, sources forward multicast datagrams to a directly connected router, the designated router. The designated router encapsulates the datagram and unicasts it to an assigned RP router, which then forwards the datagram to members of multicast groups.

- Dense mode protocols are data driven, where multicast sources starts sending multicast data packets and receivers join if they want data packets or prune themselves

Related Command
```
show ip pim component  – Displays the component information
```
22.11 rp-candidate rp-address

This command sets the address of the interface, which will be advertised as a Candidate-RP and the “no” form of the command disables the address of the interface, which will be advertised as a Candidate-RP.

```
rp-candidate rp-address <Group Address> <Group Mask> <IP address>

no rp-candidate rp-address <Group Address> <Group Mask> <IP address>
```

Syntax Description

Group Address - The IP multicast group address for which this entry contains multicast routing information

Group Mask - The IP multicast group address mask that, gives the group prefix for which this entry contains information about the RP

IP address - IP address

Mode

PIM Component Mode

Example:

```
SMIS(pim-comp)# rp-candidate rp-address 224.1.0.0 255.255.0.0 20.0.0.2
```

- A Candidate-RP is a router configured to send periodic Candidate-RP-Advertisement messages to the BSR, and processes Join/Prune or Register messages for the advertised group prefix, when it is elected as a RP.

Related Commands

- `show ip pim rp-set` – Displays the RP-set information
- `show ip pim rp-candidate` – Displays the RP-candidate information
22.12 rp-candidate holdtime

This command sets the holdtime of the component when it is a candidate RP in the local domain and the “no” form of the command sets the default holdtime (0) of the component.

`rp-candidate holdtime <Holdtime value (0-255)>`

no `rp-candidate holdtime`

Mode
PIM Component Mode

Defaults
0

Example:
SMIS(pim-comp)# rp-candidate holdtime 25

➤ If its value is set to 0, it indicates that the local system is not a candidate RP. Holdtime is the amount of time the candidate RP advertisement is valid. This field allows advertisements to be aged out.

Related Command
`show ip pim rp-candidate` – Displays the RP-candidate information
22.13 rp-static rp-address

This command sets the address of the interface, which will be advertised as a Static-RP and the
“no” form of the command disables the address of the interface, which will be advertised as a
Static-RP.

rp-static rp-address <Group Address> <Group Mask> <IP address>

no rp-static rp-address <Group Address> <Group Mask>

Syntax Description
Group Address - Indicates the PIM Sparse multicast group address using the listed RP.
Group Mask - The IP multicast group address mask that gives the group prefix for which this
entry contains information about the RP
IP address - IP address

Example:
SMIS(pim-comp)# rp-static rp-address 224.1.0.0 255.255.0.0 20.0.0.2

Static configuration allows additional structuring of the multicast traffic by directing the
multicast join/prune messages to statically configured RPs.

Related Commands
show ip pim rp-static – Displays the RP-static information
22.14 ip pim query-interval

This command sets the frequency at which PIM hello messages are transmitted on this interface and the “no” form of the command sets the default hello timer interval for this interface.

`ip pim query-interval <Interval (0-65535) secs>`

`no ip pim query-interval`

Mode

Interface Configuration Mode

Defaults

30

Example:

`iss (config-if)# ip pim query-interval 60`

- The query message informs the presence of a PIM router on the interface to the neighboring PIM routers.

Related Command

show ip pim interface – Displays the routers PIM interfaces
22.15 ip pim message-interval

This command sets the frequency at which PIM Join/Prune messages are transmitted on this PIM interface and the “no” form of the command sets the default value for PIM Join/Prune message.

ip pim message-interval <Interval(0-65535)>

no ip pim message-interval

Mode
Interface Configuration Mode

Defaults
60

Example:
iss (config-if)# ip pim message-interval 120

- The same Join/Prune message interval must be used on all the PIM routers in the PIM domain. If all the routers do not use the same timer interval, the performance of PIM Sparse can be adversely affected.

Related Command
show ip pim interface – Displays the routers PIM interfaces
22.16 ip pim bsr-candidate

This command sets the preference value for the local interface as a candidate bootstrap router and the “no” form of the command sets the default preference value for the local interface as a candidate bootstrap router.

```
ip pim bsr-candidate <value (0-255)>
```

```
no ip pim bsr-candidate
```

Mode

Interface Configuration Mode

Defaults

0

Example:

```
iss (config-if)# ip pim bsr-candidate 1
```

▶ A BSR is a dynamically elected router within a PIM domain.

Related Command

```
show ip pim bsr – Displays the BSR information
```
22.17 ip pim componentId

This command adds the interface to the component.

```
ip pim componentId <value(1-255)>
```

Mode

Interface Configuration Mode

Defaults

1

Example:

```
iss (config-if)# ip pim componentId 1
```

- This command adds the current VLAN into the specified PIM component.

Related Commands

- `ip pim component` — Configures the PIM component in the router
- `show ip pim component` — Displays the component information
22.18 ip pim hello-holdtime

This command sets the holdtime for the hello message for that interface. The “no” form of the command sets the default holdtime (105) for the hello message for that interface.

```
ip pim hello-holdtime <holdtime(1-65535)>

no ip pim hello-holdtime
```

Mode

Interface Configuration Mode

Defaults

105

Example:

```
is (config-if)# ip pim hello-holdtime 180
```

- Holdtime is the amount of time a receiver must keep the neighbor reachable, in seconds.

Related Commands

- `show ip pim neighbor` – Displays the routers PIM neighbors information
- `show ip pim interface` – Displays the routers PIM interfaces
22.19 ip pim dr-priority

This command sets the designated router priority value configured for the router interface and the “no” form of the command sets the default designated router priority value (0) for the router interface.

```
ip pim dr-priority <priority(1-65535)>
```

```
no ip pim dr-priority
```

Mode

Interface Configuration Mode

Defaults

1

Example:

```
iss (config-if)# ip pim dr-priority 100
```

- The DR sets up multicast route entries and sends corresponding Join/Prune and Register messages on behalf of directly-connected receivers and sources, respectively.

Related Command

`show ip pim interface` – Displays the routers PIM interfaces
22.20 ip pim override-interval

This command sets the override interval configured for router interface and the “no” form of the command sets the default override interval (0) for router interface.

```
ip pim override-interval <interval(0-65535)>
```

```
no ip pim override-interval
```

Mode

Interface Configuration Mode

Defaults

0

Example:

```
iss (config-if)# ip pim override-interval 100
```

Override interval is the random amount of time delayed for sending override messages to avoid synchronization of override messages when multiple downstream routers share a multi-access link.

Related Command

`show ip pim interface` – Displays the routers PIM interfaces
22.21 ip pim lan-delay

This command sets the LanDelay configured for the router interface and the “no” form of the command sets the default LanDelay (0) for the router per interface.

`ip pim lan-delay <value(0-65535)>`

`no ip pim lan-delay`

Mode
Interface Configuration Mode

Defaults
0

Example:
iss (config-if)# ip pim lan-delay 120

The LAN Delay inserted by a router in the LAN Prune Delay option expresses the expected message propagation delay on the interface. It is used by upstream routers to find out the delayed time interval for a Join override message before pruning an interface.

Related Command
`show ip pim interface` – Displays the routers PIM interfaces
22.22 set ip pim lan-prune-delay

This command sets the LanPruneDelay bit configured for the router interface to advertise the Lan delay.

set ip pim lan-prune-delay { enable | disable }

Syntax Description

enable - Enables LAN-prune-delay

disable - Disables LAN-prune-delay

Mode
Interface Configuration Mode

Defaults
disable

Example:
iss (config-if)# ip pim lan-prune-delay enable

The command specifies whether to use LAN prune delay or not.

Related Command

show ip pim interface – Displays the routers PIM interfaces
22.23 **no ip pim interface**

This command deletes an interface at PIM level.

no ip pim interface

Mode

Interface Configuration Mode

Example:

iss (config-if)# no ip pim interface

This command is used to destroy the interface at PIM.

Related Command

show ip pim interface — Displays the routers PIM interfaces
22.24 debug ip pim

This command enables PIM trace and the “no” form of the command disables PIM trace.

```
debug ip pim {[nbr][grp][jp][ast][bsr][io][pmbr][mrt][mdh][mgmt] | [all]}
```

```
no debug ip pim {[nbr][grp][jp][ast][bsr][io][pmbr][mrt][mdh][mgmt] | [all]}
```

Syntax Description
- **nbr** - Neighbor Discovery traces
- **grp** - Group Membership traces
- **jp** - Join or Prune traces
- **ast** - Assert state traces
- **bsr** - Bootstrap/RP traces
- **io** - Input Output traces
- **pmbr** - Interoperability traces
- **mrt** - Multicast Route Table Update traces
- **mdh** - Multicast Data Handling traces
- **mgmt** - Configuration traces
- **all** - All traces

Mode
Privileged EXEC Mode

Example:
```
SMIS# debug ip pim all
```

A Four byte integer value is specified for enabling the level of debugging. Each bit in the four byte integer variable represents a level of debugging. The combinations of levels are also allowed. The user has to enter the corresponding integer value for the bit set.

Related Command
- **show ip pim interface**– Displays the routers PIM interfaces
22.25 show ip pim interface

This command displays the routers PIM interfaces.

```
show ip pim interface [{ Vlan <vlan-id> | <iftype> <ifnum> | detail }]
```

Syntax Description

- `Vlan` - VLAN ID
- `detail` - Detailed information of the interface
- `iftype` - Interface type, can either be a gi, ex or qx ethernet interfaces
- `ifnum` - Physical interface ID including slot and port number

Mode

Privileged EXEC Mode

Example:

```
SMIS# show ip pim interface
Address IfName/IfId Ver/Mode
Nbr Qry DR-Address DR-Pr

Count Interval
10.0.0.1 vlan1/160 2/Sparse 0 45 10.0.0.1 5
20.0.0.1 vlan2/33 2/Sparse 0 30 20.0.0.1 1
30.0.0.1 vlan3/34 2/Sparse 0 60 30.0.0.1 1

SMIS# show ip pim interface vlan 1
Address IfName/IfId Ver/Mode
Nbr Qry DR-Address DR-Pr

Count Interval
10.0.0.1 vlan1/160 2/Sparse 0 45 10.0.0.1 5

SMIS# show ip pim interface detail
vlan1 160 is up
Internet Address is 10.0.0.1
Multicast Switching : Enabled
PIM: enabled
```
PIM version: 2, mode Sparse

PIM DR: 10.0.0.1
PIM DR Priority: 5
PIM Neighbour Count: 0
PIM Hello/Query Interval: 45
PIM Message Interval: 67
PIM Override Interval: 56
PIM Lan Delay: 66
PIM Lan-Prune-Delay: Disabled
PIM Component Id: 1
PIM domain border: disabled

It shows the list of Interface addresses, the mode of the interface, Designated Router on that interface, Hello Interval, Join/Prune Interval of the interface.

Related Commands
set ip pim – Enables or disables PIM
ip pim query-interval – Sets the frequency at which PIM hello messages are transmitted on this interface
ip pim message-interval – Sets the frequency at which PIM Join/Prune messages are transmitted on this PIM interface
ip pim bsr-candidate – Sets the preference value for the local interface as a candidate bootstrap router
ip pim hello-holdtime – Sets the holdtime for the hello message for that interface
ip pim dr-priority – Sets the designated router priority value configured for the router interface
ip pim override-interval – Sets the override interval configured for router interface
ip pim lan-delay – Sets the LanDelay configured for the router interface
set ip pim lan-prune-delay – Sets the LanPruneDelay bit configured for the router interface to advertise the lan delay
no ip pim interface – Deletes an interface at PIM level
debug ip pim – Enables PIM trace
22.26 show ip pim neighbor

This command displays the router's PIM neighbors' information.

```
show ip pim neighbor [ Vlan <vlan-id> | <iftype> <ifnum>]
```

Syntax Description

- **Vlan** - VLAN ID
- **iftype** - Interface type, can either be a gi, ex or qx ethernet interfaces
- **ifnum** - Physical interface ID including slot and port number

Mode

Privileged EXEC Mode

Example:

```
SMIS# show ip pim neighbor vlan 1
Nbr IfName/Idx Uptime/Expiry Ver DRPri/Mode CompId Override Lan
Address Interval Delay
------------------------------- ------ ------ ----- ------ -----
10.0.0.1 vlan1/160 00:03:41/92 v2 32/S 20 0 0
10.0.0.2 vlan1/160 00:04:13/97 v2 32/S 20 0 0
```

It shows the Neighbor Address, the interface used to reach the PIM Neighbor, the Up time (the time since this neighbor became the neighbor of the local router), Expiry Time (the min. time remaining before this PIM neighbor will be aged out), LAN delay and Override interval.

Related Commands

- **ip pim query-interval** – Sets the frequency at which PIM hello messages are transmitted on this interface
- **ip pim message-interval** – Sets the frequency at which PIM Join/Prune messages are transmitted on this PIM interface
- **ip pim bsr-candidate** – Sets the preference value for the local interface as a candidate bootstrap router
- **ip pim hello-holdtime** – Sets the holdtime for the hello message for that interface
22.27 **show ip pim rp-candidate**

This command displays the candidate RP information.

```
show ip pim rp-candidate [ComponentId <1-255>]
```

Syntax Description

- **ComponentId** - Component ID

Mode

Privileged EXEC Mode

Example:

```
SMIS# show ip pim rp-candidate 2
CompId GroupAddress Group Mask RPAddress/Priority
2  224.1.0.0  255.255.0.0  20.0.0.1/192
```

It shows the Group addresses, the Group Mask and the RP address that indicates the IP address of the Rendezvous Point (RP) for the listed PIM Sparse group.

Related Commands

- **rp-candidate rp-address** – Enables the address of the interface, which will be advertised as a Candidate-RP
- **rp-candidate holdtime** – Sets the holdtime of the component when it is a candidate RP in the local domain
- **rp-static rp-address** – Sets the address of the interface, which will be advertised as a Static-RP
22.28 show ip pim rp-set

This command displays the RP-set information.

```
show ip pim rp-set [rp-address]
```

Syntax Description

- `rp-address` - Indicates the IP address of the Rendezvous Point (RP) for the listed PIM Sparse group.

Mode

Privileged EXEC Mode

Example:

```
SMIS# show ip pim rp-set
PIM Group-to-RP mappings
-----------------------------
Group Address: 224.1.0.0 Group Mask: 255.255.0.0
RP: 20.0.0.1
Component-Id: 2
Hold Time: 120, Expiry Time: 00:01:43
```

It shows details of the Group Prefix, RP address, Hold time and Expiry Time.

Related Commands

- `rp-candidate rp-address` – Enables the address of the interface, which will be advertised as a Candidate-RP
- `set ip pim static-rp` – Enables or disables the Static RP configuration Status
22.29 show ip pim bsr

This command displays the BSR information.

show ip pim bsr [Component-Id (1-255)]

Syntax Description

Component-Id - Component ID

Mode
Privileged EXEC Mode

Example:

SMIS# show ip pim bsr 1
PIMv2 Bootstrap Configuration For Component 1

This system is the Bootstrap Router (BSR)
BSR Address: 10.0.0.1
BSR Priority: 6, Hash Mask Length: 30

Related Command

ip pim bsr-candidate – Sets the preference value for the local interface as a candidate bootstrap router
22.30 show ip pim rp-static

This command displays the static RP information.

show ip pim rp-static [ComponentId <1-255>]

Syntax Description
ComponentId - Component ID

Mode
Privileged EXEC Mode

Example:
SMIS# show ip pim rp-static 2
Static-RP Enabled
CompId GroupAddress Group Mask RFAAddress
 2 225.1.0.0 255.255.0.0 20.0.0.1

Related Command
set ip pim static-rp – Enables or disables the Static RP configuration Status
22.31 show ip pim component

This command displays the component information.

show ip pim component [ComponentId <1-255>]

Syntax Description
ComponentId - Component ID

Mode
Privileged EXEC Mode

Example:
SMIS# show ip pim component 1
PIM Component Information

Component-Id: 1

PIM Mode
 sparse, PIM Version: 2

Elected BSR: 10.0.0.1
Candidate RP Holdtime: 0

Related Commands
ip pim component – Configures the PIM component in the router
ip pim componentId – Adds the interface to the component
22.32 show ip pim thresholds

This command displays threshold configured for SPT, RP thresholds, and rate limit values for both SM (Sparse mode)

show ip pim thresholds

Mode
Privileged EXEC Mode

Example:
SMIS# show ip pim thresholds
PIM SPT Threshold Information
Group Threshold: 0
Source Threshold: 0
Switching Period: 0
PIM SPT-RP Threshold Information
Register Threshold: 0
RP Switching Period: 0
Register Stop rate limit: 5

Related Commands
set ip pim threshold – Specifies the SPT group or source threshold when exceeded, switching to shortest path tree is initiated
set ip pim spt-switchperiod – Specifies the period (in seconds) over which the data rate is to be monitored for switching to shortest path tree
set ip pim rp-threshold – Specifies the threshold at which the RP initiates switching to source specific shortest path tree
set ip pim rp-switchperiod – Specifies the period (in seconds) over which RP monitors register packets for switching to the source specific shortest path tree
set ip pim regstop-ratelimit-period – Specifies the period over which RP monitors number of register packets after sending the register stop message
set ip pim pmbr – Enables or disables the PMBR (PIM Multicast Border Router) Status
ip pim dr-priority – Sets the designated router priority value configured for the router interface
22.33 show ip pim mroute

This command displays the PIM multicast information.

```
show ip pim mroute [ {compid(1-255) | group-address | source-address } summary]
```

Syntax Description

- **compid** - Component ID
- **group-address** - Indicates the PIM multicast group address using the listed RP
- **source-address** - The network address which identifies the sources for which this entry contains multicast routing information
- **summary** - Summary of PIM mrout information

Mode
Privileged EXEC Mode

Example:

```
SMIS# show ip pim mroute
IP Multicast Routing Table
--------------------------
Route Flags S: SPT Bit W: Wild Card Bit R: RPT Bit
Timers: Uptime/Expires

Interface State: Interface, State/Mode
PIM Multicast Routing Table for Component 1

(*, 224.1.0.0), 00:04:35/--- , RP:12.0.0.1
Incoming Interface: vlan1, RPF nbr: NULL, Route Flags: WR
Outgoing InterfaceList:
  vlan2, Forwarding/Sparse, 00:04:35/---
(12.0.0.30,224.1.0.0), 00:00:04/00:03:26
Incoming Interface : vlan1, RPF nbr : NULL, Route Flags : S
Outgoing InterfaceList
  vlan2, Forwarding/Sparse, 00:00:04/--

SMIS# show ip pim mroute 1 summary
```

Release : 1.1i
IP Multicast Routing Table

Route Flags S: SPT Bit W: Wild Card Bit R: RPT Bit
Timers : Uptime/Expires
Interface State : Interface, State/Mode
PIM Multicast Routing Table For Component 1

(*, 224,1,0.0) , 00:04:35/--- , RP : 12.0.0.1
Incoming Interface : vlan1, RPF nbr : NULL, Route Flags : WR
Outgoing InterfaceList:
 vlan2, Forwarding/Sparse, 00:04:35/---
(12.0.0.30,224.1.0.0) , 00:00:04/00:03:26
Incoming Interface : vlan1, RPF nbr : NULL, Route Flags : S
Outgoing InterfaceList:
 vlan2, Forwarding/Sparse , 00:00:04/---

It shows details of the (S,G),(*,G) and (*,*,RP) entries.

Related Command

ip pim bsr-candidate – Sets the preference value for the local interface as a candidate bootstrap router
23 PIMv6

PIMv6 is a portable software implementation of the PIM (Sparse Mode and Dense Mode) specification, for IPv6 networks. PIMv6 provides support for inter-domain routing between domains using PIMv6-SM or PIMv6-DM. It also avoids the performance problems of earlier multicast routing protocols.

This software provides multicast routing and forwarding capability to a router that runs the IPv6 protocol along with MLD (Multicast Listener Discovery). PIMv6 routes multicast data packets independent of any unicast routing protocol.

The list of CLI commands for the configuration of PIMv6 is as follows:

```
set ipv6 pim
set ip pim threshold
set ip pim spt-switchperiod
set ip pim rp-threshold
set ip pim rp-switchperiod
set ip pim regstop-ratelimit-period
set ip pim pmbr
set ip pim static-rp
ip pim component
ipv6 pim rp-candidate rp-address
ipv6 pim rp-static rp-address
ipv6 pim query-interval
ipv6 pim message-interval
ipv6 pim bsr-candidate
ipv6 pim componentId
ipv6 pim hello-holdtime
ipv6 pim dr-priority
ipv6 pim override-interval
ipv6 pim lan-delay
set ipv6 pim lan-prune-delay
no ipv6 pim interface
debug ipv6 pim
show ipv6 pim interface
show ipv6 pim neighbor
```
show ipv6 pim rp-candidate
show ipv6 pim rp-set
show ipv6 pim bsr
show ipv6 pim rp-static
show ipv6 pim component
show ipv6 pim thresholds
show ipv6 pim mroute
23.1 set ipv6 pim

This command enables or disables PIMv6 globally.

set ipv6 pim { enable | disable }

Syntax Description
enable - Enables PIMv6
disable - Disables PIMv6

Mode
Global Configuration Mode

Defaults
disable

Example:
iss (config)# set ipv6 pim enable

When PIMv6 is globally enabled, the mode will be sparse.

Related Command
show ipv6 pim interface – Displays the PIMv6 interfaces of the router
23.2 set ip pim threshold

This command configures the (Shortest Path Tree) SPT group or source threshold, when exceeded, switching to shortest path tree is initiated. To switch to SPT, the threshold MUST be configured.

```
set ip pim threshold { spt-grp | spt-src } < number of packets(0-2147483647)>
```

Syntax Description
- **spt-grp** - The threshold of data rate for any group. When exceeded, source specific counters are initiated for that particular group. It is based on number of bits per second
- **spt-src** - The switching to Shortest Path Tree is initiated when the threshold of data rate for any source is exceeded. It is based on number of bits per second
- **number of packets** - Number of packets

Mode
Global Configuration Mode

Defaults
0

Example:
```
iss (config)# set ip pim threshold spt-grp 50
```

Related Command
- `show ipv6 pim thresholds` – Displays threshold configured for SPT, RP thresholds, rate limit values for both SM and DM
23.3 set ip pim spt-switchperiod

This command configures the period (in seconds) over which the data rate is to be monitored for switching to shortest path tree.

```
set ip pim spt-switchperiod <0-2147483647(in secs)>
```

Mode
Global Configuration Mode

Defaults
0

Example:
iss (config)# set ip pim spt-switchperiod 60

- The same period is used for monitoring the data rate for both source and group. To switch to SPT, this period must be configured.
- The SPT is used for multicast transmission of packets with the shortest path from sender to recipients.

Related Command

```
show ipv6 pim thresholds
```
- Displays threshold configured for SPT, RP thresholds, rate limit values for both SM and DM
23.4 set ip pim rp-threshold

This command sets the threshold at which RP (Rendezvous Point) initiates switching to source specific shortest path tree.

```
set ip pim rp-threshold <0-2147483647(number of reg packets)>
```

Mode
Global Configuration Mode

Defaults
0

Example:
```
iss (config)# set ip pim rp-threshold 50
```

To switch to SPT, this threshold must be configured and this switching is based on the received number of registered packets.

Related Command
```
show ipv6 pim thresholds – Displays threshold configured for SPT, RP thresholds, rate limit values for both SM and DM
```
23.5 set ip pim rp-switchperiod

This command sets the period (in seconds) over which RP monitors register packets for switching to the source specific shortest path tree.

```
set ip pim rp-switchperiod <0-2147483647(in secs)>
```

Mode
Global Configuration Mode

Defaults
0

Example:
iss (config)# set ip pim rp-switchperiod 100

To switch to SPT, this period must be configured RP-tree is a pattern that multicast packets are sent to a PIM-SM router by unicast and then forwarded to actual recipients from RP

Related Command
`show ipv6 pim thresholds` – Displays threshold configured for SPT, RP thresholds, rate limit values for both SM and DM
23.6 set ip pim regstop-ratelimperiod

This command sets the period over which RP monitors the number of register packets after sending the register stop message.

```
set ip pim regstop-ratelimperiod <0-2147483647(in secs)>
```

Mode
Global Configuration Mode

Defaults
5

Example:
```
iss (config)# set ip pim regstop-ratelimperiod 100
```

The Register Stop Message is used to avoid encapsulation of multicast data packets from the first hop router to the RP.

Related Command
```
show ipv6 pim thresholds
```
Displays threshold configured for SPT, RP thresholds, rate limit values for both SM and DM
23.7 set ip pim pmbr

This command enables or disables the PMBR (PIM Multicast Border Router) Status.

```
set ip pim pmbr { enable | disable }
```

Syntax Description

- **enable** - Enables the PMBR Status
- **disable** - Disables the PMBR Status

Mode

Global Configuration Mode

Defaults

disable

Example:

```
iss (config)# set ip pim pmbr enable
```

A PMBR integrates two different PIM domains (either PIM -SM or PIM -DM).
A PMBR connects a PIM domain to other multicast routing domain(s).

Related Command

- `show ipv6 pim thresholds` – Displays threshold configured for SPT, RP thresholds, rate limit values for both SM and DM
23.8 **set ip pim static-rp**

This command enables or disables the Static RP configuration Status. This command specifies whether to use the configured static RP.

```
set ip pim static-rp { enable | disable }
```

Syntax Description

enable - Enables the Static RP configuration Status
disable - Disables the Static RP configuration Status

Mode
Global Configuration Mode

Defaults
disable

Example:
```
iss (config)# set ip pim static-rp enable
```

Related Commands

show ipv6 pim rp-set – Displays the RP-set information
show ipv6 pim rp-static – Displays the RP-static information
23.9 ip pim component

This command configures the PIMv6 component in the router and the no form of the command destroys the PIMv6 component.

```
ip pim component <ComponentId (1-255)>
no ip pim component <ComponentId (2-255)>
```

Mode
Global Configuration Mode

Example:
```
iss (config)# ip pim component 1
```
- PIMv6 component 1 cannot be deleted as it is the default component.
- The PIMv6 Component corresponds to each instance of a PIMv6 domain and classifies it as Sparse or Dense mode.

Related Command
```
show ipv6 pim component- Displays the component information
```
23.10 ipv6 pim rp-candidate rp-address

This command sets the address of the interface, which will be advertised as a Candidate-RP. The “no” form of the command disables the address of the interface, which will be advertised as a Candidate-RP.

```
ipv6 pim rp-candidate rp-address <Group Address> <Group Mask> <RP-address>
```

```
no ipv6 pim rp-candidate rp-address <Group Address> <Group Mask> <RP address>
```

- **Group Address** - IPv6 multicast group address
- **Group Mask** - IPv6 multicast group address mask that gives the group prefix for which the entry contains information about RP

Syntax Description
- **RP address** - IPv6 address of the Rendezvous Point

Mode
- PIM Component Mode

Example:
```
SMIS(pim-comp)# ipv6 pim rp-candidate rp-address ff02::e001:0000
112 3333::1111
```

- A Candidate-RP is a router configured to send periodic Candidate-RP-Advertisement messages to the BSR, and processes Join/Prune or Register messages for the advertised group prefix, when it is elected as a RP.

Related Commands
- `show ipv6 pim rp-set` – Displays the PIMv6 RP-set information
- `show ipv6 pim rp-candidate` – Displays the PIMv6 RP-candidate information
23.11 ipv6 pim rp-static rp-address

This command sets the address of the IPv6 interface, which will be advertised as a Static-RP. The “no” form of the command disables the address of the IPv6 interface, which will be advertised as a Static-RP.

`ipv6 pim rp-static rp-address <Group Address> <Group Mask> <RP address>`

`no ipv6 pim rp-static rp-address <Group Address> <Group Mask>`

Syntax Description

- **Group Address** - Indicates the PIMv6 Sparse multicast group address using the listed RP
- **Group Mask** - IPv6 multicast group address mask that gives the group prefix for which this entry contains information about RP
- **RP address** - IPv6 address of the Rendezvous Point

Mode

PIM Component Mode

Example:

```
SMIS(pim-comp)# ipv6 pim rp-static rp-address ff02::e001:0000 112
3333::1111
```

- The Static configuration allows additional structuring of the multicast traffic by directing the multicast join/prune messages to statically configured RPs.

Related Commands

- `show ipv6 pim rp-static` – Displays the RP-static information
23.12 ipv6 pim query-interval

This command sets the frequency at which PIMv6 hello messages are transmitted on the interface. The “no” form of the command sets the default hello timer interval for the interface.

```
ipv6 pim query-interval <Interval (0-65535)secs>
no ipv6 pim query-interval
```

Mode

Interface Configuration Mode

Defaults

30

Example:

```
iss (config-if)# ipv6 pim query-interval 60
```

The query message informs the presence of a PIMv6 router on the interface to the neighboring PIMv6 routers.

Related Command

```
show ipv6 pim interface  – Displays the PIMv6 interfaces of the router
```
23.13 ipv6 pim message-interval

This command sets the frequency at which the PIMv6 Join/Prune messages are transmitted on the PIMv6 interface. The “no” form of the command sets the default value for the PIMv6 Join/Prune messages.

`ipv6 pim message-interval <Interval(0-65535)>`

`no ipv6 pim message-interval`

Mode

Interface Configuration Mode

Defaults

60

Example:

`iss (config-if)# ipv6 pim message-interval 120`

- The Join/Prune message interval used on all the PIMv6 routers in the PIMv6 domain must be the same. If all the routers do not use the same timer interval, the performance of PIMv6 Sparse can be adversely affected.

Related Command

`show ipv6 pim interface` – Displays the PIMv6 interfaces of the router
23.14 ipv6 pim bsr-candidate

This command sets the preference value for the local PIMv6 interface as a candidate bootstrap router. The "no" form of the command sets the default preference value for the local PIMv6 interface as a candidate bootstrap router.

```
ipv6 pim bsr-candidate <value (0-255)>
```

```
no ipv6 pim bsr-candidate
```

Mode
Interface Configuration Mode

Defaults
0

Example:
```
iss (config-if)# ipv6 pim bsr-candidate 1
```

- A BSR is a dynamically elected router within the PIMv6 domain.

Related Command
```
show ipv6 pim bsr  -- Displays the PIMv6 BSR information
```
23.15 ipv6 pim componentId

This command adds the interface to the component.

`ipv6 pim componentId <value(1-255)>`

Mode
Interface Configuration Mode

Defaults
1

Example:

`iss (config-if)# ipv6 pim componentId 1`

This command adds the current VLAN into the specified PIMv6 component.

Related Commands

- `set ipv6 pim` – Enables or disables PIMv6 globally
- `show ipv6 pim component` – Displays the component information
23.16 ipv6 pim hello-holdtime

This command sets the holdtime for the hello message for the PIMv6 interface. The "no" form of the command sets the default holdtime for the hello message for the interface.

`ipv6 pim hello-holdtime <holdtime(1-65535)>`

`no ipv6 pim hello-holdtime`

Mode
Interface Configuration Mode

Defaults
105

Example:
`iss (config-if)# ipv6 pim hello-holdtime 180`

Holdtime is the amount of time a receiver must keep the neighbor reachable, in seconds.

Related Commands
`show ipv6 pim neighbor` – Displays the PIMv6 neighbor(s) information of the router
23.17 ipv6 pim dr-priority

This command sets the designated router priority value configured for the PIMv6 router interface. The “no” form of the command sets the default designated router priority value for the PIMv6 router interface.

```
ipv6 pim dr-priority <priority(1-65535)>
```

```
no ipv6 pim dr-priority
```

Mode

Interface Configuration Mode

Defaults

1

Example:

```
iss (config-if)# ipv6 pim dr-priority 100
```

- The DR sets up multicast route entries and sends corresponding Join/Prune and Register messages on behalf of directly-connected receivers and sources, respectively.

Related Command

`show ipv6 pim interface` – Displays the PIMv6 interfaces of the router
23.18 ipv6 pim override-interval

This command sets the override interval configured for the PIMv6 router interface. The “no” form of the command sets the default override interval for the PIMv6 router interface.

ipv6 pim override-interval <interval(0-65535)>

no ipv6 pim override-interval

Mode
Interface Configuration Mode

Defaults
0

Example:
iss (config-if)# ipv6 pim override-interval 100

The Override interval is the random amount of time delayed for sending override messages to avoid synchronization of override messages when multiple downstream routers share a multi-access link.

Related Command
show ipv6 pim interface – Displays the PIMv6 interfaces of the router
23.19 ipv6 pim lan-delay

This command sets the LanDelay configured for the PIMv6 router interface. The “no” form of the command sets the default LanDelay for the PIMv6 router per interface.

```
ipv6 pim lan-delay <value(0-65535)>
```

```
no ipv6 pim lan-delay
```

Mode

Interface Configuration Mode

Defaults

0

Example:

```
iss (config-if)# ipv6 pim lan-delay 120
```

- The LAN Delay inserted by a router in the LAN Prune Delay option expresses the expected message propagation delay on the interface. It is used by upstream routers to find out the delayed time interval for a Join override message before pruning an interface.

Related Command

```
show ipv6 pim interface – Displays the PIMv6 interfaces of the router
```
23.20 set ipv6 pim lan-prune-delay

This command sets the LanPruneDelay bit configured for the PIMv6 router interface to advertise the Lan delay. The command specifies whether to use LAN prune delay or not.

```
set ipv6 pim lan-prune-delay { enable | disable }
```

Syntax Description

- `enable` - Enables LAN-prune-delay
- `disable` - Disables LAN-prune-delay

Mode

Interface Configuration Mode

Defaults

disable

Example:

```
iss (config-if)# set ipv6 pim lan-prune-delay enable
```

Related Command

- `show ipv6 pim interface` – Displays the PIMv6 interfaces of the router
23.21 no ipv6 pim interface

This command deletes the IPv6 PIM Interface, that is, this command is used to destroy the interface at PIMv6.

no ipv6 pim interface

Mode
Interface Configuration Mode

Example:
iss (config-if)# no ipv6 pim interface

Related Command
show ipv6 pim interface – Displays the PIMv6 interfaces of the router
23.22 debug ipv6 pim

This command enables PIMv6 trace and the "no" form of the command disables PIMv6 trace.

```plaintext
debug ipv6 pim {[nbr][grp][jp][ast][bsr][io][pmbr][mrt][mdh][mgmt] | [all]}

no debug ipv6 pim {[nbr][grp][jp][ast][bsr][io][pmbr][mrt][mdh][mgmt] | [all]}
```

Syntax Description

- `nbr` - Neighbor Discovery traces
- `grp` - Group Membership traces
- `jp` - Join or Prune traces
- `ast` - Assert state traces
- `bsr` - Bootstrap/RP traces
- `io` - Input Output traces
- `pmbr` - Interoperability traces
- `mrt` - Multicast Route Table Update traces
- `mdh` - Multicast Data Handling traces
- `mgmt` - Configuration traces
- `all` - All traces

Mode

Privileged EXEC Mode

Example:

```plaintext
SMIS# debug ipv6 pim all
```

A Four byte integer value is specified for enabling the level of debugging. Each bit in the four byte integer variable represents a level of debugging. Combinations of levels are also allowed. The user has to enter the corresponding integer value for the bit set.

Related Command

- `show ipv6 pim interface`— Displays the PIMv6 interfaces of the router
23.23 show ipv6 pim interface

This command displays the PIMv6 interfaces of the router. It shows the list of Interface addresses, the mode of the interface, Designated Router on that interface, Hello Interval, Join/Prune Interval of the interface.

show ipv6 pim interface [{ Vlan <vlan-id> | detail }]

Syntax Description

Vlan - VLAN ID

detail - Detailed information of the interface

Mode

Privileged EXEC Mode

Example:

SMIS# show ipv6 pim interface
Address IfName/ Ver/ Nbr Qry DR DR

IfId Mode
Count Interval Address Prio-

--------- ----- ------ ------ ------ ------ -----
fe80::2:a00:1 vlan1/33 2/Sparse 0 150 fe80::2:a00:1 1
fe80::2:1400:1 vlan2/34 2/Sparse 0 30 fe80::2:1400:1 1
fe80::2:1e00:1 vlan3/35 2/Sparse 0 30 fe80::2:1e00:1 1

SMIS# show ipv6 pim interface vlan 1
Address IfName/ Ver/ Nbr Qry DR DR
IfId Mode
Count Interval Address Prio-
--------- ----- ------ ------ ------ ------ -----
fe80::2:a00:1 vlan1/33 2/Sparse 0 150 fe80::2:a00:1 1

SMIS# show ipv6 pim interface detail
vlan1 33 is up
Internet Address is fe80::2:a00:1
Multicast Switching : Enabled
PIM : Enabled
PIMv6 : Enabled
PIM version : 2, mode Sparse
PIM DR : fe80::2:a00:1
PIM DR Priority : 1
PIM Neighbour Count : 0
PIM Hello/Query Interval : 150
PIM Message Interval : 200
PIM Override Interval : 0
PIM Lan Delay : 0
PIM Lan-Prune-Delay : Disabled
PIM Component Id : 1
PIM domain border : disabled

Related Commands
set ipv6 pim – Enables or disables PIMv6
ipv6 pim query-interval – Sets the frequency at which PIMv6 hello messages are transmitted on the interface
ipv6 pim message-interval – Sets the frequency at which PIMv6 Join/Prune messages are transmitted on the PIMv6 interface
ipv6 pim bsr-candidate – Sets the preference value for the local PIMv6 interface as a candidate bootstrap router
ipv6 pim dr-priority – Sets the designated router priority value configured for the PIMv6 router interface
ipv6 pim override-interval – Sets the override interval configured for the PIMv6 router interface
ipv6 pim lan-delay – Sets the LanDelay configured for the PIMv6 router interface
set ipv6 pim lan-prune-delay – Sets the LanPruneDelay bit configured for the PIMv6 router interface to advertise the lan delay
no ipv6 pim interface – Deletes an interface at PIMv6 level
debug ipv6 pim – Enables PIMv6 trace
23.24 show ipv6 pim neighbor

This command displays the PIMv6 neighbor(s) information of the router. It displays the Neighbor Address, the interface used to reach the PIMv6 Neighbor, the Up time (the time since this neighbor became the neighbor of the local router), Expiry Time (the minimum time remaining before this PIMv6 neighbor will be aged out), Lan delay and Override interval.

show ipv6 pim neighbor [Vlan <vlan-id>]

Syntax Description
Vlan - VLAN ID

Mode
Privileged EXEC Mode

Example:
SMIS# show ipv6 pim neighbor
Nbr If Uptime/ Ver DRPri/ Comp Over- Lan
Address Name Expiry Mode
Id ride Delay

/Idx Interval
----------------------- ---------------------- --- ------- ---- ---- ----
fe80::2:a00:a vlan1/33 00:02:33/0 v2 0/S 1 0 0
fe80::2:1400:a vlan2/34 00:02:33/0 v2 0/S 1 0 0

SMIS# show ipv6 pim neighbor vlan 1
Nbr If Uptime/ Ver DRPri/ Comp Over- Lan
Address Name Expiry Mode
Id ride Delay

/Idx Interval
----------------------- ---------------------- --- ------- ---- ---- ----
fe80::2:a00:a vlan1/33 00:02:58/0 v2 0/S 1 0 0

Related Commands
ipv6 pim query-interval – Sets the frequency at which PIMv6 hello messages are transmitted on the interface
ipv6 pim message-interval – Sets the frequency at which PIMv6 Join/Prune messages are transmitted on the PIMv6 interface
ipv6 pim bsr-candidate – Sets the preference value for the local PIMv6 interface as a candidate bootstrap router
ipv6 pim hello-holdtime – Sets the holdtime for the hello message for the PIMv6 interface
23.25 show ipv6 pim rp-candidate

This command displays the PIMv6 RP-candidate information. It displays the Group addresses, the Group Mask and the RP address that indicates the IP address of the Rendezvous Point (RP) for the listed PIM Sparse group.

show ipv6 pim rp-candidate [ComponentId <1-255>]

Syntax Description
ComponentId - Component ID

Mode
Privileged EXEC Mode

Example:
SMIS# show ipv6 pim rp-candidate 1
CompId GroupAddress/PrefixLength RPAddress/Priority
------ ------------------ ------------------
 1 ff02::e000:0/112 3333::a00:1/192

Related Commands
ipv6 pim rp-candidate rp-address – Sets the address of the interface, which will be advertised as a Candidate-RP
ipv6 pim rp-static rp-address – Sets the address of the interface, which will be advertised as a Static-RP
23.26 show ipv6 pim rp-set

This command displays the PIMv6 RP-set information. It displays details of the Group Prefix, RP address, Hold time and Expiry Time.

show ipv6 pim rp-set [rp-address]

Syntax Description
rp-address - Indicates the IPv6 address of the Rendezvous Point (RP) for the listed PIM Sparse group.

Mode
Privileged EXEC Mode

Example:
show ipv6 pim rp-set 3333::a00:a
PIM Group-to-RP mappings

Group Address : ff00::Group Mask : 8
RP: 3333::a00:a
Component-Id : 1
Hold Time : 102, Expiry Time : 00:00:35

Related Commands
ipv6 pim rp-candidate rp-address – Enables the address of the interface, which will be advertised as a Candidate-RP
ipv6 pim rp-static rp-address – Sets the address of the interface, which will be advertised as a Static-RP
23.27 show ipv6 pim bsr

This command displays the PIMv6 BSR information.

```
show ipv6 pim bsr [Component-Id (1-255)]
```

Syntax Description

- **Component-Id** - Component ID

Mode

Privileged EXEC Mode

Example:

```
SMIS# show ipv6 pim bsr 1
PIMv2 Bootstrap Configuration For Component 1
--------------------------------------------------
Elected BSR for Component 1
V6 BSR Address : 3333::a00:1
V6 BSR Priority : 100, Hash Mask Length : 126
This System is V6 Candidate BSR for Component 1
V6 BSR Address : 3333::a00:1
V6 BSR Priority : 100
```

Related Command

- `ipv6 pim bsr-candidate` – Sets the preference value for the local interface as a candidate bootstrap router
23.28 show ipv6 pim rp-static

This command displays the static RP information.

show ipv6 pim rp-static [ComponentId <1-255>]

Syntax Description

ComponentId - Component ID

Mode
Privileged EXEC Mode

Example:

SMIS# show ipv6 pim rp-static
Static-RP Enabled
CompId GroupAddress/PrefixLength RPAddress
------ -------------------------- -------
1 ff02::1111:2222/64 3333::4444

Related Command

ipv6 pim rp-static rp-address – Enables or disables the Static RP configuration Status
23.29 show ipv6 pim component

This command displays the component information.

`show ipv6 pim component [ComponentId <1-255>]`

Syntax Description

`ComponentId` - Component ID

Mode

Privileged EXEC Mode

Example:

```
SMIS# show ipv6 pim component 1
PIM Component Information
-----------------------------
Component-Id: 1

PIM Mode
  sparse, PIM Version: 2

Elected BSR: 10.0.0.1
Candidate RP Holdtime: 0
```

Related Commands

`ipv6 pim componentId` – Adds the interface to the component
23.30 show ipv6 pim thresholds

This command displays threshold configured for SPT, RP thresholds, and rate limit values for both SM and DM.

show ipv6 pim thresholds

Mode
Privileged EXEC Mode

Example:
SMIS# show ipv6 pim thresholds
PIM SPT Threshold Information

Group Threshold : 111
Source Threshold : 222
Switching Period : 100
PIM SPT-RP Threshold Information

Register Threshold : 333
RP Switching Period : 300
Register Stop rate limit : 400

Related Commands
set ip pim threshold – Configures the SPT group or source threshold
set ip pim spt-switchperiod – Configures the period (in seconds) over which the data rate is to be monitored for switching to shortest path tree
set ip pim rp-threshold – Sets the threshold at which the RP initiates switching to source specific shortest path tree
set ip pim rp-switchperiod – Sets the period (in seconds) over which RP monitors register packets for switching to the source specific shortest path tree
set ip pim regstop-ratelimit-period – Sets the period over which RP monitors number of register packets after sending the register stop message
set ip pim pmbr – Enables or disables the PMBR (PIM Multicast Border Router) Status
ipv6 pim dr-priority – Sets the designated router priority value configured for the router interface
23.31 show ipv6 pim mroute

This command displays the IPv6 PIM mroute information.

```
show ipv6 pim mroute [ {compid(1-255) | group <group-address> | source <source-address> } summary ]
```

Syntax Description
- **compid** - Component ID
- **group-address** - Indicates the PIMv6 multicast group address using the listed RP
- **source-address** - The network address which identifies the sources for which this entry contains multicast routing information
- **summary** - Summary of PIMv6 mroute information

Mode
Privileged EXEC Mode

Example:
```
SMIS# show ipv6 pim mroute
IP Multicast Routing Table
---------------------------
Route Flags S: SPT Bit W: Wild Card Bit R: RPT Bit
Timers: Uptime/Expires

Interface State: Interface, State/Mode
PIM Multicast Routing Table For Component 1

(*, ff02::e001:0) ,00:03:54/---3401:510a::3401:51a) Incoming
Interface : vlan1
,RPF nbr : fe80::2:a00:a ,Route Flags : WR
Outgoing InterfaceList :
vlan2, Forwarding/Sparse ,00:03:54/---

SMIS# show ipv6 pim mroute group ff02::e001:0 summary
IP Multicast Routing Table
---------------------------
Route Flags S: SPT Bit W: Wild Card Bit R: RPT Bit
```
Timers: Uptime/Expires

PIM Multicast Routing Table For Component 1

(*, ff02::e001:0), 00:02:49/---3401:510a::3401:51a), Route Flags : WR

SMIS# show ipv6 pim mroute source ca8d:5102::ca8d:5102 summary

IP Multicast Routing Table

Route Flags S: SPT Bit W: Wild Card Bit R: RPT Bit
Timers: Uptime/Expires
(ca8d:5102::ca8d:5102,ff02::e001:0), 00:01:04/04:01:45, Route Flags : ---

It shows details of the (S,G), (*,G) and (*,*,RP) entries.

Related Command

ipv6 pim bsr-candidate – Sets the preference value for the local IPv6 interface as a candidate bootstrap router
VRRP (Virtual Router Redundancy Protocol) is an election protocol that dynamically assigns responsibility for one or more virtual router(s) to the VRRP router(s) on a LAN, allowing several routers on a multi-access link to utilize the same virtual IP address. A VRRP router is configured to run the VRRP protocol in conjunction with one or more other routers attached to a LAN. In a VRRP setup, one router is elected as the master router with the other routers acting as backups in case of the failure of the master router. VRRP is designed to eliminate the single point of failure inherent in the static default routed environment.

The list of CLI commands for the configuration of VRRP is as follows:

- `router vrrp`
- `interface`
- `vrrp - ip address`
- `vrrp - priority`
- `vrrp - preempt`
- `vrrp - text-authentication`
- `vrrp - interval`
- `show vrrp`
- `show vrrp interface`
- `debug vrrp`
24.1 router vrrp

This command enables VRRP in the router and is used to enter the VRRP Configuration Mode. The "no" form of the command disables VRRP in the router.

router vrrp

no router vrrp

Mode
Global Configuration Mode

Defaults
VRRP is disabled by default

Example:
SMIS(config)# router vrrp

Enabling the VRRP router will transition the state of the virtual router from 'initialize' to 'backup' or 'master' (Initialize indicates that the virtual router is waiting for a startup event. Backup indicates that the virtual router is monitoring the availability of the master router. Master indicates that the virtual router is forwarding the packets for IP addresses that are associated with this router.). Disabling the VRRP router will transition the state from 'backup' or 'master' to 'initialize'. State transitions may not be immediate but may depend on other factors such as the interface state.

Related Command
show vrrp – Displays the VRRP status information
24.2 interface vlan

This command selects an interface to configure. The “no” form of the command deletes the virtual router entries on the given interface.

```
interface [{ vlan <integer (1-4069)> | <iftype> <ifnum> }] 
```

```
no interface [{ vlan <integer (1-4069)> | <iftype> <ifnum> }] 
```

Syntax Description

- **vlan-id** - VLAN Identifier
- **iftype** - Interface type, can either be a gi, ex or qx ethernet interfaces
- **ifnum** - Physical interface ID including slot and port number

Mode

VRRP Router Configuration Mode

Example:

```
SMIS(config-vrrp)# interface vlan 3
```

- VRRP must be enabled prior to the execution of this command.
- This interface must have an ip address prior to the execution of this command

Related Commands

- **router vrrp** – Enables VRRP in the router
- **show vrrp** – Displays the VRRP status information
24.3 vrrp - ip address

This command sets the Associated IP addresses for the virtual router. The “no” form of the command deletes the Associated IP addresses for the virtual router.

```
vrrp <vrid(1-255)> ipv4 <ucast_addr> [secondary]

no vrrp <vrid(1-255)> ipv4[<ucast_addr>[secondary]]
```

Syntax Description

- **vrid** - Virtual Router ID
- **ipv4** - IP address
- **secondary** - Associated IP addresses

Mode

VRRP Interface Configuration Mode

Example:

```
SMIS(config-vrrp-if)# vrrp 3 ipv4 10.0.0.1
```

VRID is a number which along with an interface index uniquely identifies a virtual router on a given VRRP router.

Once this command is executed, the VRRP Module starts the transition from "Initial" state to either "Backup" state or "Master" state as per the election process on the specific interface.

This command should precede any other interface command for this vrid.

Related Commands

- **router vrrp** – Enables VRRP in the router
- **show vrrp** – Displays the VRRP status information
24.4 vrrp - priority

This command sets the priority for the virtual router. The “no” form of the command sets the priority for the virtual router to default value.

vrrp <vrid(1-255)> priority <priority(1-254)>

no vrrp <vrid(1-255)> priority

Syntax Description
vrid - Virtual Router ID
priority - Priority used for the virtual router master election process

Mode
VRRP Interface Configuration Mode

Defaults
priority – 100

Example:
SMIS(config-vrrp-if)# vrrp 3 priority 7

Higher values imply higher priority.
A priority of 255 is used for the router that owns the associated IP address(es).
The command vrrp <vrid(1-255)> ipv4 <ip address> must be entered for the current interface (with the proper vrid) before the execution of this command.

Related Commands
router vrrp – Enables VRRP in the router
show vrrp – Displays the VRRP status information
24.5 vrrp - preempt

This command enables the pre-emption of state change from either Backup to Master or vice versa based on the election process. The “no” form of the command disables the preempt mode.

vrrp <vrid(1-255)> preempt

no vrrp <vrid(1-255)> preempt

Syntax Description
vrid - Virtual Router ID
preempt - Enables preemption of VRRP router states

Mode
VRRP Interface Configuration Mode

Defaults
Pre-emption is enabled by default

Example:
SMIS(config-vrrp-if)# vrrp 5 preempt

The command `vrrp <vrid(1-255)> ipv4 <ip address>` must be entered for the current interface (with the proper vrid) before the execution of this command.

Related Commands
router vrrp – Enables VRRP in the router
show vrrp – Displays the VRRP status information
24.6 vrrp - text-authentication

This command sets the authentication type for the virtual router to simple password. The “no” form of the command sets the authentication type for the virtual router to none.

```
vrrp <vrid(1-255)> text-authentication <password>

no vrrp <vrid(1-255)> text-authentication
```

Syntax Description

- **vrid** - Virtual Router ID
- **textauthentication** - Authentication password

Mode

VRRP Interface Configuration Mode

Example:

```
SMIS(config-vrrp-if)# vrrp 4 text-authentication abcdefgh
```

The authentication password can be alphanumeric characters up to 8 digits.

The command `vrrp <vrid(1-255)> ipv4 <ip address>` must be entered for the current interface (with the proper vrid) before the execution of this command.

Related Commands

- **router vrrp** – Enables VRRP in the router
- **show vrrp** – Displays the VRRP status information
24.7 vrrp - interval

This command sets the advertisement timer for a virtual router. The "no" form of the command sets the advertisement timer for a virtual router to default value.

\[\text{vrrp <vrid(1-255)> timer <interval(1-255) secs> } \]

\[\text{no vrrp <vrid(1-255)> timer} \]

Syntax Description

vrid - Virtual Router ID
timer - The time interval, in seconds, between sending advertisement messages

Mode
VRRP Interface Configuration Mode

Defaults
1 second

Example:
SMIS(config-vrrp-if)# vrrp 4 timer 6

Only the master router sends advertisements.
On expiry of the advertise timer, the Master sends advertisement packets to the Backup.
The command \[\text{vrrp <vrid(1-255)> ipv4 <ip address>} \] must be entered for the current interface (with the proper vrid) before the execution of this command

Related Commands
router vrrp – Enables VRRP in the router
show vrrp – Displays the VRRP status information
24.8 show vrrp

This command displays the VRRP status information.

show vrrp [interface { vlan <VlanId(1-4069)> | <interface-type> <interface-id> }] <VrId(1-255)>] [{brief|detail |statistics}]

Syntax Description
VrId – Any valid VRID number between 1 to 255
interface vlan - VRRP information on the given VLAN ID and VRID
brief - Information about VRRP in brief
detail - Information about VRRP in detail
statistics - VRRP statistics
iftype - Interface type, can either be a gi, ex or qx ethernet interfaces
ifnum - Physical interface ID including slot and port number

Mode
Privileged EXEC Mode

Example:
SMIS# show vrrp interface vlan 2 detail
vlan2 - vrID 1

State is Master
Virtual IP address is 12.0.0.2
Virtual MAC address is 00:00:5e:00:01:01
Master router is 12.0.0.2
Associated IpAddresses :

12.0.0.2
Advertise time is 1 secs
Current priority is 100
Configured priority is 100, may preempt
vlan2 - vrID 2

State is Master
Virtual IP address is 12.0.0.1
Virtual MAC address is 00:00:5e:00:01:02
Master router is 12.0.0.1
Associated IpAddresses :

12.0.0.1
Advertise time is 1 secs
Current priority is 255
Configured priority is 255, may preempt

Related Commands
router vrrp – Enables VRRP in the router
interface – Selects an interface to configure
vrrp - ip address – Sets the IP address for the virtual router
24.9 show vrrp interface

This command displays the VRRP status information for the given interface.

```
show vrrp interface [{ vlan <VlanId(1-4069)> | <interface-type> <interface-id> }][{brief|detail |statistics}]
```

Syntax Description

- **interface vlan** - VRRP information on the given VLAN ID and VRID
- **brief** - Information about VRRP in brief
- **detail** - Information about VRRP in detail
- **statistics** - VRRP statistics
- **iftype** - Interface type, can either be a gi, ex or qx ethernet interfaces
- **ifnum** - Physical interface ID including slot and port number

Mode

Privileged EXEC Mode

Example:

```
SMIS# show vrrp interface vlan 2 detail
vlan2 - vrID 1
-------------
State is Master
Virtual IP address is 12.0.0.2
Virtual MAC address is 00:00:5e:00:01:01
Master router is 12.0.0.2
Associated IpAddresses :
------------------------
12.0.0.2
Advertise time is 1 secs
Current priority is 100
Configured priority is 100, may preempt
vlan2 - vrID 2
-------------
State is Master
Virtual IP address is 12.0.0.1
Virtual MAC address is 00:00:5e:00:01:02
```
Master router is 12.0.0.1
Associated IpAddresses :

12.0.0.1
Advertise time is 1 secs
Current priority is 255
Configured priority is 255, may preempt

SMIS# show vrrp interface vlan 2 brief
P indicates configured to preempt
Interface vrID Priority P State Master VRouter
Addr Addr
--------- ---- -------- - ----- -------- -------
vlan2 1 100 P Master local 12.0.0.2
vlan2 2 255 P Master local 12.0.0.1

SMIS# show vrrp interface vlan 2 statistics
vlan2 - vrID 1

Transitions to Master : 2
Advertisements Received : 0
Advertise Internal Errors : 0
Authentication Failures : 0
TTL Errors : 0
Zero Priority Packets Received : 1
Zero Priority Packets Sent : 0
Invalid Type Packets Received : 0
Address List Errors : 0
Invalid Authentication Type : 0
Authentication Type Mismatch : 0
Packet Length Errors : 0
vlan2 - vrID 2

Transitions to Master : 1
Advertisements Received : 0
Advertise Internal Errors : 0
Authentication Failures : 0
TTL Errors : 0
Zero Priority Packets Received : 0
Zero Priority Packets Sent : 0
Invalid Type Packets Received : 0
Address List Errors : 0
Invalid Authentication Type : 0
Authentication Type Mismatch : 0
Packet Length Errors : 0

SMIS# show vrrp interface vlan 2
P indicates configured to preempt

<table>
<thead>
<tr>
<th>Interface</th>
<th>vrID</th>
<th>Priority</th>
<th>P</th>
<th>State</th>
<th>Master</th>
<th>VRouter</th>
</tr>
</thead>
<tbody>
<tr>
<td>vlan2</td>
<td>1</td>
<td>100</td>
<td>P</td>
<td>Master</td>
<td>local 12.0.0.2</td>
<td></td>
</tr>
<tr>
<td>vlan2</td>
<td>2</td>
<td>255</td>
<td>P</td>
<td>Master</td>
<td>local 12.0.0.1</td>
<td></td>
</tr>
</tbody>
</table>

Related Commands

- **router vrrp** – Enables VRRP in the router
- **interface** – Selects an interface to configure
- **vrrp - ip address** – Sets the IP address for the virtual router
24.10 debug vrrp

This command enables the display of link aggregation debug messages. The “no” form of this command disables the display of link aggregation debug messages.

d debug vrrp {all | all-pkt-dump | state-machine | resource | ip-pkt-dump | timer }

no debug vrrp {all | all-pkt-dump | state-machine | resource | ip-pkt-dump | timer}

Syntax Description
- **all** – displays all debug messages
- **all-pkt-dump** – displays the contents of all VRRP packets
- **state-machine** – displays the state machine transition debug messages
- **resource** – displays the resources (like memory) utilization debug messages
- **ip-pkt-dump** – displays the contents of all VRRP IP packets
- **timer** – displays the timer start and expiry related debug messages

Mode
Privileged/User EXEC Mode

Defaults
Disabled

Example:
SMIS# debug vrrp all

Related Commands
25 RIP

RIP (Routing Information Protocol) is a widely-used protocol for managing router information within a self-contained network such as a corporate local area network or an interconnected group of such LANs. RIP is classified by the Internet Engineering Task Force (IETF) as one of several internal gateway protocols (Interior Gateway Protocol).

RIP sends routing-update messages at regular intervals and when the network topology changes. When a router receives a routing update that includes changes to an entry, it updates its routing table to reflect the new route. The metric value for the path is increased by 1, and the sender is indicated as the next hop. RIP routers maintain only the best route (the route with the lowest metric value) to a destination.

After updating its routing table, the router immediately begins transmitting routing updates to inform other network routers of the change. These updates are sent independently of the regularly scheduled updates that RIP routers send. RIP uses a hop count as a way to determine network distance. Each host with a router in the network uses the routing table information to determine the next host to route a packet to for a specified destination.

The list of CLI commands for the configuration of RIP is as follows:

- `router rip`
- `ip rip security`
- `ip rip retransmission`
- `network`
- `neighbor`
- `passive-interface vlan`
- `output-delay`
- `redistribute`
- `default-metric`
- `route-tag`
- `auto-summary`
- `ip rip default route originate`
ip rip summary-address
ip rip default route install
ip rip send version
ip rip receive version
ip rip authentication mode
timers basic
ip split-horizon
debug ip rip
show ip rip
25.1 router rip

This command enters the router configuration mode and the “no” form of the command disables RIP on all the interfaces.

```
router rip

no router rip
```

Mode
Global Configuration Mode

Example:
```
SMIS(config)# router rip
```

Related Commands
- `network` – Enables RIP on an IP network
- `show ip rip` – Displays IP RIP protocol database or statistics
25.2 ip rip security

This command accepts/ignores RIP1 packets when authentication is in use and the no form of
the command sets the security level to its default value.

```
ip rip security { minimum | maximum }
```

```
o ip rip security
```

Syntax Description
- **minimum** - Denotes that the RIP1 packets will be accepted even when authentication is in use
- **maximum** - Denotes that RIP1 packets will be ignored when authentication is in use

Mode
Router Configuration Mode

Defaults
maximum

Example:
```
SMIS(config-router)# ip rip security minimum
```

Related Command
- `show ip rip` – Displays IP RIP protocol database or statistics
25.3 ip rip retransmission

This command configures the timeout interval and number of retries to retransmit the update request packet or an unacknowledged update response packet and the “no” form of the command sets the retransmission timeout interval or the number of retransmission retries to its default value.

```
ip rip retransmission { interval <timeout-value (5-10)> | retries <value (10-40)> }

no ip rip retransmit { interval | retries }
```

Syntax Description

- **interval** - The timeout interval to be used to retransmit the Update request packet or an unacknowledged update response packet
- **retries** - The maximum number of retransmissions of the update request and update response packets

Mode

Router Configuration Mode

Defaults

- Interval - 5
- Retries - 36

Example:

```
SMIS(config-router)# ip rip retransmission interval 6
```

- During retries, if no response is received then the routes through the next hop router are marked unreachable.

Related Command

show ip rip – Displays IP RIP protocol database or statistics
25.4 network

This command enables RIP on an IP network and the "no" form of the command disables RIP on an IP network.

network <ip-address>

no network <ip-address>

Syntax Description
ip-address - IP address for the entry

Mode
Router Configuration Mode

Example:
SMIS(config-router)# network 10.0.0.1

- The network number specified must not contain any subnet information. RIP routing updates will be sent and received only through interfaces on this network.
 RIP sends updates to the interfaces in the specified networks. Also, if the network of an interface is not specified, the interface will not be advertised in any RIP update.

Related Commands
router rip – Enables RIP on all the interfaces
show ip rip – Displays IP RIP protocol database or statistics
25.5 neighbor

This command adds a neighbor router and the “no” form of the command deletes a neighbor router.

\texttt{neighbor <ip address>}

\texttt{no neighbor <ip address>}

Syntax Description
- **ip-address** - IP address of the neighbor router

Mode
- Router Configuration Mode

Example:

\texttt{SMIS(config-router)# neighbor 10.0.0.5}

This command permits the point-to-point (no broadcast) exchange of routing information. When it is used in combination with the passive-interface router configuration command, routing information can be exchanged between a subset of routers and access servers on a LAN. Multiple neighbor commands can be used to specify additional neighbors or peers.

Note: This configuration will not result in sending unicast routing information to neighbors.

Related Command
- **show ip rip** — Displays IP RIP protocol database or statistics
25.6 passive-interface vlan

This command suppresses routing updates on an interface. The “no” form of the command does not suppress routing updates from an interface.

```
passive-interface vlan <vlan-id(1-4069)>
```

```
no passive-interface vlan <vlan-id(1-4069)>
```

Mode

Router Configuration Mode

Example:

```
SMIS(config-router)# passive-interface vlan 1
```

If the sending of routing updates is disabled on an interface, the particular subnet will continue to be advertised to other interfaces, and updates from other routers on that interface continue to be received and processed.

Related Command

show ip rip – Displays IP RIP protocol database or statistics
25.7 output-delay

This command enables interpacket delay for RIP updates and the "no" form of the command disables interpacket delay for RIP updates.

output-delay

no output-delay

Mode
Router Configuration Mode

Example:
SMIS(config-router)# output-delay

Configure this command will help prevent the routing table from losing information.

Related Command
show ip rip – Displays IP RIP protocol database or statistics
25.8 redistribute

This command enables redistribution of corresponding protocol routes into RIP and the "no" form of the command disables redistribution of corresponding protocol routes into RIP.

\[
\text{redistribute \{ all | bgp | connected | ospf | static \}}
\]

\[
\text{no redistribute \{ all | bgp | connected | ospf | static \}}
\]

Syntax Description
- **all** - Advertises all routes learnt in the RIP process
- **bgp** - Advertises routes learnt by BGP in the RIP process
- **connected** - Connected routes redistribution
- **ospf** - Advertises routes learnt by OSPF in the RIP process
- **static** - Statically configured routes to advertise in the RIP process

Mode
Router Configuration Mode

Example:
SMIS(config-router)# redistribute all

Related Commands
- **default-metric** – Sets the RIP default metric
- **show ip rip** – Displays IP RIP protocol database or statistics
This command sets the metric to be used for redistributed routes and the "no" form of the command sets the metric used with redistributed routes to its default value.

`default-metric <value>`

`no default-metric`

Mode

Router Configuration Mode

Defaults

3

Example:

SMIS(config-router)# default-metric 1

The `default-metric` command is used in conjunction with the `redistribute` router configuration command to cause the current routing protocol to use the same metric value for all redistributed routes.

Related Commands

- `redistribute` – Enables redistribution of corresponding protocol routes into RIP
- `show ip rip` – Displays IP RIP protocol database or statistics
25.10 route-tag

This command sets the route tag to be used for redistributed routes and the “no” form of the command sets the route tag to its default value 0.

route-tag <tag-value>

no route-tag

Syntax
htag-value> - Any number between 1 to 65535

Mode
Router Configuration Mode

Defaults
0

Example:
SMIS(config-router)# route-tag 1

Related Commands
redistribute – Enables redistribution of corresponding protocol routes into RIP
show ip rip – Displays IP RIP protocol database or statistics
25.11 auto-summary

This command enables/disables auto summarization of routes in RIP.

auto-summary {enable | disable}

Syntax Description
- **enable** - Enables auto summarization feature in RIP
- **disable** - Disables auto summarization feature in RIP

Mode
Router Configuration Mode

Defaults
- **enable**

Example:
SMIS(config-router)# auto-summary disable

- It is recommended to disable auto-summarization and configure interface specific aggregation with RIP version 2.

Related Command
- **show ip rip** – Displays IP RIP protocol database or statistics
25.12 ip rip default route originate

This command sets the metric to be used for default route propagated over the interface. The no form of the command disables origination of default route over the interface.

```
ip rip default route originate <metric(1-15)>
```

```
no ip rip default route originate
```

Mode
Interface Configuration Mode

Defaults
no ip rip default route originate

Example:
```
SMIS(config-if)# ip rip default route originate 10
```

The RIP must be enabled on the interface.

Related Commands
- `show ip rip` – Displays IP RIP protocol database or statistics
- `show ip protocols` – Displays information about the active routing protocol process
25.13 ip rip summary-address

This command sets route aggregation over an interface for all subnet routes that falls under the specified IP address and mask. The “no” form of the command disables route aggregation with the specified IP address and mask.

```
ip rip summary-address <ip-address> <mask>
```

```
no ip rip summary-address <ip-address> <mask>
```

Syntax Description

- **ip-address** - IP Address of the interface specific aggregation
- **mask** - Subnet Mask

Mode

Interface Configuration Mode

Example:

```
SMIS(config-if)# ip rip summary-address 60.0.0.0 255.0.0.0
```

- This command must not be used with RIPv1 send version.

 Auto-summarization overrides interface specific aggregation. Therefore, auto summarization must be disabled for interface specific route aggregation.

Related Command

- **show ip protocols** - Displays information about the active routing protocol process
25.14 ip rip default route install

This command installs the default route received in updates to the RIP database. The “no” form of the command does not install default route received in updates to the rip database.

ip rip default route install

no ip rip default route install

Mode
Interface Configuration Mode

Defaults
no ip rip default route install

Example:
SMIS(config-if)# ip rip default route install

RIP must be enabled on the interface on which this command is executed.

Related Command
show ip protocols - Displays information about the active routing protocol process
25.15 ip rip send version

This command sets the IP RIP version number for transmitting advertisements and the “no” form of the command sets IP RIP send version number to its default value.

```
ip rip send version { 1 | 2 | 1 2 | none }
```

```
o ip rip send version
```

Syntax Description

- `1 | 2 | 1 2 | none` - Indicates which version of RIP updates are to be sent

Mode

Interface Configuration Mode

Defaults

- `1 2`

Example:

```
SMIS(config-if)# ip rip send version 1
```

1 implies sending RIP updates compliant with RFC 1058. 2 implies multicasting RIP updates. 1 2 implies both 1 & 2.

Related Commands

- `ip rip receive version` – Sets IP RIP version number for receiving advertisements
- `show ip rip` – Displays IP RIP protocol database or statistics
25.16 ip rip receive version

This command sets IP RIP version number for receiving advertisements and the “no” form of the command sets IP RIP receive version number to its default value.

ip rip receive version { 1 | 2 | 1 2 | none }

no ip rip receive version

Syntax Description
1 | 2 | 1 2 | none - Indicates which version of RIP updates, are to be accepted

Mode
Interface Configuration Mode

Defaults
1 2

Example:
SMIS(config-if)# ip rip receive version 1

The command indicates which version of RIP updates are to be accepted. rip2 and rip1 2 implies reception of multicast packets.

Related Commands
ip rip send version– Sets IP RIP version number for transmitting advertisements
show ip rip – Displays IP RIP protocol database or statistics
25.17 ip rip authentication mode

This command configures authentication mode and key. The “no” form of the command disables authentication.

```plaintext
ip rip authentication mode { text | md5 } key-chain <key-chain-name (16)>
```

```plaintext
no ip rip authentication
```

Syntax Description

- **text** - Clear text authentication
- **md5** - Keyed Message Digest 5 (MD5) authentication. More than one entry can be configured for an interface
- **key-chain** - The value to be used as the Authentication Key

Mode

Interface Configuration Mode

Defaults

No authentication

Example:

```plaintext
SMIS(config-if)# ip rip authentication mode text key-chain asdf123
```

If a string shorter than 16 octets is supplied, it will be left-justified and padded to 16 octets, on the right, with nulls (0x00).

Related Command

- `show ip rip` – Displays IP RIP protocol database or statistics
25.18 timers basic

This command sets update, route age and garbage collection timers. The "no" form of the command sets update, route age and garbage collection timers to the default values.

`timers basic <update-value (10-3600)> <routeage-value (30-500)> <garbage-value (120-180)>`

`no timers basic`

Syntax Description

- `update-value` - Interval Time Between Updates
- `routeage-value` - Time after which the entry is put into garbage collect interval
- `garbage-value` - Interval before deleting an entry after not hearing it

Mode

Interface Configuration Mode

- `update-value` - 30
- `routeage-value` - 180

Defaults

- `garbage-value` - 120

Example:

```
SMIS(config-if)# timers basic 20 40 150
```

The advertisements of garbage-value entry is set to INFINITY, while sending to others.

Related Command

- `show ip rip` – Displays IP RIP protocol database or statistics
25.19 ip split-horizon

This command sets the split horizon status and the "no" form of the command disables the split horizon status.

```
ip split-horizon [poisson]
```

```
no ip split-horizon
```

Syntax Description

- **poisson** - Split horizon with poisson reverse is enabled

Mode

Interface Configuration Mode

Example:

```
SMIS(config-if)# ip split-horizon
```

The value splitHorizon denotes that splitHorizon must be applied in the response packets that are going out.

Related Command

- **show ip rip** – Displays IP RIP protocol database or statistics
25.20 debug ip rip

This command sets the debug level for RIP module and the “no” form of the command resets the debug level for RIP module.

`debug ip rip { all | init | data | control | dump | os | mgmt | failure | buffer }

no debug ip rip { all | init | data | control | dump | os | mgmt | failure | buffer }

Syntax Description
all - All resources
init - Initialization and Shutdown messages
data - Data path messages
control - Control Plane messages
dump - Packet Dump messages
os - OS Resource Messages
mgmt - Management messages
failure - All failure messages (All failures including Packet Validation)
buffer - Buffer messages

Mode
Privileged EXEC Mode

Defaults
init

Example:
SMIS# debug ip rip all

Related Command
show ip rip – Displays IP RIP protocol database or statistics
25.21 show ip rip

This command displays IP RIP protocol database or statistics.

```
show ip rip { database [ <ip-address> <ip-mask> ] | statistics }
```

Syntax Description

- **database** - RIP protocol database for the specified IP address and IP mask of the RIP interface entry
- **statistics** - RIP statistics on the router

Mode

Privileged EXEC Mode

Example:

```
SMIS# show ip rip database 40.0.0.0 255.0.0.0
40.0.0.0/8 directly connected, vlan1

SMIS# show ip rip statistics
RIP Global Statistics:
-----------------------
Total number of route changes is 1
Total number of queries responded is 0
Total number of periodic updates sent is 2
Total number of dropped packets is 0
RIP Interface Statistics:
------------------------
Interface Periodic BadRoutes Triggered BadPackets Admin
IP Address Updates Sent Rcd Updates Sent Rcd Status
--- --------- ----------- -------
40.0.0.0.1 2 0 1 2 Enabled

SMIS# show ip rip database
10.0.0.0/8 [1 ] auto-summary
10.2.0.0/16 [1 ] directly connected, vlan1
30.0.0.0/8 [1 ] auto-summary
```
30.2.0.0/16 [1] directly connected, vlan2

Related Commands

router rip – Enables RIP on all the interfaces
ip rip security – Accepts/ignores RIP1 packets when authentication is in use
ip rip retransmission – Configures the timeout interval and number of retries to retransmit the update request packet or an unacknowledged update response packet

network – Enables RIP on an IP network
neighbor – Adds a neighbor router

passive-interface vlan – Suppresses routing updates on an interface
output-delay – Enables interpacket delay for RIP updates
redistribute – Enables redistribution of corresponding protocol routes into RIP

default-metric – Sets the RIP default metric
ip rip send version – Sets IP RIP version number for transmitting advertisements
ip rip receive version – Sets IP RIP version number for receiving advertisements
ip rip authentication mode
– Configures authentication mode and key

timers basic – Sets update, route age and garbage collection timers
ip split-horizon – Sets the split horizon status
debug ip rip – Sets the debug level for RIP module
26 OSPF

OSPF (Open Shortest Path First) protocol, is an Interior Gateway Protocol used to distribute routing information within a single Autonomous System. Routers use link-state algorithms to send routing information to all nodes in an internetwork by calculating the shortest path to each node based on a topography of the Internet constructed by each node. Each router sends that portion of the routing table (keeps track of routes to particular network destinations), which describes the state of its own links, and it also sends the complete routing structure (topography).

The advantage of shortest path first algorithms is that they result in smaller more frequent updates everywhere. They converge quickly, thus preventing such problems as routing loops and Count-to-Infinity (when routers continuously increment the hop count to a particular network). This makes for a stable network.

Before configuring OSPF, RRD needs to be enabled. This will be done by defining RRD_WANTED in LR/make.h in compilation. In addition, all OSPF interface related configurations, can be done only when the global OSPF is enabled.

The list of CLI commands for the configuration of OSPF is as follows:

```
router ospf
router-id
area - Stability interval
area - translation-role
compatible rfc1583
abr-type
neighbor
area-default cost
area- nssa
area-stub
default-information originate always
area - virtual-link
ASBR Router
```
area - range
summary-address
redistribute
redist-config
network
set nssa asbr-default-route translator
passive-interface vlan
passive-interface default
ip ospf demand-circuit
ip ospf retransmit-interval
ip ospf transmit-delay
ip ospf priority
ip ospf hello-interval
ip ospf dead-interval
ip ospf cost
ip ospf network
ip ospf authentication-key
ip ospf message-digest-key
debug ip ospf
show ip ospf interface
show ip ospf neighbor
show ip ospf request-list
show ip ospf retransmission-list
show ip ospf virtual-links
show ip ospf border-routers
show ip ospf - summary address
show ip ospf info
show ip ospf route
show ip ospf - database summary

show ip ospf - database
26.1 router ospf

This command enables OSPF routing process and the “no” form of the command disables OSPF routing process.

```
router ospf

no router ospf
```

Mode
Global Configuration Mode

Example:
```
SMIS(config)# router ospf
```

The command `no router ospf` disables the OSPF Router Admin Status to terminate the OSPF process.

Related Commands
- `router-id` – Sets the router-id for the OSPF process
- `network` – Defines the interfaces on which OSPF runs and area ID for those interfaces
- `show ip ospf route` – Displays routes learnt by OSPF process
- `show ip ospf database` – Displays OSPF Database summary for the LSA type
26.2 router-id

This command sets the router-id for the OSPF process.

```
router-id <router ip address>
```

Syntax Description

`router ip address` - Specifies the OSPF router ID as an IP address

Mode

Router Configuration Mode

Example:

```
SMIS(config-router)# router-id 10.0.0.1
```

An arbitrary value for the ip-address for each router can be configured; however, each router ID must be unique. To ensure uniqueness, the router-id must match with one of the router's IP interface addresses.

Related Commands

- `router ospf` – Enables OSPF routing process
- `show ip ospf route` – Displays routes learnt by OSPF process
26.3 area - Stability interval

This command configures the Stability interval for NSSA and the “no” form of the command configures default Stability interval for NSSA.

area <area-id> stability-interval <Interval-Value (0 - 0x7fffffff)>

no area <area-id> stability-interval

Syntax Description
area-id - Area associated with the OSPF address range. It is specified as an IP address
stabilityinterval - The number of seconds after an elected translator determines its services are no longer required, that it must continue to perform its translation duties

Mode
Router Configuration Mode

Defaults
40

Example:
SMIS(config-router)# area 10.0.0.1 stability-interval 10000

Area ID 0.0.0.0 is used for the OSPF backbone.
The OSPF Sequence Number is a 32 bit signed integer. It starts with the value '80000001'h, -- or '-7FFFFFFF'h, and increments until '7FFFFFFF'h. Thus, a typical sequence number will be very negative.

Related Command
show ip ospf info – Displays general information about OSPF routing process
26.4 area - translation-role

This command configures the translation role for the NSSA and the “no” form of the command configures the default translation role for the NSSA.

area <area-id> translation-role { always | candidate }

no area <area-id> translation-role

Syntax Description
area-id - Area associated with the OSPF address range. It is specified as an IP address
translation-role - An NSSA Border router's ability to perform NSSA Translation of Type-7 LSAs to Type-5 LSAs.

Mode
Router Configuration Mode

Defaults
candidate

Example:
SMIS(config-router)# area 10.0.0.1 translation-role always

Type-5 LSAs- Originated by AS boundary routers, and flooded through-out the AS. Each AS-external-LSA describes a route to a destination in another Autonomous System. Default routes for the AS can also be described by AS-external-LSAs.

Related Command
area- nssa – Configures an area as a NSSA and other parameters related to that area
26.5 compatible rfc1583

This command sets OSPF compatibility list compatible with RFC 1583 and the “no” form of the command disables RFC 1583 compatibility.

compatible rfc1583

no compatible rfc1583

Mode
Router Configuration Mode

Defaults
Enabled

Example:
SMIS(config-router)# compatible rfc1583

This command enables support of RFC1583 compatibility in products that support later standards. It controls the preference rules, when choosing among multiple AS external LSAs advertising the same destination. When set to enabled, the preference rules remain those specified by RFC 1583. When set to disabled, the preference rules are those stated in RFC 2178. To minimize the chance of routing loops, all OSPF routers in an OSPF routing domain must have RFC compatibility set identically.
26.6 abr-type

This command sets the Alternative ABR Type.

abr-type { standard | cisco | ibm }

Syntax Description
standard - Standard ABR type as defined in RFC 2328

cisco - CISCO ABR type as defined in RFC 3509

ibm - IBM ABR type as defined in RFC 3509

Mode
Router Configuration Mode

Defaults
standard

Example:
SMIS(config-router)# abr-type standard

RFC-3509 -- Alternative Implementations of OSPF Area Border Routers.

Related Commands
router ospf – Enables OSPF routing process

show ip ospf info – Displays general information about the OSPF routing process
26.7 neighbor

This command specifies a neighbor router and its priority. The “no” form of the command removes the neighbor/Set default value for the Neighbor Priority.

neighbor <neighbor-id> [priority <priority value (0-255)>]

no neighbor <neighbor-id> [priority]

Syntax Description
neighbor-id - Neighbor router ID
priority - A number value that specifies the router priority

Mode
Router Configuration Mode

Defaults
priority - 1

Example:
SMIS(config-router)# neighbor 20.0.0.1 priority 25

The value 0 signifies that the neighbor is not eligible to become the designated router on this particular network.

Related Commands
ip ospf priority – Sets the router priority
ip ospf network – Configures the OSPF network type to a type other than the default for a given media
show ip ospf neighbor– Displays OSPF neighbor information list
26.8 area-default cost

This command specifies a cost for the default summary route sent into a stub or NSSA and the “no” form of the command removes the assigned default route cost.

```
area <area-id> default-cost <cost> [tos <tos value(0-30)>]

no area <area-id> default-cost [tos <tos value (0-30)>]
```

Syntax Description
- **area-id** - Area associated with the OSPF address range. It is specified as an IP address
- **default-cost** - Cost for the default summary route used for a stub area
- **tos** - Type of Service of the route being configured

Mode
Router Configuration Mode

Defaults
- default-cost - 10
- tos - 0

Example:
```
SMIS(config-router)# area 10.0.0.1 default-cost 5
```

A default cost can be defined only for a valid area.
tos can be configured only if the code is compiled with TOS Support

Related Commands
- **area-stub** – Specifies an area as a stub area and other parameters related to that area
- **area range** – Consolidates and summarizes routes at an area boundary
- **ip ospf cost** – Specifies the cost of sending a packet on an interface
- **ip ospf authentication** – Specifies the authentication type for an interface
26.9 area- nssa

This command configures an area as a NSSA and other parameters related to that area.

```
area <area-id> nssa [{ no-summary | default-information-originate
metric <value>] [metric-type <Type(1-3)>] [tos <tos value (0-30)>] }
```

Syntax Description

- **area-id**: Area associated with the OSPF address range. It is specified as an IP address
- **nssa**: Configures an area as a not-so-stubby area (NSSA)
- **no-summary**: Allows an area to be a not-so-stubby area but not have summary routes injected into it
- **default-information-originate**: Default route into OSPF
- **metric**: The Metric value applied to the route before it is advertised into the OSPF Domain
- **metric-type**: The Metric Type applied to the route before it is advertised into the OSPF Domain
- **tos**: Type of Service of the route being configured

Mode

Router Configuration Mode

Defaults

- metric: 10
- metric-type: 1
- tos: 0

Example:

```
SMIS(config-router)# area 10.0.0.1 nssa
```

The **no area <area-id> [{ stub | nssa }]** command removes an area or converts stub/nssa to normal area.

tos can be configured only if the code is compiled with TOS Support

Related Commands

- **area - range**: Consolidates and summarizes routes at an area boundary
- **area - translation-role**: Configures the translation role for the NSSA
26.10 area-stub

This command specifies an area as a stub area and other parameters related to that area and the "no" form of the command removes an area or converts stub/nssa to normal area.

area <area-id> stub [no-summary]

no area <area-id> [{ stub | nssa }]

Syntax Description
area-id - Area associated with the OSPF address range. It is specified as an IP address
stub - Stub area. If the area type is no-summary, the router will neither originate nor propagate summary LSAs into the stub area
nssa - Not So Stubby Area

Mode
Router Configuration Mode

Example:
SMIS(config-router)# area 10.0.0.1 stub

The command must be configured on all routers and access servers in the stub area.

Related Commands
area-default cost – Specifies a cost for the default summary route sent into a stub or NSSA
area - range – Consolidates and summarizes routes at an area boundary
ip ospf authentication – Specifies the authentication type for an interface
26.11 default-information originate always

This command enables generation of a default external route into an OSPF routing domain and other parameters related to that area. The no form of the command disables generation of a default external route into an OSPF routing domain.

default-information originate always [metric <metric-value (0-0xffffff)>] [metric-type <type (1-2)>]

no default-information originate always [metric <metric-value (0-0xffffff)>] [metric-type <type (1-2)>]

Syntax Description
- **metric** - The Metric value applied to the route before it is advertised into the OSPF Domain
- **metric-type** - The Metric Type applied to the route before it is advertised into the OSPF Domain

Mode
Router Configuration Mode

Defaults
- metric – 10
- metric-type - 2

Example:
```
SMIS(config-router)# default-information originate always metric 1
metric-type 1
```

Related Command
- **redistribute** – Configures the protocol from which the routes have to be redistributed into OSPF
26.12 area - virtual-link

This command defines an OSPF virtual link and its related parameters. The “no” form removes an OSPF virtual link.

```
area <area-id> virtual-link <router-id> [authentication {message-digest | null}] [hello-interval <value (1-65535)>] [retransmit-interval <value (0-3600)>] [transmit-delay <value (0-3600)>] [dead-interval <value>]
[[authentication-key <key (8)> | message-digest-key <Key-id (0-255)>]
  md5 <key (16)>]]
```

```
no area <area-id> virtual-link <router-id> [authentication] [hello-interval] [retransmit-interval] [transmit-delay] [dead-interval]
[[authentication-key | message-digest-key <Key-id (0-255)>]]
```

Syntax Description

area-id - The Transit Area that the Virtual Link traverses. It is specified as an IP address
virtual-link - The Router ID of the Virtual Neighbor
authentication - The authentication type for an interface
hello-interval - The interval between hello packets that the software sends on the OSPF virtual link interface
retransmit-interval - The time between link-state advertisement (LSA) retransmissions for adjacencies belonging to the OSPF virtual link interface
transmit-delay - The time the router will stop using this key for packets generation
dead-interval - The interval at which hello packets must not be seen before its neighbors declare the router down (the range of values for the dead interval is 0–0x7fffffff)
authentication-key - Identifies the secret key used to create the message digest appended to the OSPF packet
message-digest-key - OSPF MD5 authentication. Enables Message Digest 5 (MD5) authentication on the area specified by the area-id
md5 - The secret key which is used to create the message digest appended to the OSPF packet

Mode
Router Configuration Mode

Defaults
Authentication - null
hello-interval - 10
retransmit-interval - 5
transmit-delay - 1
dead-interval - 40

Example:
SMIS(config-router)# area 10.0.0.1 virtual-link 20.0.0.1 authentication
message-digest hello-interval 100 retransmitinterval 100 transmit-delay
50 dead-interval 200 authenticationkey asdf

In OSPF, all areas must be connected to a backbone area. If the connection to the backbone is
lost, it can be repaired by establishing a virtual link hello-interval and dead-interval: The value
must be the same for all routers and access servers on a specific network

Related Commands
area - range – Consolidates and summarizes routes at an area boundary
ip ospf authentication – Specifies the authentication type for an interface
show ip ospf info– Displays general information about OSPF routing process
show ip ospf virtual-links – Displays OSPF Virtual link information
26.13 ASBR Router

This command specifies this router as ASBR. The “no” form of the command disables this router as ASBR.

ASBR Router

no ASBR Router

Mode

Router Configuration Mode

Example:

```
SMIS(config-router)# ASBR Router
```

Routers that act as gateways (redistribution) between OSPF and other routing protocols (IGRP, EIGRP, RIP, BGP, Static) or other instances of the OSPF routing process are called autonomous system boundary router (ASBR).

Related Commands

- `set nssa asbr-default-route translator` – Enables/disables setting of P bit in the default Type-7 LSA generated by NSSA internal ASBR
- `show ip ospf info` – Displays general information about the OSPF routing process
26.14 area - range

This command consolidates and summarizes routes at an area boundary. The “no” form of the command deletes the Summary Address.

```
area <AreaId> range <Network> <Mask> {summary | Type7} [{advertise | notadvertise}] [tag <value>]
```

```
no area <AreaId> range <Network> <Mask>
```

Syntax Description

Area-id - Area associated with the OSPF address range. It is specified as an IP address

range - OSPF address range

Network - The IP address of the Net indicated by the range

Mask - The subnet mask that pertains to the range

summary - Summary LSAs

Type7 - Type-7 LSA

advertise - When set to advertise and associated arealid is 0.0.0.0, aggregated Type-5 are generated. Otherwise if associated arealid is x.x.x.x (other than 0.0.0.0) aggregated Type-7 is generated in NSSA x.x.x.x

not-advertise - When set to doNotAdvertise (2) and associated arealid is 0.0.0.0, Type-5 is not generated for the specified range, while aggregated Type-7 are generated in all attached NSSA. While if associated arealid is x.x.x.x(other than 0.0.0.0), Type-7 are not generated in NSSA x.x.x.x for the specified range

tag - The Tag Type describes whether Tags will be automatically generated or will be manually configured

Mode

Router Configuration Mode

Defaults

tag - 2

Example:

```
SMIS(config-router)# area 10.0.0.1 range 10.0.0.0 255.0.0.0 summary advertise tag 10
```
The mask indicates the range of addresses being described by the particular route.

For Example:, a summary-LSA for the destination 128.185.0.0 with a mask of 0xffff0000 actually is describing a single route to the collection of destinations 128.185.0.0 - 128.185.255.255
This command is used only with Area Border Routers (ABRs). It is used to consolidate or summarize routes for an area. The result is that a single summary route is advertised to other areas by the ABR.

Related Commands

ip ospf authentication – Specifies the authentication type for an interface

area-default cost – Specifies a cost for the default summary route sent into a stub or NSSA

area- nssa – Configures an area as a NSSA and other parameters related to that area

area-stub– Specifies an area as a stub area and other parameters related to that area

area - virtual-link – Defines an OSPF virtual link and its related parameters

summary-address – Creates aggregate addresses for OSPF

show ip ospf - summary address – Displays OSPF Summary-address redistribution Information
26.15 summary-address

This command creates aggregate addresses for OSPF and the "no" form of the command deletes the External Summary Address.

```
summary-address <Network> <Mask> <AreaId> [{allowAll | denyAll | advertise | not-advertise}] [Translation {enabled | disabled}]
```

```
no summary-address <Network> <Mask> <AreaId>
```

Syntax Description

Network - The IP address of the Net indicated by the range

Mask - The subnet mask that pertains to the range

AreaId - Area associated with the OSPF address range. It is specified as an IP address

allowAll - When set to allowAll and associated areaid is 0.0.0.0 aggregated Type-5 are generated for the specified range. In addition aggregated Type-7 are generated in all attached NSSA, for the specified range

denyAll - When set to denyAll neither Type-5 nor Type-7 will be generated for the specified range

advertise - When set to advertise and associated areaid is 0.0.0.0, aggregated Type-5 are generated. Otherwise if associated areaid is x.x.x.x(other than 0.0.0.0) aggregated Type-7 is generated in NSSA x.x.x.x

not-advertise - When set to doNotAdvertise (2) and associated areaid is 0.0.0.0, Type-5 is not generated for the specified range, while aggregated Type-7 are generated in all attached NSSA. While associated areaid is x.x.x.x(other than 0.0.0.0), Type-7 are not generated in NSSA x.x.x.x for the specified range

Translation - Indicates how an NSSA Border router is performing NSSA translation of Type-7 to into Type-5 LSAs. When set to enabled, P Bit is set in the generated Type-7 LSA. When set to disabled P Bit is cleared in the generated Type-7 LSA for the range

Mode

Router Configuration Mode

Defaults

summary-address - advertise
translation - disabled
Example:
SMIS(config-router)# summary-address 10.0.0.6 255.0.0.0 10.0.0.0
allowAll Translation enabled

When translation {enabled | disabled} is set to enabled, the NSSA border router's
futOspfAreaNsstaTranslatorRole has been set to always. When this object is set to disabled, a
candidate NSSA Border router does not perform translation. Indicates whether Type-5/Type-7 will
be aggregated or not generated for the specified range. allowAll and denyAll are not valid for
areaId other than 0.0.0.0.
Routes learnt from other routing protocols can be summarized. The metric used to advertise the
summary is the smallest metric of all the more specific routes.
This command helps reduce the size of the routing table.

Related Commands
ip ospf authentication-key – Specifies a password to be used by neighboring routers
that are using the OSPF simple password authentication
area - range – Consolidates and summarizes routes at an area boundary
ip ospf message-digest-key – Enables OSPF MD5 authentication
show ip ospf - summary address – Displays OSPF Summary-address redistribution
Information
show ip ospf - database summary – Displays OSPF LSA Database summary
26.16 redistribute

This command configures the protocol from which the routes have to be redistributed into OSPF and the "no" form of the command disables redistribution of routes from the given protocol into OSPF.

```
redistribute {static | connected | rip | bgp | all}
```

```
no redistribute {static | connected | rip | bgp | all}
```

Syntax Description

- `static` - Redistributes routes, configured statically, to the OSPF routing protocol
- `connected` - Redistributes directly connected network routes, to the OSPF routing protocol
- `rip` - Redistributes routes that are learnt by the RIP process, to the OSPF routing protocol
- `bgp` - Redistributes routes, that are learnt by the BGP process, to the OSPF routing protocol
- `all` - Redistributes all routes to the OSPF routing protocol

Mode

Router Configuration Mode

Example:

```
SMIS(config-router)# redistribute static
```

The **ASBR Router** command must be configured prior to the execution of this command.

Related Commands

- `default-information originate always` – Enables generation of a default external route into an OSPF routing domain
- `redist-config` – Configures the information to be applied to routes learnt from RTM
26.17 redist-config

This command configures the information to be applied to routes learnt from RTM and the “no” form of the command deletes the information applied to routes learnt from RTM.

```
redist-config <Network> <Mask> [metric-value <metric (1 - 16777215)>] [metric-type {asExttype1 | asExttype2}] [tag <tag-value>]
```

```
no redist-config <Network> <Mask>
```

Syntax Description

- **Network** - IP Address of the Destination route
- **Mask** - Mask of the Destination route
- **metric-value** - The Metric value applied to the route before it is advertised into the OSPF Domain
- **metric-type** - The Metric Type applied to the route before it is advertised into the OSPF Domain
- **tag** - The Tag Type describes whether Tags will be automatically generated or will be manually configured

Mode

Router Configuration Mode

Defaults

- metric-value - 10
- metric-type - asExttype2
- tag - manual

Example:

```
SMIS(config-router)# redist-config 10.0.0.0 255.0.0.0 metricvalue 100 metric-type asExttype1 tag 10
```

tag <tag-value>: This is not used by OSPF protocol itself. It may be used to communicate information between AS boundary routers. The precise nature of this information is outside the scope of OSPF. If tags are manually configured, the futospfRDRRouteTag MIB has to be set with the Tag value needed.
Related Command

`redistribute` – Configures the protocol from which the routes have to be redistributed into OSPF.
26.18 network

This command defines the interfaces on which OSPF runs and the area ID for those interfaces. The "no" form of the command disables OSPF routing for interfaces defined and to remove the area ID of that interface.

```
network <Network number> area <area-id> [unnum Vlan <PortNumber>]
```

```
no network <Network number> area <area-id> [unnum Vlan <PortNumber>]
```

Syntax Description

- **Network number** - Network type
- **area** - Area associated with the OSPF address range. It is specified as an IP address
- **unnum Vlan** - VLAN id for which no ip address is configured

Mode

Router Configuration Mode

Example:

```
SMIS(config-router)# network 20.0.0.1 area 20.0.0.0 unnum Vlan 1
```

When a more specific OSPF network range is removed, interfaces belonging to that network range will be retained and remain active if and only if a less specific network range exists.

There is no limit to the number of network commands that can be used on the router

Related Commands

- **router ospf** – Enables OSPF routing process
- **show ip ospf database** – Displays OSPF Database summary for the LSA type
- **show ip ospf interface** – Displays OSPF interface information
26.19 set nssa asbr-default-route translator

This command enables/disables setting of P bit in the default Type-7 LSA generated by NSSA internal ASBR.

```
set nssa asbr-default-route translator { enable | disable }
```

Syntax Description
- **enable** - When set to enabled, P-Bit is set in the generated Type-7 default LSA
- **disable** - When set disabled, P-Bit is clear in the generated default LSA

Mode
Router Configuration Mode

Defaults
disable

Example:
```
SMIS(config-router)# set nssa asbr-default-route translator enable
```

Specifies the P-Bit setting for the default Type-7 LSA generated by ASBR(which is not ABR).

Related Command
- **ASBR Router** – Specifies this router as ASBR
26.20 passive-interface vlan

This command suppresses routing updates on an interface and the “no” form of the command enables routing updates on an interface.

```
passive-interface vlan <vlan-id(1-4069)>}
```

```
no passive-interface vlan <vlan-id(1-4069)>
```

Syntax Description

vlan-id - LSA retransmissions for adjacencies belonging to the VLAN interface

Mode

Router Configuration Mode

Example:

```
SMIS(config-router)# passive-interface vlan 1
```

OSPF routing information is neither sent nor received through the specified router interface. The specified interface address appears as a stub network in the OSPF domain.

Related Commands

- passive-interface default – Suppresses routing updates on all interfaces
- show ip ospf interface – Displays OSPF interface information
- show ip ospf request-list – Displays OSPF Link state request list information
26.21 passive-interface default

This command suppresses routing updates on all interfaces and the "no" form of the command enables routing updates on all interfaces.

passive-interface default

no passive-interface default

Mode

Router Configuration Mode

Example:

```plaintext
SMIS(config-router)# passive-interface default
```

All the OSPF interfaces created after the execution of this command will be passive. This is useful in Internet service provider (ISP) and large enterprise networks where many of the distribution routers have more than 200 interfaces.

Related Commands

- `passive-interface vlan` – Suppresses routing updates on an interface
- `show ip ospf interface` – Displays OSPF interface information
- `show ip ospf request-list` – Displays OSPF Link state request list information
26.22 ip ospf demand-circuit

This command configures OSPF to treat the interface as an OSPF demand circuit and the "no" form of the command removes the demand circuit designation from the interface.

ip ospf demand-circuit

no ip ospf demand-circuit

Mode

Interface Configuration Mode

Example:

```
SMIS(config-if)# ip ospf demand-circuit
```

It indicates whether Demand OSPF procedures (hello suppression to FULL neighbors and setting the DoNotAge flag on prorogated LSAs) must be performed on this interface.

On point-to-point interfaces, only one end of the demand circuit must be configured with this command. Periodic hello messages are suppressed and periodic refreshes of link-state advertisements (LSAs) do not flood the demand circuit.

Related Command

show ip ospf interface – Displays OSPF interface information
26.23 ip ospf retransmit-interval

This command specifies the time between link-state advertisement (LSA) retransmissions for adjacencies belonging to the interface and the “no” form of the command uses the default time between link-state advertisement (LSA) retransmissions for adjacencies belonging to the interface.

```
ip ospf retransmit-interval <seconds (0 - 3600)>

no ip ospf retransmit-interval
```

Mode
Interface Configuration Mode

Defaults
5

Example:
```
SMIS(config-if)# ip ospf retransmit-interval 300
```

This value is also used while retransmitting database description and link-state request packets.

Related Commands
- `ip ospf hello-interval` – Specifies the interval between hello packets sent on the interface
- `ip ospf dead-interval` – Sets the interval at which hello packets must not be seen before neighbors declare the router down
- `ip ospf transmit-delay` – Sets the estimated time it takes to transmit a link state update packet on the interface
- `show ip ospf retransmission-list` – Displays OSPF Link state retransmission list information
26.24 ip ospf transmit-delay

This command sets the estimated time it takes to transmit a link state update packet on the interface and the “no” form of the command sets the default estimated time it takes to transmit a link state update packet on the interface.

```
ip ospf transmit-delay <seconds (0 - 3600)>
```

```
o ip ospf transmit-delay
```

Mode
Interface Configuration Mode

Defaults
1

Example:
```
SMIS(config-if)# ip ospf transmit-delay 50
```

Link-state advertisements (LSAs) in the update packet must have their ages incremented by the amount specified in the seconds argument before transmission.

Related Commands
nip ospf hello-interval – Specifies the interval between hello packets sent on the interface

nip ospf dead-interval – Sets the interval at which hello packets must not be seen before neighbors declare the router down

nip ospf retransmit-interval – Specifies the time between link-state advertisement (LSA) retransmissions for adjacencies belonging to the interface
26.25 ip ospf priority

This command sets the router priority and the "no" form of the command sets default value for router priority.

```
ip ospf priority <value (0 - 255)>
```

no ip ospf priority

Mode

Interface Configuration Mode

Defaults

1

Example:

```
SMIS(config-if)# ip ospf priority 25
```

When two routers attached to a network attempt to become the designated router, the one with the higher router priority takes precedence. If there is a tie, the router with the higher router ID takes precedence.

Related Commands

`ip ospf network` – Configures the OSPF network type to a type other than the default for a given media

`neighbor` – Specifies a neighbor router and its priority
26.26 ip ospf hello-interval

This command specifies the interval between hello packets sent on the interface and the “no” form of the command sets default value for, interval between hello packets sent on the interface.

ip ospf hello-interval <seconds (1 - 65535)>

no ip ospf hello-interval

Mode
Interface Configuration Mode

Defaults
10

Example:
SMIS(config-if)# ip ospf hello-interval 75

This value must be the same for all routers attached to a common network.

Related Commands
- **ip ospf retransmit-interval** – Specifies the time between link-state advertisement (LSA) retransmissions for adjacencies belonging to the interface
- **ip ospf dead-interval** – Sets the interval at which hello packets must not be seen before neighbors declare the router down
- **ip ospf transmit-delay** – Sets the estimated time it takes to transmit a link state update packet on the interface
- **show ip ospf interface** – Displays OSPF interface information
26.27 ip ospf dead-interval

This command sets the interval at which hello packets must not be seen before neighbors declare the router down and the “no” form of the command sets default value for the interval at which hello packets must not be seen before neighbors declare the router down.

```
ip ospf dead-interval <seconds (0-0x7fffffff)>
```

```
o ip ospf dead-interval
```

Mode
Interface Configuration Mode

Defaults
40

Example:
```
SMIS(config-if)# ip ospf dead-interval 1000
```

This value must be the same for all routers and access servers on a specific network.

Related Commands
- `ip ospf retransmit-interval` – Specifies the time between link-state advertisement (LSA) retransmissions for adjacencies belonging to the interface
- `ip ospf hello-interval` – Specifies the interval between hello packets sent on the interface
- `ip ospf transmit-delay` – Sets the estimated time it takes to transmit a link state update packet on the interface
- `show ip ospf interface` – Displays OSPF interface information
26.28 ip ospf cost

This command explicitly specifies the cost of sending a packet on an interface and the “no” form of the command resets the path cost to the default value.

`ip ospf cost <cost (1-65535)> [tos <tos value (0-30)>]`

`no ip ospf cost [tos <tos value (0-30)>]`

Syntax Description
- **cost** - Type 1 external metrics which is expressed in the same units as OSPF interface cost that is in terms of the OSPF link state metric
- **tos** - Type of Service of the route being configured

Mode
Interface Configuration Mode

Defaults
0

Example:
```
SMIS(config-if)# ip ospf cost 10
```

In general, the path cost is calculated using the following formula: 108 / bandwidth
Using this formula, the default path costs are calculated.

Example:: 56-kbps serial link-Default cost is 1785
Ethernet-Default cost is 10
tos can be configured only if the code is compiled with TOS Support

Related Commands
- `area-default cost` – Specifies a cost for the default summary route sent into a stub or NSSA
- `show ip ospf interface` – Displays OSPF interface information
26.29 ip ospf network

This command configures the OSPF network type to a type other than the default for a given media and the “no” form of the command sets the OSPF network type to the default type.

```
ip ospf network {broadcast | non-broadcast | point-to-multipoint | point-to-point}
```

```
o ip ospf network
```

Syntax Description

- **broadcast** - Networks supporting many (more than two) attached routers, together with the capability to address a single physical message to all of the attached routers (broadcast)
- **non-broadcast** - Networks supporting many (more than two) routers, but having no broadcast capability
- **point-to-multipoint** - Treats the non-broadcast network as a collection of point-to-point links
- **point-to-point** - A network that joins a single pair of routers

Mode

Interface Configuration Mode

Example:

```
SMIS(config-if)# ip ospf network broadcast
```

Each pair of routers on a broadcast network is assumed to be able to communicate directly. An Ethernet is an Example: of a broadcast network. A 56Kb serial line is an Example: of a point-to-point network.

Related Commands

- **neighbor** - Specifies a neighbor router and its priority
- **ip ospf priority** – Sets the router priority
- **show ip ospf interface** – Displays OSPF interface information
26.30 ip ospf authentication-key

This command specifies a password to be used by neighboring routers that are using the OSPF simple password authentication. The “no” form of the command removes a previously assigned OSPF password.

```
ip ospf authentication-key <password (8)>  

no ip ospf authentication-key
```

Mode

Interface Configuration Mode

Example:

```
SMIS(config-if)# ip ospf authentication-key asdf123
```

The password string can contain from 1 to 8 uppercase and lowercase alphanumeric characters. A separate password can be assigned to each network on a per-interface basis. All neighboring routers on the same network must have the same password to be able to exchange OSPF information.

Related Commands

- `ip ospf authentication` – Specifies the authentication type for an interface
- `summary-address` – Creates aggregate addresses for OSPF
- `show ip ospf info` – Displays general information about OSPF routing process
26.31 ip ospf authentication

This command specifies the authentication type for an interface and the “no” form of the command removes the authentication type for an interface and set it to NULL authentication.

```
ip ospf authentication [{message-digest | null}]
```

```
no ip ospf authentication
```

Syntax Description

- **message-digest** - Message Digest authentication
- **null** - NULL authentication

Mode

Interface Configuration Mode

Defaults

null

Example:

```
SMIS(config-if)# ip ospf authentication
```

Before using the `ip ospf authentication` command, a password for the interface must be configured using the `ip ospf authentication-key` command.

If the authentication type is 'message digest' then key will be selected from the md-5 table.

Related Commands

- **area-stub** – Specifies an area as a stub area and other parameters related to that area
- **area-default cost** – Specifies a cost for the default summary route sent into a stub or NSSA
- **area – virtual-link** – Defines an OSPF virtual link and its related parameters
- **area – range** – Consolidates and summarizes routes at an area boundary
- **ip ospf authentication-key** – Specifies a password to be used by neighboring routers that are using the OSPF simple password authentication
- **ip ospf message-digest-key** – Enables OSPF MD5 authentication
This command enables OSPF MD5 authentication and the “no” form of the command removes an old MD5 key.

ip ospf message-digest-key <Key-ID (0-255)> md5 <md5-Key (16)>

no ip ospf message-digest-key <Key-ID (0-255)>

Syntax Description

Key-ID - Identifies the secret key, which is used to create the message digest appended to the OSPF packet

md5 - Secret key, which is used to create the message digest appended to the OSPF packet

Mode

Interface Configuration Mode

Example:

SMIS(config-if)# ip ospf message-digest-key 5 md5 abcd123

Message Digest authentication is a cryptographic authentication. A key (password) and key-id are configured on each router. The router uses an algorithm based on the OSPF packet, the key, and the key-id to generate a “message digest” that gets appended to the packet. Usually, one key per interface is used to generate authentication information when sending packets and to authenticate incoming packets. The same key identifier on the neighbor router must have the same key value.

Related Commands

ip ospf authentication – Specifies the authentication type for an interface

summary-address – Creates aggregate addresses for OSPF

show ip ospf – Displays general information about OSPF routing process
26.33 debug ip ospf

This command sets the OSPF debug level. and the "no" form of the command removes an old MD5 key.

debug ip ospf { pkt { hp | ddp | lrq | lsu | lsa } | module { adj_formation | ism | nsm | config | interface } }

no debug ip ospf { pkt { hp | ddp | lrq | lsu | lsa } | module { adj_formation | ism | nsm | config | interface } | all }

Syntax Description

pkt - Packet High Level Dump debug messages
hp - Hello packet debug messages
ddp - DDP packet debug messages
lrq - Link State Request Packet debug messages
lsu - Link State Update Packet debug messages
lsa Link State Acknowledge Packet debug messages
module - RTM Module debug messages
adj_formation - Adjacency formation debug messages
ism - Interface State Machine debug messages
nsm - Neighbor State Machine debug messages
config - Configuration debug messages
interface - Interface

Mode
Privileged EXEC Mode

Example:
SMIS# debug ip ospf pkt hp

The information displayed by the show ip ospf retransmission-list command is useful in debugging OSPF routing operations.

Related Commands
show ip ospf info – Displays general information about OSPF routing process
show debugging – Displays the state of each debugging option
26.34 show ip ospf interface

This command displays OSPF interface information.

`show ip ospf interface [{ vlan <integer(1-4069)> | <iftype> <ifnum> }]`

Syntax Description

- **vlan**: LSA retransmissions for adjacencies belonging to the VLAN interface
- **iftype**: Interface type, can either be a gi, ex or qx ethernet interfaces
- **ifnum**: Physical interface ID including slot and port number

Mode

Privileged EXEC Mode

Example:

```
SMIS# show ip ospf interface
vlan10 is up, line protocol is up
Internet Address 10.0.0.1, Mask 255.0.0.0, Area 33.0.0.12
AS 1, Router ID 10.0.0.1, Network Type BROADCAST, Cost 1
Transmit Delay is 1 sec, State 4, Priority 1
Designated RouterId 10.0.0.1, Interface address 10.0.0.1
No backup designated router on this network
Timer intervals configured, Hello 10, Dead 40, Wait 40,
Retransmit 5
Hello due in 4 sec
Neighbor Count is 0, Adjacent neighbor count is 0
vlan1 is up, line protocol is up
Internet Address 40.0.0.1, Mask 255.0.0.0, Area 33.0.0.12
AS 1, Router ID 10.0.0.1, Network Type BROADCAST, Cost 1
Transmit Delay is 1 sec, State 5, Priority 1
Designated RouterId 20.0.0.2, Interface address 40.0.0.2
Backup Designated RouterId 10.0.0.1, Interface address
40.0.0.1
Timer intervals configured, Hello 10, Dead 40, Wait 40,
Retransmit 5
Hello due in 4 sec
Neighbor Count is 1, Adjacent neighbor count is 1
```
Adjacent with the neighbor 20.0.0.2

Related Commands

passive-interface vlan – Suppresses routing updates on an interface

passive-interface default – Suppresses routing updates on all interfaces

ip ospf demand-circuit – Configures OSPF to treat the interface as an OSPF demand circuit

ip ospf hello-interval – Specifies the interval between hello packets sent on the interface

ip ospf dead-interval – Sets the interval at which hello packets must not be seen before neighbors declare the router down

ip ospf cost – Specifies the cost of sending a packet on an interface
26.35 show ip ospf neighbor

This command displays OSPF neighbor information list.

```
show ip ospf neighbor [vlan <vlan-id (1-4069)> | <iftype> <ifnum>]
[Neighbor ID] [detail]
```

Syntax Description
- **vlan** - LSA retransmissions for adjacencies belonging to the VLAN interface
- **Neighbor ID** - Neighbor router ID
- **detail** - OSPF Neighbor information in detail
- **iftype** - Interface type, can either be a gi, ex or qx ethernet interfaces
- **ifnum** - Physical interface ID including slot and port number

Mode
Privileged EXEC Mode

Example:
```
SMIS# show ip ospf neighbor
Neighbor-ID Pri State DeadTime Address Interface
--------- ----- ------- ------- ------- -------
20.0.0.2 1 FULL/BACKUP 33 40.0.0.2 vlan1
```

Related Command
- **neighbor** – Specifies a neighbor router and its priority
26.36 show ip ospf request-list

This command displays OSPF Link state request list information.

```
show ip ospf request-list [<neighbor-id>] [vlan <vlan-id (1-4069)> | <iftype> <ifnum>]
```

Syntax Description
- **neighbor-id** - Neighbor router ID
- **vlan** - LSA retransmissions for adjacencies belonging to the VLAN interface
- **iftype** - Interface type, can either be a gi, ex or qx ethernet interfaces
- **ifnum** - Physical interface ID including slot and port number

Mode
Privileged EXEC Mode

Example:
```
SMIS# show ip ospf request-list
OSPF Router with ID (20.0.0.2)
Neighbor 10.0.0.1, interface vlan1 address 40.0.0.1
  Type LS-ID ADV-RTR SeqNo Age Checksum
  ---- ---- ------- ----- -- --------
Neighbor 20.0.0.2, interface vlan1 address 40.0.0.2
  Type LS-ID ADV-RTR SeqNo Age Checksum
  ---- ---- ------- ----- -- --------
```

Related Commands
- **passive-interface vlan** – Suppresses routing updates on an interface
- **passive-interface default** – Suppresses routing updates on all interfaces
26.37 show ip ospf retransmission-list

This command displays OSPF Link state retransmission list information.

 show ip ospf retransmission-list [<neighbor-id>] [vlan <vlan-id (1-4069)> | <iftype> <ifnum>]

Syntax Description
neighbor-id - Neighbor router ID
vlan - LSA retransmissions for adjacencies belonging to the VLAN interface
iftype - Interface type, can either be a gi, ex or qx ethernet interfaces
ifnum - Physical interface ID including slot and port number

Mode
Privileged EXEC Mode

Example:
SMIS# show ip ospf retransmission-list
OSPF Router with ID (20.0.0.2)
Neighbor 10.0.0.1, interface vlan1 address 10.0.0.2
Link State Retransmission due in 30 ticks, Queue length 3
Type LS-ID ADV-RTR SeqNo Age Checksum

This value is also used while retransmitting database description and link-state request packets.

Related Command
ip ospf retransmit-interval – Specifies the time between link-state advertisement (LSA) retransmissions for adjacencies belonging to the interface
26.38 show ip ospf virtual-links

This command displays OSPF Virtual link information.

show ip ospf virtual-links

Mode
Privileged EXEC Mode

Example:
SMIS# show ip ospf virtual-links
Virtual Link to router 10.0.0.1, Interface State is DOWN
Transit Area 33.0.0.12
Transmit Delay is 1 sec, Neighbor State DOWN
Timer intervals configured, Hello 10, Dead 60, Retransmit 5

Related Command
area - virtual-link – Defines an OSPF virtual link and its related parameters
26.39 show ip ospf border-routers

This command displays OSPF Border and Boundary Router Information.

show ip ospf border-routers

Mode
Privileged EXEC Mode

Example:
SMIS# show ip ospf border-routers
OSPF Process Border Router Information
Destination TOS Type NextHop Cost Rt.Type Area
--------- --- ----- ------- ---- ------- ----
10.0.0.1 0 ASBR 40.0.0.1 1 intraArea 33.0.0.12

Related Commands
abr-type – Sets the Alternative ABR Type
ASBR Router – Specifies this router as ASBR
26.40 show ip ospf - summary address

This command displays OSPF summary-address redistribution Information.

`show ip ospf {area-range | summary-address}`

Syntax Description

area-range - Area associated with the OSPF address range. It is specified as an IP address

summary-address - Aggregate addresses for OSPF

Mode

Privileged EXEC Mode

Example:

SMIS# show ip ospf area-range

Display of Summary addresses for Type3 and Translated Type5
OSPF Summary Address Configuration Information

<table>
<thead>
<tr>
<th>Network Mask</th>
<th>LSAType</th>
<th>Area</th>
<th>Effect</th>
<th>Tag</th>
<th>Advertise</th>
<th>TranslationState</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.0.0.0</td>
<td>Summary</td>
<td>33.0.0.12</td>
<td>Advertise</td>
<td>1074636208</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SMIS# show ip ospf summary-address

Display of Summary addresses for Type5 and Type7 from redistributed routes

OSPF External Summary Address Configuration Information

<table>
<thead>
<tr>
<th>Network Mask</th>
<th>Area</th>
<th>Effect</th>
<th>TranslationState</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.0.0.1</td>
<td>255.0.0.0</td>
<td>33.0.0.12</td>
<td>advertiseMatching enabled</td>
</tr>
</tbody>
</table>

Related Commands

area - range – Consolidates and summarizes routes at an area boundary

summary-address – Creates aggregate addresses for OSPF
26.41 show ip ospf info

This command displays general information about the OSPF routing process.

show ip ospf info

Mode
Privileged EXEC Mode

Example:
SMIS# show ip ospf info
OSPF Router ID 10.0.0.1
Supports only single TOS(TOS0) route
ABR Type supported is Standard ABR
Number of Areas in this router is 1
Area is 33.0.0.12
Number of interfaces in this area is 2
SPF algorithm executed 3 times

Related Commands
area – Stability interval – Configures the Stability interval for NSSA
area – virtual-link – Defines an OSPF virtual link and its related parameters
ip ospf authentication-key – Specifies a password to be used by neighboring routers
that are using the OSPF simple password authentication
debug ip ospf – Sets the OSPF debug level
show ip ospf route

This command displays routes learnt by OSPF process.

Mode
Privileged EXEC Mode

Example:
SMIS# show ip ospf route
OSPF Process Routing Table
Dest/Mask TOS NextHop/Interface Cost Rt.Type Area
--------- --- -------/--------- ---- ------- -----
10.0.0.0/255.0.0.0 0 0.0.0.0/vlan10 1 IntraArea 33.0.0.12
40.0.0.0/255.0.0.0 0 0.0.0.0/vlan1 1 IntraArea 33.0.0.12

Related Commands
router ospf – Enables OSPF routing process
router-id – Sets the router-id for the OSPF process
26.43 show ip ospf - database summary

This command displays OSPF LSA Database summary.

```
show ip ospf [area-id] database [{database-summary | self-originate | advrouter <ip-address>}]`
```

Syntax Description

area-id - Area associated with the OSPF address range. It is specified as an IP address.

database - Displays how many of each type of LSA for each area there are in the database

database-summary - Displays how many of each type of LSA for each area there are in the database, and the total number of LSA types

self-originate - Displays only self-originated LSAs (from the local router)

adv-router - Displays all the specified router link-state advertisements (LSAs). If no IP address is included, the information is about the local router itself

Mode

Privileged EXEC Mode

Example:

```
SMIS# show ip ospf database
OSPF Router with ID (10.0.0.1)
Router Link States (Area 33.0.0.12)
---------------------------------------
Link ID ADV Router Age Seq# Checksum Link count
------- ------ -- ------ --------------
20.0.0.2 20.0.0.2 1 0x80000004 0xfa0 36
Network Link States (Area 33.0.0.12)
---------------------------------------
Link ID ADV Router Age Seq# Checksum Link count
------- ------ -- ------ --------------
40.0.0.2 20.0.0.2 1 0x80000001 0xce09 32
Router Link States (Area 33.0.0.12)
---------------------------------------
Link ID ADV Router Age Seq# Checksum Link count
------- ------ -- ------ --------------
```
```
10.0.0.1 10.0.0.1 0 0x80000004 0x9d0e 48

SMIS# show ip ospf database database-summary
OSPF Router with ID (10.0.0.1)
Area 0.0.0.0 database summary
--------------------------------
LSA Type Count Maxage
--------- ----- ------
Router 0 0
Network 0 0
Summary Net 0 0
Summary ASBR 0 0
Type-7 Ext 0 0
Opaque Link 0 0
Opaque Area 0 0
Subtotal 0 0
Area 33.0.0.12 database summary
-----------------------------
LSA Type Count Maxage
--------- ----- ------
Router 2 0
Network 1 0
Summary Net 0 0
Summary ASBR 0 0
Type-7 Ext 0 0
Opaque Link 0 0
Opaque Area 0 0
Subtotal 3 0
OSPF Process database summary
-------------------------------
LSA Type Count Maxage
--------- ----- ------
Router 2 0
Network 1 0
Summary Net 0 0
Summary ASBR 0 0
Type-5 Ext 0 0
```
Type-7 Ext 0 0
Opaque Link 0 0
Opaque Area 0 0
Opaque AS 0 0
Total 3 0

SMIS# show ip ospf database self-originate
OSPF Router with ID (10.0.0.1)
Router Link States (Area 33.0.0.12)

Link ID ADV Router Age Seq# Checksum Link count
------- ------- --- ------ ------ ------
10.0.0.1 10.0.0.1 0 0x80000004 0x9d0e 48

SMIS# show ip ospf database adv-router 20.0.0.2
OSPF Router with ID (10.0.0.1)
Router Link States (Area 33.0.0.12)

Link ID ADV Router Age Seq# Checksum Link count
------- ------- --- ------ ------ ------
20.0.0.2 20.0.0.2 1 0x80000004 0xfa0 36
Network Link States (Area 33.0.0.12)

Link ID ADV Router Age Seq# Checksum Link count
------- ------- --- ------ ------ ------
40.0.0.2 20.0.0.2 1 0x80000001 0xce09 32

Related Command
summary-address – Creates aggregate addresses for OSPF
show ip ospf - database

This command displays OSPF Database summary for the LSA type.

```
show ip ospf [area-id] database { asbr-summary | external | network | nssaexternal | opaque-area | opaque-as | opaque-link | router | summary }
{nlinkstate-id} [{adv-router <ip-address> | self-originate}]
```

Syntax Description
- **area-id**: Area associated with the OSPF address range. It is specified as an IP address.
- **database**: Displays how many of each type of LSA for each area there are in the database.
- **asbr-summary**: Displays information only about the Autonomous System Boundary Router (ASBR) summary LSAs.
- **external**: Displays information only about the external LSAs.
- **network**: Displays information only about the network LSAs.
- **nssa-external**: Displays information about the NSSA external LSAs.
- **opaque-area**: Displays information about the Type-10 LSAs.
- **opaque-as**: Displays information about the Type-11 LSAs.
- **opaque-link**: Displays information about the Type-9 LSAs.
- **router**: Displays information only about the router LSAs.
- **summary**: Displays information only about the summary LSAs.
- **link-state-id**: Portion of the Internet environment that is being described by the advertisement. The value entered depends on the type of the LSA. The value must be entered in the form of an IP address.
- **adv-router**: Displays all the specified router link-state advertisements (LSAs). If no IP address is included, the information is about the local router itself.
- **self-originate**: Displays only self-originated LSAs (from the local router).

Mode
Privileged EXEC Mode

Example:
```
SMIS# show ip ospf database summary
OSPF Router with ID (10.0.0.1)
Summary Link States (Area 33.0.0.12)
```

Release: 1.1i
LS age : 300
Options : (No ToS Capability, DC)
LS Type : Summary Links(Network)
Link State ID : 10.0.0.0
Advertising Router : 10.0.0.1
LS Seq Number : 0x80000002
Checksum : 0xae77
Length : 28

SMIS# show ip ospf database network
OSPF Router with ID (20.0.0.2)
Network Link States (Area 33.0.0.12)

LS age : 900
Options : (No ToS Capability, DC)
LS Type : Network Links
Link State ID : 40.0.0.2
Advertising Router : 20.0.0.2
LS Seq Number : 0x80000001
Checksum : 0xce09
Length : 32

Related Commands

network – Defines the interfaces on which OSPF runs and to define the area ID for those interfaces
router ospf – Enables OSPF routing process
27 BGP

The BGP (Border Gateway Protocol) is an interautonomous system routing protocol. An autonomous system is a network or group of networks under a common administration and with common routing policies. BGP is a protocol for exchanging routing information between gateway hosts (each with its own router) in a network of autonomous systems and is used between Internet service providers (ISP). BGP is often the protocol used between gateway hosts on the Internet. The routing table contains a list of known routers, the addresses they can reach, and a cost metric associated with the path to each router so that the best available route is chosen. Hosts using BGP communicate using the Transmission Control Protocol (TCP) and send updated router table information only when one host has detected a change. BGP is commonly used within and between Internet Service Providers (ISPs). The protocol is defined in RFC 1771.

The list of CLI commands for the configuration of BGP is as follows:

- `router bgp`
- `ip bgp dampening`
- `ip bgp overlap-policy`
- `ip bgp synchronization`
- `clear ip bgp`
- `bgp router-id`
- `bgp default local-preference`
- `neighbor - remote-as`
- `neighbor - ebgp-multihop`
- `neighbor - next-hop-self`
- `neighbor - interval`
- `neighbor - timers`
- `neighbor - shutdown`
- `neighbor - send-community`
- `bgp nonbgproute-advt`
- `redistribute`
- `bgp always-compare-med`
default-metric
bgp med
bgp local-preference
bgp update-filter
aggregate-address index
bgp cluster-id
bgp client-to-client reflection
neighbor - route-reflector-client
bgp comm-route
bgp comm-peer
bgp comm-filter
bgp comm-policy
bgp ecomm-route
bgp ecomm-peer
bgp ecomm-filter
bgp ecomm-policy
bgp confederation identifier
bgp confederation peers
bgp bestpath med confed
neighbor - password
clear ip bgp
shutdown ip bgp
debug ip bgp
show bgp-version
show ip bgp
show ip bgp community - routes
show ip bgp extcommunity - routes
show ip bgp summary
show ip bgp filters
show ip bgp aggregate
show ip bgp med
show ip bgp dampening
show ip bgp local-pref
show ip bgp timers
show ip bgp info
show ip bgp rfl info
show ip bgp confed info
show ip bgp community
show ip bgp extcommunity
show ip bgp dampened-paths
show ip bgp flap-statistics
27.1 router bgp

This command sets the AS number of the BGP Speaker. The “no” form of the command brings the BGP Speaker Global Admin status DOWN and resets the AS number of the BGP Speaker.

```
router bgp <AS no(1-65535)>

no router bgp
```

Syntax Description

AS no - Autonomous system number that identifies the BGP router to other routers and tags the routing information passed along

Mode

Global Configuration Mode

Defaults

0

Example:

```
SMIS(config)# router bgp 100
```

The command makes the BGP speaker Global Admin Status ACTIVE.

Related Commands

- `ip bgp dampening` – Configures the Dampening Parameters
- `ip bgp overlap-policy` – Configures the Overlap Route policy for the BGP Speaker
- `ip bgp synchronization` – Enables synchronization between BGP and IGP
- `bgp router-id` – Configures the BGP Identifier of the BGP Speaker
- `bgp default local-preference` – Configures the Default Local Preference value
- `neighbor remote-as` – Creates a Peer and initiates the connection to the peer
- `neighbor ebgp-multihop` – Enables BGP to establish connection with external peers
- `neighbor next-hop-self` – Enables BGP to send itself as the next hop for advertised routes
- `neighbor interval` – Configures neighbor interval
- `neighbor timers` – Configures neighbor KeepAlive Time and Hold Time Intervals
- `neighbor shutdown` – Disables the Peer session
neighbor - send-community – Enables advertisement of community attributes to (standard/extended) to peer

bgp nonbgproute-advt – Controls the advertisement of Non-BGP routes

no ip bgp overlap-policy – Resets the Overlap route policy to default

redistribute – Configures the protocol from which the routes have to be redistributed into BGP

bgp always-compare-med – Enables the comparison of med for routes received from different autonomous system

default-metric – Configures the Default IGP Metric value

bgp med – Configures an entry in MED Table

bgp local-preference – Configures an entry in Local Preference Table

bgp update-filter – Configures an entry in Update Filter Table

aggregate-address index – Configures an entry in Aggregate Table

bgp cluster-id – Configures the Cluster ID for Route Reflector

bgp client-to-client reflection – Configures the Route Reflector to support route reflection to Client Peers

neighbor - route-reflector-client – Configures the Peer as Client of the Route Reflector

bgp comm-route – Configures an entry in additive or delete community table

bgp comm-peer – Enables/disables advertisement of community attributes to peer

bgp comm-filter – Allows/filters the community attribute while receiving or advertising

bgp comm-policy – Configures the community attribute advertisement policy for specific destination

bgp ecomm-route – Configures an entry in additive or delete ext community table

bgp ecomm-peer – Enables/disables advertisement of ext community attributes to peer

bgp ecomm-filter – Allows/filters the ext community attribute while receiving or advertising

bgp ecomm-policy – Configures the extended community attribute advertisement policy for specific destination

bgp confederation identifier – Specifies the BGP confederation identifier

bgp confederation peers – Configures the ASs that belongs to the confederation

bgp bestpath med confed – Enables MED comparison among paths learnt from confed peers

neighbor - password – Configures the password for TCP-MD5 authentication with peer

debug ip bgp – Configures the Trace levels

show bgp-version – Displays the BGP Version information
show ip bgp – Displays the BGP related information
show ip bgp community - routes– Displays routes that belong to specified BGP communities
show ip bgp extcommunity - routes – Displays routes that belong to specified BGP extended-communities
show ip bgp summary – Displays the status of all BGP4 connections
show ip bgp filters – Displays the contents of filter table
show ip bgp aggregate – Displays the contents of aggregate table
show ip bgp local-pref – Displays the contents of local preference table
show ip bgp timers – Displays the value of BGP timers
show ip bgp info – Displays the general info about BGP protocol
show ip bgp rfl info – Displays info about RFL feature
show ip bgp confed info – Displays info about confederation feature
show ip bgp community – Displays the contents of community tables
show ip bgp extcommunity – Displays the contents of ext-community tables
27.2 ip bgp dampening

This command Configures the Dampening Parameters and the "no" form of the command resets the Dampening Parameters to default.

```
ip bgp dampening [<HalfLife-Time> [<Reuse Value> [<Suppress Value> [<Max-Suppress Time>]]]] [-s <Decay Granularity> [<Reus Granularity> [<Reus Array Size>]]]
```

```
oip bgp dampening [HalfLife-Time [Reuse-Value [Suppress-Value [Max-Suppress-Time]]]] [-s [Decay-Granularity [Reuse-Granularity [Reuse-Array-Size]]]]
```

Syntax Description

- **HalfLife-Time** - Time (in seconds) after which a penalty is decreased by half. Once a route has been assigned a penalty, the penalty is decreased by half after the half-life time
- **Reuse Value** - If the penalty associated with a suppressed route falls below this value, the route is re-used
- **Suppress Value** - A route is suppressed when the penalty associated with the route exceeds this value
- **Max-Suppress Time** - Maximum time (in seconds) a route can be suppressed
- **Decay Granularity** - Time granularity in seconds used to perform all decay computations
- **Reuse Granularity** - Time interval between evaluations of the reuse-lists. Each reuse list corresponds to an additional time increment
- **Reuse Array Size** - Size of reuse index arrays. This size determines the accuracy with which suppressed routes can be placed within the set of reuse lists when suppressed for a long time

Mode

Global Configuration Mode

Defaults

- HalfLife-Time - 900
- Reuse Value - 500
- Suppress Value - 3500
- Max-Suppress Time - 3600
- Decay Granularity - 1
- Reuse Granularity - 15
Reuse Array Size - 1024

Example:

```
SMIS(config)# ip bgp dampening 100 -s 1 15
```

BGP Speaker Local AS number must be configured.
BGP Administrative status must be DOWN (use Shutdown Command).

Related Commands

- `router bgp` – Sets the AS number of the BGP Speaker
- `show ip bgp dampening` – Displays the contents of dampening table
27.3 ip bgp overlap-policy

This command configures the Overlap Route policy for the BGP Speaker. The “no” form of the command. Resets the Overlap route policy to default. By default, both less and more specific routes are installed.

```
ip bgp overlap-policy <more-specific|less-specific|both>
```

```
no ip bgp overlap-policy
```

Syntax Description

- `more-specific` - This installs only more-specific routes in the RIB
- `less-specific` - This installs only less-specific routes in the RIB
- `both` - This installs all routes (more-specific and less-specific) in the RIB

Mode

Global Configuration Mode

Defaults

Both

Example:

```
SMIS(config)# ip bgp overlap-policy more-specific
```

BGP Speaker Local AS number must be configured.
BGP Speaker Admin Status must be DOWN

Related Commands

- `router bgp` – Sets the AS number of the BGP Speaker
- `show ip bgp info` – Displays the general info about BGP protocol
- `shutdown ip bgp` – Sets the BGP Speaker Global Admin status DOWN
- `show ip bgp summary` – Displays the status of all BGP4 connections
27.4 ip bgp synchronization

This command enables synchronization between BGP and IGP and the "no" form of the command disables synchronization between BGP and IGP.

ip bgp synchronization

no ip bgp synchronization

Mode
Global Configuration Mode

Defaults
Disable

Example:
SMIS(config)# ip bgp synchronization

BGP Speaker Local AS number must be configured.
BGP must be administratively down.

Related Commands
router bgp – Sets the AS number of the BGP Speaker
show ip bgp info – Displays the general info about BGP protocol
shutdown ip bgp – Sets the BGP Speaker Global Admin status DOWN
27.5 clear ip bgp - Flap-Statistics

This command clears the flap-statistics counters for all paths from the neighbor at the IP address.

clear ip bgp <ip-address> flap-statistics

Syntax Description

ip-address - IP Address of the peer

Mode

Global Configuration Mode

Example:

SMIS(config)# clear ip bgp 22.0.0.1 flap-statistics

The flap statistics are cleared only when routes from the given peer are already flapped.

Related Commands

show ip bgp dampened-paths - Displays the dampened routes
show ip bgp flap-statistics - Displays the statistics of flapped routes
27.6 bgp router-id

This command configures the BGP Identifier of the BGP Speaker and the "no" form of the command resets the BGP Identifier of the BGP Speaker to default value.

```
bgp router-id <bgp router id (ip-address)>
```

```
no bgp router-id
```

Mode
Router Configuration Mode

Defaults
The highest interface address is used as the router id

Example:
```
SMIS(config-router)# bgp router-id 10.0.0.1
```

Bgp router id is a unique number associated with the BGP speaker. This router-id is advertised to other peers and identifies the BGP speaker uniquely. Administrator can set the router-id of BGP to any value. If router-id is changed, then all the active peer sessions will go DOWN and will be re-started with the new configured router-id.

BGP Speaker Local AS number must be configured

Related Commands
```
router bgp – Sets the AS number of the BGP Speaker
show ip bgp – Displays the BGP related information
show ip bgp summary – Displays the status of all BGP4 connections
```
27.7 bgp default local-preference

This command configures the Default Local Preference value and the "no" form of the command resets the Default Local Preference to its default value.

```plaintext
bgp default local-preference <Local Pref Value>

no bgp default local-preference
```

Mode
Router Configuration Mode

Defaults
100

Example:
```
SMIS(config-router)# bgp default local-preference 100
```

BGP Speaker Local AS number must be configured.
If required administrator can use this command to change this Default Local Preference value

Related Commands
- `router bgp` – Sets the AS number of the BGP Speaker
- `show ip bgp info` – Displays the general info about BGP protocol
- `show ip bgp summary` – Displays the status of all BGP4 connections
27.8 neighbor - remote-as

This command creates a Peer and initiates the connection to the peer and the "no" form of the command disables the peer session and deletes the peer information.

```
neighbor <ip-address> remote-as <AS no(1-65535)>
```

```
no neighbor <ip-address>
```

Syntax Description

- `ip-address` - BGP peer's remote IP address
- `remote-as` - Autonomous system to which the BGP peer belongs

Mode

Router Configuration Mode

Example:

```
SMIS(config-router)# neighbor 23.45.0.1 remote-as 200
```

BGP Speaker Local AS number must be configured.

The administrator can create a peer and set the peer AS number with this command. This configured peer AS number is compared with the AS number received in the open message and a peer session is initiated only if both the AS numbers match.

Related Commands

- `router bgp` – Sets the AS number of the BGP Speaker
- `neighbor - password` – Configures the password for TCP-MD5 authentication with peer
- `show ip bgp summary` – Displays the status of all BGP4 connections
- `show ip bgp` – Displays the BGP related information
27.9 **neighbor - ebgp-multihop**

This command enables BGP to establish connection with external peers that are not directly connected and the "no" form of the command resets the peer EBGP-Multihop status to default. By default, EBGP Multihop is disabled.

```
neighbor <ip-address> ebgp-multihop
```

```
no neighbor <ip-address> ebgp-multihop
```

Syntax Description

- **ip-address** - Peer’s Remote IP address

Mode

Router Configuration Mode

Defaults

Disable

Example:

```
SMIS(config-router)# neighbor 23.45.0.1 ebgp-multihop
```

By default external BGP peers need to be directly connected. If external BGP peers are not connected directly, then ebgp-multihop is enabled to initiate the connection with that external peer. If ebgp-multihop is disabled and external BGP peers are indirectly connection, then BGP peer session will not be established BGP Speaker Local AS number must be configured Peer must have been created and peer AS must be configured.

Related Commands

- **router bgp** – Sets the AS number of the BGP Speaker
- **show ip bgp info** – Displays the general info about BGP protocol
27.10 neighbor - next-hop-self

This command enables BGP to send itself as the next hop for advertised routes and the "no" form of the command resets the peer nexthop-self status to default. By default, Self Next Hop is disabled.

neighbor <ip-address> next-hop-self

no neighbor <ip-address> next-hop-self

Syntax Description

ip-address - The IP address of the BGP peer

Mode

Router Configuration Mode

Defaults

By default, the next hop will be generated based on the IP address of the destination and the present next hop in the route information.

Example:

SMIS(config-router)# neighbor 23.45.0.1 next-hop-self

The Administrator can use this command to make the BGP speaker fill its address when advertising routes to the BGP peer.

The BGP Speaker Local AS number must be configured

A Peer must have been created and peer AS must be configured

Related Commands

router bgp – Sets the AS number of the BGP Speaker

show ip bgp info – Displays the general info about BGP protocol
27.11 neighbor - interval

This command configures neighbor interval and the "no" form of the command resets neighbor interval.

neighbor <ip-address> {advertisement-interval <seconds> | as-origination-interval <seconds> | connect-retry-interval <seconds>}

no neighbor <ip-address> {advertisement-interval | as-origination-interval | connect-retry-interval}

Syntax Description
ip-address - Peer ip address
advertisement-interval - The time-interval (in seconds) for spacing advertisement of successive external route-updates to the same destination
as-origination-interval - The time-interval (in seconds) for spacing successive route-updates originating within the same AS
connect-retry-interval - The time interval (in seconds) after which a transport connection with peer is re-initiated

Mode
Router Configuration Mode

Example:
SMIS(config-router)# neighbor 23.45.0.1 advertisement-interval 45
as-origination-interval 30 connect-retry-interval 15

The BGP Speaker Local AS number must be configured
A Peer must have been created and peer AS must be configured

Related Commands
router bgp – Sets the AS number of the BGP Speaker
show ip bgp info – Displays the general info about BGP protocol
27.12 neighbor - timers

This command configures neighbor KeepAlive Time and Hold Time Intervals and the "no" form of the command resets neighbor KeepAlive Time and Hold Time Intervals.

neighbor <ip-address> timers {keepalive <seconds> | holdtime <seconds>}

no neighbor <ip-address> timers {keepalive | holdtime}

Syntax Description
ip-address - Peer IP address
timers - Timers.
keepalive - keep-alive interval for the peer session. The keep-alive value must always be less than the configured hold-time value
holdtime - The hold-time interval for the peer. This is sent in the OPEN message to the peer

Mode
Router Configuration Mode

Defaults
Default keep-alive is one-third the value of the Default Hold-time.

Example:
SMIS(config-router)# neighbor 23.45.0.1 timers keepalive 40

The BGP Speaker Local AS number must be configured Peer must be created and peer AS must be configured.

Related Commands
router bgp – Sets the AS number of the BGP Speaker
show ip bgp info – Displays the general info about BGP protocol
27.13 neighbor - shutdown

This command disables the Peer session and the "no" form of the command enables the Peer session.

neighbor <ip-address> shutdown

no neighbor <ip-address> shutdown

Syntax Description

ip-address - Peer ip address
shutdown - Terminates the peer session

Mode

Router Configuration Mode

Example:

SMIS(config-router)# neighbor 23.45.0.1 shutdown

BGP Speaker Local AS number must be configured.
Peer must be created and peer AS must be configured.

Related Commands

router bgp – Sets the AS number of the BGP Speaker
show ip bgp – Displays the BGP related information
27.14 neighbor - send-community

This command enables advertisement of community attributes to (standard/extended) peer and the "no" form of the command disables advertisement of community attributes to (standard/extended) peer.

```
neighbor <ip-address> send-community {both | standard | extended}
```

```
no neighbor <ip-address> send-community {both | standard | extended}
```

Syntax Description

- `ip-address` - Peer IP address
- `send-community` - Sends Communities.
- `both` - Send both communities and extended communities to peer
- `standard` - Send only communities to the peer
- `extended` - Send only extended communities to peer

Mode

Router Configuration Mode

Example:

```
SMIS(config-router)# neighbor 23.45.0.1 send-community both
```

Peer must be created and peer AS must be configured.
The BGP Speaker Local AS number must be configured.

Related Commands

- `router bgp` – Sets the AS number of the BGP Speaker
- `show ip bgp community` – Displays the contents of community route/peer/policy/filter tables
27.15 bgp nonbgproute-advt

This command controls the advertisement of Non-BGP routes either to the external peer or both to internal and external peer and the "no" form of the command resets the Non BGP routes advt policy to default. By default, the non BGP routes are advertised to internal and external peers.

`bgp nonbgproute-advt <external|both>`

`no bgp nonbgproute-advt`

Syntax Description

- **external** - Denotes that the non-BGP routes need to be advertised to external peers
- **both** - Determines that the non-BGP routes need to be advertised to both internal and external peers

Mode

Router Configuration Mode

Defaults

both

Example:

`SMIS(config-router)# bgp nonbgproute-advt both`

The Administrator can effectively control the advertisement of the route learnt through Redistribution.

BGP Speaker Local AS number must be configured

Related Commands

- `router bgp` – Sets the AS number of the BGP Speaker
- `show ip bgp info` – Displays the general info about BGP protocol
27.16 redistribute

This command configures the protocol from which the routes have to be redistributed into BGP and the “no” form of the command disables the redistribution of routes from the given protocol into BGP.

```
redistribute <static|connected|rip|ospf|all>
```

```
no redistribute <static|connected|rip|ospf|all>
```

Syntax Description
- **static** - Advertises routes, configured statically, in the BGP routing process
- **connected** - Advertises directly connected networks routes, in the BGP routing process
- **rip** - Advertises routes, that are learnt by the RIP process, in the BGP routing process
- **ospf** - Advertises routes, that are learnt by the BGP process, in the BGP routing process
- **all** - Advertises routes, that are learnt by the all processes (RIP, OSPF, statically configured and connected routes), in the BGP routing process

Mode
Router Configuration Mode

Example:
```
SMIS(config-router)# redistribute ospf
```

BGP Speaker Local AS number must be configured.

Related Commands
- **router bgp** – Sets the AS number of the BGP Speaker
- **show ip bgp info** – Displays the general info about BGP protocol
27.17 bgp always-compare-med

This command enables the comparison of med for routes received from different autonomous system and the “no” form of the command Disables the comparison of med for routes received from different autonomous system. Med will be compared only for routes from same neighbor autonomous system.

`bgp always-compare-med`

`no bgp always-compare-med`

Mode
Router Configuration Mode

Defaults
Disable

Example:
SMIS(config-router)# bgp always compare-med

The BGP Speaker Local AS number must be configured.
By default in the BGP route selection algorithm, MED attributes are compared between two routes only if both the routes are received from the same autonomous system.
An Administrator can change this default behavior by enabling the always-compare-med option. If this option is enabled, then in the BGP route selection algorithm, MED attributes are compared between routes even if they are received from different autonomous systems.

Related Commands
`router bgp` – Sets the AS number of the BGP Speaker
`show ip bgp info` – Displays the general info about BGP protocol
27.18 default-metric

This command configures the Default IGP Metric value and the “no” form of the command resets the Default IGP Metric value.

default-metric <Default Metric Value>

no default-metric

Mode
Router Configuration Mode

Defaults
0

Example:
SMIS(config-router)# default-metric 300

This command sets the default metric to be associated with all redistributed routes. If a metric value is not supplied, the default metric value is assigned as 0.
If the default metric value is 0, then the received route-metric is advertised. Any non-zero metric value is used as the metric value for all the redistributed routes.
The metric of redistributed Local Routes is not affected by the default-metric value.
The BGP Speaker Local AS number must be configured

Related Commands
router bgp – Sets the AS number of the BGP Speaker
show ip bgp info – Displays the general info about BGP protocol
27.19 bgp med

This command configures an entry in MED Table and the “no” form of the command deletes the entry from MED Table.

```plaintext
bgp med <1-100> remote-as <0-65535> <ip-address> <ip_mask>
[intermediate-as <AS-no list- AS1,AS2,...>] value <value> direction <in|out> [override]

no bgp med <1-100>
```

Syntax Description
- `remote-as` - AS number of BGP peer associated with the route-prefix
- `ip-address` - Route-prefix on which MED policy needs to be applied
- `ip_mask` - Mask associated with the route
- `intermediate-as` - The sequence of intermediate Autonomous system numbers through which the route update is expected to travel
- `value` - Value assigned to the MED attribute
- `direction` - Direction of application of med policy Incoming - On received route-update with other matching attributes like as-number, intermediate-as numbers Outgoing - On route-update that needs to be advertised to peer
- `override` - This setting decides whether configured MED value will override the received MED value

Mode
Router Configuration Mode

Defaults
- `direction` - In
- `med` - 0

Example:
```plaintext
SMIS(config-router)# bgp med 5 remote-as 200 212.23.45.0 24 intermediate-as 150 value 50 direction in override
```

Bgp Speaker Local AS number must be configured.
Related Commands

- `router bgp` – Sets the AS number of the BGP Speaker
- `show ip bgp med` – Displays the contents of MED table
27.20 bgp local-preference

This command configures an entry in the Local Preference Table and the “no” form of the command deletes the entry from Local Preference Table.

```
bgp local-preference <1-100> remote-as <0-65535> <ip-address> <ip_mask>
  [intermediate-as <AS-no list- AS1,AS2,...>] value <value> direction
  <in|out> [override]
```

```
no bgp local-preference <1-100>
```

Syntax Description

- **remote-as** - AS number of BGP peer associated with the route-prefix
- **ip-address** - Route-prefix on which local-preference policy needs to be applied
- **ip_mask** - Mask associated with the route
- **intermediate-as** - The sequence of intermediate Autonomous system numbers through which the route update is expected to travel
- **value** - The local-preference value that needs to be associated with the route-update
- **direction** - Direction of application of local-preference policy Incoming - On received route-update with other matching attributes like as-number, intermediate-as numbers Outgoing - On route-update that needs to be advertised to peer
- **override** - This setting decides whether configured local-preference value overrides the received local-preference value. If this keyword is not specified, then the received value will have precedence over configured value.

Mode

Router Configuration Mode

Defaults

- remote-as - 0
- Direction - in
- Value - 100
- ip-address - 0.0.0.0
- mask - 0

Example:

```
SMIS(config-router)# bgp local-preference-table index 5 remote-as
```
200 21.3.0.0 16 intermediate-as 150 local-pref 250 direction out override

The BGP Speaker Local AS number must be configured.

Related Commands

router bgp – Sets the AS number of the BGP Speaker
show ip bgp local-pref – Displays the contents of local preference table
27.21 bgp update-filter

This command configures an entry in Update Filter Table and the “no” form of the command deletes the entry from Update Filter Table.

```bash
bgp update-filter <1-100> <permit|deny> remote-as <0-65535> <ip-address> <ip_mask> [intermediate-as <AS-no list-AS1,AS2,...>] direction <in|out>

no bgp update-filter <1-100>
```

Syntax Description

- **permit** - Allow route to pass filter policy test
- **deny** - Filter routes when it passes through filter policy test
- **remote-as** - AS number of BGP peer associated with the route-prefix
- **ip-address** - Route-prefix on which Filter policy needs to be applied
- **ip_mask** - Mask associated with the route-prefix
- **intermediate-as** - The sequence of intermediate Autonomous system numbers through which the route update is expected to travel
- **direction** - Direction of application of med policy
- **in** - On received route-update with other matching attributes like as-number, intermediate-as nos
- **out** - On route-update that needs to be advertised to peer

Mode

Router Configuration Mode

Defaults

- **remote-as** - 0
- **direction** - In
- **prefix** - 0.0.0.0
- **prefixlen** - 0
- **action** - filter

Example:

```bash
SMIS(config-router)# bgp update-filter 6 deny remote-as 145 72.93.0.0 255.255.0.0 intermediate-as 150 direction in
```
The BGP Speaker Local AS number must be configured

Related Commands

router bgp – Sets the AS number of the BGP Speaker

show ip bgp filters – Displays the contents of filter table
27.22 aggregate-address index

This command configures an entry in Aggregate Table and the "no" form of the command deletes the entry from Aggregate Table.

```
aggregate-address index <1-100> <ip-address> <ip_mask> [summary-only]
```

```
no aggregate-address index <1-100>
```

Syntax Description

- `ip-address` - The Aggregate address
- `ip_mask` - The mask associated with the aggregated route
- `summary-only` - Creates an aggregated route for advertisement to peers and also suppresses the advertisement of more-specific routes to the peers

Mode

Router Configuration Mode

Example:

```
SMIS(config-router)# aggregate-address index 1 21.1.0.0 16 summary-only
```

The BGP Speaker Local AS number must be configured.

This command configures the (aggregation policy) route details for forming an aggregated route and creates an entry in the aggregation table. When summaryonly is given, then, aggregated route alone will be sent to the peers. Otherwise, both more-specific and aggregated route are advertised.

Related Commands

- `router bgp` – Sets the AS number of the BGP Speaker
- `show ip bgp aggregate` – Displays the contents of aggregate table
27.23 bgp cluster-id

This command configures the Cluster ID for Route Reflector and the "no" form of the command resets the Cluster ID for Route Reflector.

```
bgp cluster-id <cluster id value(ip_address)>
```

```
no bgp cluster-id
```

Syntax Description
- **cluster id value** - The cluster Id associated with the route-reflector

Mode
- Router Configuration Mode

Example:
```
SMIS(config-router)# bgp cluster-id 10.0.0.1
```

BGP Speaker Local AS number must be configured.

Related Commands
- **router bgp** – Sets the AS number of the BGP Speaker
- **show ip bgp rfl info** – Displays info about RFL feature
27.24 bgp client-to-client reflection

This command configures the Route Reflector to support route reflection to Client Peers and the “no” form of the command configures the Route Reflector not to reflect routes to Client Peers.

`bgp client-to-client reflection`

`no bgp client-to-client reflection`

Mode

Router Configuration Mode

Example:

```
SMIS(config-router)# bgp client-to-client reflection
```

The BGP Speaker Local AS number must be configured.
The BGP Cluster-id must be configured.
By default, Route Reflector will reflect routes learned from a client peer to all other client peers. If required, administrator can disable this feature by disabling client-to-client reflection. If disabled, then Route Reflector will not advertise routes learnt from a client peer to other client peers. This occurs when all peers within a cluster are fully-meshed and the client peer itself is able to advertise routes to other clients of the route-reflector

Related Commands

- `router bgp` – Sets the AS number of the BGP Speaker
- `show ip bgp rfl info` – Displays info about RFL feature
27.25 neighbor - route-reflector-client

This command configures the Peer as Client of the Route Reflector and the “no” form of the command resets the Peer as conventional BGP Peer.

```
neighbor <ip-address> route-reflector-client
```

```
no neighbor <ip-address> route-reflector-client
```

Syntax Description

- **ip-address** - Peer’s Remote IP address
- **route-reflector-client** - Specifies the BGP peer as a client of the Route-Reflector

Mode

Router Configuration Mode

Example:

```
SMIS(config-router)# neighbor 23.45.0.1 route-reflector-client
```

The BGP Speaker Local AS number must be configured.
Route Reflector must be enabled.
Peer must be created and peer AS must be configured.

Related Commands

- **router bgp** – Sets the AS number of the BGP Speaker
- **show ip bgp rfl info** – Displays info about RFL feature
27.26 bgp comm-route

This command configures an entry in additive or delete community table and the “no” form of the command removes the entry from additive or delete community table.

```
bgp comm-route {additive|delete} <ip-address> <ip_mask> comm-value
<4294967041-4294967043,65536-4294901759>
no bgp comm-route {additive|delete} <ip-address> <ip_mask> comm-value
<4294967041-4294967043,65536-4294901759>
```

Syntax Description
- **additive** - Add associated community value with the already existing communities in the route
- **delete** - Remove the community attribute from the route-prefix when it passes through the filter process
- **ip-address** - Route prefix on which community policy needs to be applied
- **ip_mask** - Mask associated with the route-prefix
- **comm-value** - Community attribute value

Mode
Router Configuration Mode

Example:
```
SMIS(config-router)# bgp comm-route-table 24.5.0.0 16 commvalue 4294967045
```

The BGP Speaker Local AS number must be configured.

Related Commands
- **router bgp** – Sets the AS number of the BGP Speaker
- **show ip bgp community** – Displays the contents of route/peer/filter/policy community tables
27.27 bgp comm-peer

This command enables/disables advertisement of community attributes to peer and the “no” form of the command disables advertisement of community attributes to peer.

bgp comm-peer <ip-address> <permit|deny>

no bgp comm-peer <ip-address>

Syntax Description

ip-address - Route prefix on which community policy needs to be applied
permit - Allow advertisement of community attributes to peer
deny - Filters advertisement of community attributes to peer

Mode

Router Configuration Mode

Defaults

Deny

Example:

SMIS(config-router)# bgp comm-peer 23.45.0.1 deny

BGP Speaker Local AS number must be configured.

Related Commands

router bgp – Sets the AS number of the BGP Speaker
show ip bgp community – Displays the contents of route/peer/filter/policy community tables
27.28 bgp comm-filter

This command allows/filters the community attribute while receiving or advertising. The “no” form of the command removes the filter policy for the community attribute.

```
bgp comm-filter <comm-value(4294967041-4294967043,65536-4294901759)>
<permit|deny> <in|out>
```

```
no bgp comm-filter <comm-value(4294967041-4294967043,65536-4294901759)>
<permit|deny> <in|out>
```

Syntax Description

- `comm.-value` - Community Attribute Value
- `permit` - Allows a particular community attribute to be received or advertised in updates
- `deny` - Filters routes containing the community attribute value in received or advertised updates
- `in|out` - Specifies the direction of route-updates on which the community filter policy needs to be applied, i.e. whether the community filter needs to be applied on received routes or on routes advertised to peers

Mode

Router Configuration Mode

Example:

```
SMIS(config-router)# bgp comm-filter 75100 deny in
```

The BGP Speaker Local AS number must be configured.

Related Commands

- `router bgp` – Sets the AS number of the BGP Speaker
- `show ip bgp community` – Displays the contents of route/peer/filter/policy community tables
27.29 bgp comm-policy

This command configures the community attribute advertisement policy for specific destination. The “no” form of the command removes the community attribute advertisement policy for specific destination.

`bgp comm-policy <ip-address> <ip_mask> <set-add|set-none|modify>

no bgp comm-policy <ip-address> <ip_mask>

Syntax Description
`ip-address` - Route prefix on which community policy needs to be applied
`ip-mask` - Mask associated with the ip address
`set-add` - Sends only the configured additive communities with associated route
`set-none` - Sends the associated route without any communities
`modify` - Removes the associated route with received delete communities and adds the configured additive communities

Mode
Router Configuration Mode

Example:

SMIS(config-router)# bgp comm-policy

The BGP Speaker Local AS number must be configured.

Related Commands
`router bgp` – Sets the AS number of the BGP Speaker
`show ip bgp community` – Displays the contents of route/peer/filter/policy community tables
27.30 bgp ecomm-route

This command configures an entry in additive or delete ext community table. The “no” form of the command removes the entry from additive or delete ext community table.

Syntax Description
- **additive** - Adds associated extended-community value with the already existing communities in the route update
- **delete** - Removes the extended-community attribute from the route-prefix when it passes through the filter process
- **ip-address** - Route prefix on which extended-community policy needs to be applied
- **ip_mask** - Mask associated with the ip address
- **ecomm-value** - Extended Community Attribute Value

Mode
Router Configuration Mode

Example:
```
SMIS(config-router)# bgp ecomm-route additive 12.0.0.0 255.0.0.0 ecomm-value 01:01:22:33:44:55:66:77
```

The BGP Speaker Local AS number must be configured.

Related Commands
- **router bgp** – Sets the AS number of the BGP Speaker
- **show ip bgp extcommunity** – Displays the contents of route/peer/filter/policy ext-community route tables
27.31 bgp ecomm-peer

This command enables/disables advertisement of ext community attributes to peer. The "no" form of the command disables advertisement of ext community attributes to peer.

```
bgp ecomm-peer <ip-address> <permit|deny>
```

```
no bgp ecomm-peer <ip-address>
```

Syntax Description
- `ip-address` - IP address of the peer
- `permit` - Allows advertisement of ext community attributes to peer
- `deny` - Denies advertisement of ext community attributes to peer

Mode
Router Configuration Mode

Example:
```
SMIS(config-router)# bgp ecomm-peer 10.0.0.2 permit
```

The BGP Speaker Local AS number must be configured.

Related Commands
- `router bgp` – Sets the AS number of the BGP Speaker
- `show ip bgp extcommunity` – Displays the contents of route/peer/filter/policy ext-community route tables
27.32 bgp ecomm-filter

This command allows/filters the ext community attribute while receiving or advertising. The "no" form of the command removes the filter policy for the ext community attribute.

```
bgp ecomm-filter <ecomm-value(xx:xx:...:xx)> <permit|deny> <in|out>
```

```
no bgp ecomm-filter <ecomm-value(xx:xx:...:xx)> <permit|deny> <in|out>
```

Syntax Description

ecomm-value - The extended community value

permit - Allows the route-update with the associated extended community value to pass the filter test

deny - Denies the route-update with the associated extended community value to pass the filter test

in - Incoming direction of applied filter

out - Outgoing direction of applied filter

Mode

Router Configuration Mode

Example:

```
SMIS(config-router)# bgp ecomm-filter 01:01:22:33:23:43:44:22 deny in
```

The BGP Speaker Local AS number must be configured.

Related Commands

- **router bgp** – Sets the AS number of the BGP Speaker
- **show ip bgp extcommunity** – Displays the contents of route/peer/filter/policy ext-community route tables
27.33 bgp ecomm-policy

This command configures the extended community attribute advertisement policy for specific destination.
The "no" form of the command removes the extended community attribute advertisement policy for specific destination.

```
bgp ecomm-policy <ip-address> <ip_mask> <set-add|set-none|modify>
```

```
no bgp ecomm-policy <ip-address> <ip_mask>
```

Syntax Description

- **ip-address**: The route prefix on which extended community policy needs to be applied
- **ip_mask**: The mask associated with the ip address
- **set-add**: Sends associated route with configured additive extended-communities only
- **set-none**: Sends the associated route without any extendedcommunities
- **modify**: Strips the associated route with received delete extended communities and adds the configured additive extended communities

Mode

Router Configuration Mode

Example:

```
SMIS(config-router)# bgp ecomm-policy 12.0.0.0 255.0.0.0 setadd
```

The BGP Speaker Local AS number must be configured.

Related Commands

- **router bgp**: Sets the AS number of the BGP Speaker
- **show ip bgp extcommunity**: Displays the contents of route/peer/filter/policy ext-community route tables
27.34 bgp confederation identifier

This command specifies the BGP confederation identifier. The “no” form of the command removes the BGP confederation identifier.

bgp confederation identifier <AS no(1-65535)>

no bgp confederation identifier

Mode

Router Configuration Mode

Example:

SMIS(config-router)# bgp confederation identifier 1000

The BGP Speaker Local AS number must be configured.

Related Commands

- router bgp – Sets the AS number of the BGP Speaker
- show ip bgp confed info – Displays info about confederation feature
27.35 bgp confederation peers

This command configures the ASs that belongs to the confederation. The "no" form of the command removes the ASs from the confederation.

bgp confederation peers <AS no(1-65535)>

no bgp confederation peers <AS no(1-65535))

Mode
Router Configuration Mode

Example:
SMIS(config-router)# bgp confederation peers 100

The BGP Speaker Local AS number must be configured.
The peer AS number must not be equal to BGP Speaker Local AS number

Related Commands
router bgp – Sets the AS number of the BGP Speaker
show ip bgp confed info – Displays info about confederation feature
27.36 bgp bestpath med confed

This command enables MED comparison among paths learnt from confed peers. The “no” form of the command disables MED comparison among paths learnt from confed peers.

```
bgp bestpath med confed
```

```
no bgp bestpath med confed
```

Mode
Router Configuration Mode

Example:
```
SMIS(config-router)# bgp bestpath med confed
```

The BGP Speaker Local AS number must be configured.
By default, in BGP route selection algorithm, MED attributes comparison between two routes originated within the local confederation is disabled. Enabling this option, will allow the router to compare MED attribute between routes originated from the local confederation.

Related Commands
- `router bgp` – Sets the AS number of the BGP Speaker
- `show ip bgp confed info` – Displays info about confederation feature
27.37 neighbor - password

This command configures the password for TCP-MD5 authentication with peer. The "no" form of the command resets the TCP-MD5 password set for the peer.

```
neighbor <ip-address> password <password-string>

no neighbor <ip-address> password
```

Syntax Description
- **ip-address** - IP address of the BGP peer
- **password** - The password that needs to be used for TCP-MD5 authentication with the peer

Mode
Router Configuration Mode

Example:
```
SMIS(config-router)# neighbor 10.0.0.2 password abcdef
```

The BGP Speaker Local AS number must be configured.
Peer must have been created.

Related Commands
- **router bgp** – Sets the AS number of the BGP Speaker
- **neighbor - remote-as** – Creates a Peer and initiates the connection to the peer
- **show ip bgp info** – Displays the general info about BGP protocol
27.38 clear ip bgp

This command resets the bgp connection dynamically for inbound and outbound route policy.

```
clear ip bgp { * | <ip-address>} [soft {in|out}]
```

Syntax Description
* - All BGP peers
ip-address - Remote IP address associated with specific BGP peer
soft - Soft clear
in - Initiates inbound soft reconfiguration
out - Initiates outbound soft configuration

Mode
Privileged EXEC Mode

Example:
```
SMIS# clear ip bgp
```

If the keyword soft and the associated direction are not specified, then this causes hard clear i.e. the BGP session with peer is reset.

Related Command
show ip bgp – Displays the BGP related information
27.39 shutdown ip bgp

This command sets the BGP Speaker Global Admin status DOWN and the "no" form of the command sets the BGP Speaker Global Admin status UP.

shutdown ip bgp

no shutdown ip bgp

Mode
Global Configuration Mode

Example:
SMIS(config)# shutdown ip bgp

The shutdown command does not affect all the configurations. All peer sessions go down and routes learned through redistribution are lost. If RFD is enabled, then routes history is cleared.

Related Commands
ip bgp overlap-policy – Configures the Overlap Route policy for the BGP Speaker
ip bgp synchronization – Enables synchronization between BGP and IGP
show ip bgp info – Displays the general info about BGP protocol
27.40 debug ip bgp

This command configures the Trace levels. The "no" form of the command resets the Trace levels.

debug ip bgp {peer | update | fdb | keep | in | out | damp | events | all }

no debug ip bgp {peer | update | fdb | keep | in | out | damp | events | all}

Syntax Description
peer - Trace code related to peer processing
update - Trace code related to update processing
fdb - Trace code related to FIB updation
keep - Trace code related to keep-alives
in - Trace code related to incoming messages
out - Trace code related to outgoing messages
damp - Trace code related to dampening parameters
events - Trace code related to BGP event processing
all - All the BGP trace code

Mode
Privileged EXEC Mode

Example:
SMIS# debug ip bgp peer
The BGP Speaker Local AS number must be configured.

Related Command
router bgp – Sets the AS number of the BGP Speaker
27.41 show bgp-version

This command displays the BGP Version information.

```
show bgp-version
```

Mode
Priveleged EXEC Mode

Example:
```
SMIS# show bgp-version
show output Future BGP Version : 4
BGP Speaker Local AS number must be configured.
```

Related Command
```
router bgp  -- Sets the AS number of the BGP Speaker
```
27.42 show ip bgp

This command displays the BGP related information.

`show ip bgp {neighbor [<peer-addr>] | rib}`

Syntax Description

- **neighbor** - IP address of the neighbor
- **rib** - BGP local RIB (Routing Information Base)

Mode

Privileged EXEC Mode

Example:

SMIS# show ip bgp neighbor 10.0.0.2

BGP neighbor is 10.0.0.2, remote AS 200, external link
BGP version 4, remote router ID 10.0.0.2
BGP state = Established, up for 21 minutes 26 seconds
Rcvd update before 0 secs, hold time is 120, keepalive
interval is 24 secs
Neighbors Capability:
Route-Refresh: Advertised and received
Address family IPv4 Unicast: Advertised and received
Received 44 messages, 0 Updates
Sent 56 messages, 5 Updates
Route refresh: Received 0, sent 0.
Minimum time between advertisement runs is 300 seconds
Connections established 1 time(s)
Local host: 10.0.0.1, Local port: 179
Foreign host: 10.0.0.2, Foreign port: 49152
Last Error: Code 0, SubCode 0.

The BGP Speaker Local AS number must be configured.

Related Commands

- `router bgp` – Sets the AS number of the BGP Speaker
- `bgp router-id` – Configures the BGP Identifier of the BGP Speaker
neighbor - shutdown – Disables the Peer session
neighbor - remote-as – Creates a Peer and initiates the connection to the peer

clear ip bgp – Resets the BGP connection dynamically for inbound and outbound route policy
27.43 show ip bgp community - routes

This command displays routes that belong to specified BGP communities.

show ip bgp community community-number(4294967041-4294967043,65536-4294901759) [exact]

Syntax Description

community-number - BGP Community attribute

exact - Displays the routes that has the same specified communities

Mode
Privileged EXEC Mode

Example:
SMIS# show ip bgp community 75000
BGP table version is 5, local router ID is 10.0.0.2
Status codes: s suppressed, d damped, h history, * valid, > best, i - internal
Origin codes: i - IGP, e - EGP, ? - incomplete
Network Next Hop Metric LocPrf Path
------- ---- --- ------ ------ ----
76.0.0.0/8 10.0.0.1 1 100
77.0.0.0/8 10.0.0.1 1 100
78.0.0.0/8 10.0.0.1 1 100

SMIS# show ip bgp community 75000 exact
BGP table version is 5, local router ID is 10.0.0.2
Status codes: s suppressed, d damped, h history, * valid, > best, i - internal
Origin codes: i - IGP, e - EGP, ? - incomplete
Network Next Hop Metric LocPrf Path
------- ---- --- ------ ------ ----
76.0.0.0/8 10.0.0.1 1 100
77.0.0.0/8 10.0.0.1 1 100
78.0.0.0/8 10.0.0.1 1 100

The BGP Speaker Local AS number must be configured.
Related Commands

`router bgp` – Sets the AS number of the BGP Speaker

`bgp comm-policy` – Configures the community attribute advertisement policy for specific destination

`bgp comm-filter` – Allows/filters the community attribute while receiving or advertising

`bgp comm-peer` – Enables/disables advertisement of community attributes to peer

`bgp comm-route` – Configures an entry in additive or delete community table
27.44 show ip bgp extcommunity - routes

This command displays routes that belong to specified BGP extended-communities.

Syntax Description
exact - Displays the routes that has the same specified extended communities

Mode
Privileged EXEC Mode

Example:
SMIS# show ip bgp extcommunity 01:02:33:33:33:33:33:33
BGP table version is 5,local router ID is 10.0.0.2
Status codes: s suppressed, d damped, h history, * valid, > best,
i - internal
Origin codes: i - IGP, e - EGP, ? - incomplete
Network Next Hop Metric LocPrf Path
------- ---- ---- ------ ------ ----
75.0.0.0/8 10.0.0.1 1 100
79.0.0.0/8 10.0.0.1 1 100

SMIS# show ip bgp extcommunity 01:02:33:33:33:33:33:33 exact
BGP table version is 5,local router ID is 10.0.0.2
Status codes: s suppressed, d damped, h history, * valid, > best,
i - internal
Origin codes: i - IGP, e - EGP, ? - incomplete
Network Next Hop Metric LocPrf Path
------- ---- ---- ------ ------ ----
75.0.0.0/8 10.0.0.1 1 100
The BGP Speaker Local AS number must be configured.

Related Commands
router bgp - Sets the AS number of the BGP Speaker
bgp ecomm-route - Configures an entry in additive or delete extended community table
bgp ecomm-peer – Enables/disables advertisement of extended community attributes to peer

bgp ecomm-filter – Allows/filters the extended community attribute while receiving or advertising

bgp ecomm-policy – Configures the extended community attribute advertisement policy for specific destination
27.45 show ip bgp summary

This command displays the status of all BGP4 connections.

show ip bgp summary

Mode
Privileged EXEC Mode

Example:
SMIS# show ip bgp summary
BGP router identifier is 10.0.0.1, local AS number 100
BGP table version is 5
Neighbor Version AS MsgRcvd MsgSent Up/Down State/PfxRcd
--------- ------- ------- ------- ------- -------
10.0.0.2 4 200 44 56 00:00:21:26 Established
10.0.0.3 4 100 0 0 - Idle
10.0.0.4 4 100 0 0 - Idle
10.0.0.6 4 600 0 0 - Connect
10.0.0.7 4 700 0 0 - Connect
10.0.0.8 4 800 0 0 - Connect

The BGP Speaker Local AS number must be configured.

Related Commands
router bgp – Sets the AS number of the BGP Speaker
ip bgp dampening – Configures the Dampening Parameters
ip bgp overlap-policy – Configures the Overlap Route policy for the BGP Speaker
bgp router-id – Configures the BGP Identifier of the BGP Speaker
bgp default local-prefe -Configures the Default Local Preference value
neighbor - remote-as – Creates a Peer and initiates the connection to the peer
no ip bgp overlap-policy – Resets the Overlap route policy to default
27.46 show ip bgp filters

This command displays the contents of filter table.

show ip bgp filters

Mode
Privileged EXEC Mode

Example:

SMIS# show ip bgp filters

<table>
<thead>
<tr>
<th>Index</th>
<th>Admin</th>
<th>Remote-AS</th>
<th>PrefixLen</th>
<th>Inter-AS Direction</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status</td>
<td>Prefix</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>-----------</td>
<td>---------</td>
<td>-------------</td>
<td>----------------</td>
<td>------</td>
</tr>
<tr>
<td>1 up</td>
<td>500 12.0.0.0 8 555,444</td>
<td>out</td>
<td>allow</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 up</td>
<td>500 15.0.0.0 8</td>
<td>in</td>
<td>filter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 up</td>
<td>500 18.0.0.0 8 555,444</td>
<td>out</td>
<td>allow</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 up</td>
<td>500 19.0.0.0 8 888</td>
<td>in</td>
<td>filter</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The BGP Speaker Local AS number must be configured.

Related Command

`bgp update-filter` – Configures an entry in Update Filter Table
27.47 show ip bgp aggregate

This command displays the contents of aggregate table.

show ip bgp aggregate

Mode
Privileged EXEC Mode

Example:
SMIS# show ip bgp aggregate
Index AdminStatus Prefix PrefixLen Advertise
----- --------------- ------- ---------- -------
1 up 10.0.0.0 8 all
2 up 20.0.0.0 8 summary-only
3 up 50.0.0.0 8 all

The BGP Speaker Local AS number must be configured.

Related Commands
router bgp – Sets the AS number of the BGP Speaker
aggregate-address index – Configures an entry in Aggregate Table
27.48 show ip bgp med

This command displays the contents of MED table.

show ip bgp med

Mode
Privileged EXEC Mode

Example:
SMIS# show ip bgp med
Index Admin Remote Prefix Prefix Inter Direction Value Preference Status -AS Len -AS
---------- ------- ------- ------ -------- ------- ------- ------- ------ ------- ------
1 up 300 77.0.0.0 8 556,664 in 400 true
2 up 400 78.0.0.0 8 out 500 false

The BGP Speaker Local AS number must be configured.

Related Commands
bgp med – Configures an entry in MED Table
bgp bestpath med confed – Enables MED comparison among paths learnt from confed peers
27.49 show ip bgp dampening

This command displays the contents of dampening table.

show ip bgp dampening

Mode
Privileged EXEC Mode

Example:
SMIS# show ip bgp dampening
Half Life Time is 900
Reuse value is 500
Suppress value is 3500
Max Suppress time is 3600
Decay timer granularity is 1
Reuse timer granularity is 15
Reuse index array size is 1024

The BGP Speaker Local AS number must be configured.

Related Command

ip bgp dampening – Configures the Dampening Parameters
27.50 show ip bgp local-pref

This command displays the contents of local preference table.

show ip bgp local-pref

Mode
Privileged EXEC Mode

Example:
SMIS# show ip bgp local-pref

Index Admin Remote Prefix Prefix Inter Direction Value Preference Status -AS Len -AS
--- -------- ------ -------- ------ ----------- ---------------
1 up 300 22.0.0.0 8 555,666 in 400 true
2 up 400 23.0.0.0 8 - out 500 false
3 up 400 27.0.0.0 8 - in 700 false

The BGP Speaker Local AS number must be configured.

Related Commands
bgp default local-preference – Configures the Default Local Preference value
bgp local-preference – Configures an entry in Local Preference Table
27.51 show ip bgp timers

This command displays the value of BGP timers.

```
show ip bgp timers
```

Mode
Privileged EXEC Mode

Example:
```
SMIS# show ip bgp timers
Peer Timers
Peer Address Holdtime KeepAliveTime ConnectRetry ASOrig RouteAdvt
---- ------ ------ ------- -------- ------- ------- ------- ------- -------
10.0.0.2 500 100 400 350 300
10.0.0.3 120 30 30 15 30
10.0.0.4 120 30 30 15 30
10.0.0.6 120 30 30 15 30
10.0.0.7 120 30 30 15 30
10.0.0.8 120 30 30 15 30
```

The BGP Speaker Local AS number must be configured.

Related Command
```
ip bgp dampening  – Configures the Dampening Parameters
```
27.52 show ip bgp info

This command displays the general info about BGP protocol.

show ip bgp info

Mode
Privileged EXEC Mode

Example:
SMIS# show ip bgp info
Routing Protocol is "bgp 100"
IGP synchronization is disabled
Routing Protocol is bgp 100
Both more-specific and less-specific overlap route policy is set
Local Preference is 100
Non-bgp routes are advertised to both external and internal peers
MED Comparision is disabled
Metric is 0
Redistributing:static
Peer Table
Peer Address RemoteAS NextHop MultiHop
---- ------- ------- ------- ------- -------
10.0.0.2 200 self enable
10.0.0.3 100 automatic disable
10.0.0.4 100 automatic disable
10.0.0.6 600 automatic disable
10.0.0.7 700 automatic disable
10.0.0.8 800 automatic disable
TCPMD5 Auth Table
Peer Address Password
---- ------- -------
10.0.0.2 qwert
10.0.0.3 asdfg
10.0.0.4 zxcvb

The BGP Speaker Local AS number must be configured.
Related Commands

router bgp – Sets the AS number of the BGP Speaker

ip bgp overlap-policy – Configures the Overlap Route policy for the BGP Speaker

ip bgp synchronization – Enables synchronization between BGP and IGP

bgp default local-preference – Configures the Default Local Preference value

neighbor ebgp-multiphop – Enables BGP to establish connection with external peers

neighbor next-hop-self – Enables BGP to send itself as the next hop for advertised routes

neighbor interval – Configures neighbor interval

neighbor timers – Configures neighbor KeepAlive Time and Hold Time Intervals

bgp nonbgproute-advt – Controls the advertisement of Non-BGP routes

redistribute – Configures the protocol from which the routes have to be redistributed into BGP

bgp always-compare-med – Enables the comparison of med for routes received from different autonomous system

default-metric – Configures the Default IGP Metric value

neighbor password – Configures the password for TCP-MD5 authentication with peer

shutdown ip bgp – Sets the BGP Speaker Global Admin status DOWN
27.53 show ip bgp rfl info

This command displays information about RFL feature.

show ip bgp rfl info

Mode
Privileged EXEC Mode

Example:
SMIS# show ip bgp rfl info
Cluster id is 10.0.0.1
Desired Support of the route reflector – Client Support
BGP Peer Extension Table
Peer Address Client/Non-Client
---- ------- ---------------
10.0.0.2 Non-client
10.0.0.3 Non-client
10.0.0.4 Client
10.0.0.6 Non-client
10.0.0.7 Non-client
10.0.0.8 Non-client
The BGP Speaker Local AS number must be configured.

Related Commands
bgp nonbgproute-advt – Controls the advertisement of Non-BGP routes either to the external peer (1) or both to internal & external peer (2)
bgp client-to-client reflection – Configures the Route Reflector to support route reflection to Client Peers
neighbor route-reflector-client – Configures the Peer as Client of the Route Reflector
bgp cluster-id – Configures the Cluster ID for Route Reflector
27.54 show ip bgp confed info

This command displays info about confederation feature.

`show ip bgp confed info`

Mode
Privileged EXEC Mode

Example:
SMIS# show ip bgp confed info
Confederation Identifier is 1000
Confederation best path med comparison is not set
Confederation peers: 200 300 400
The BGP Speaker Local AS number must be configured.

Related Commands
- `bgp confederation identifier` – Specifies the BGP confederation identifier
- `bgp bestpath med confed` – Enables MED comparison among paths learnt from confed peers
- `bgp confederation peers` – Configures the ASs that belongs to the confederation
27.55 show ip bgp community

This command displays the contents of community tables.

```
show ip bgp community {route|peer|policy|filter}
```

Syntax Description

- **route** - Entry in additive or delete community table
- **peer** - Advertisement of community attributes to peer
- **policy** - Community attribute advertisement policy for specific destination
- **filter** - Filters the community attribute while receiving or advertising

Mode

Privileged EXEC Mode

Example:

```
SMIS# show ip bgp community route
Additive Community Table
Prefix PrefixLen AddCommVal
------- -------- ------
30.0.0.0 8 70000
60.0.0.0 8 75000
75.0.0.0 8 70000
76.0.0.0 8 75000
77.0.0.0 8 75000
78.0.0.0 8 75000
78.0.0.0 8 76000
Delete Community Table
Prefix PrefixLen DeleteCommVal
------- -------- ---------
40.0.0.0 8 80000
70.0.0.0 8 85000
```

SMIS# show ip bgp community filter

Incoming Filter Table
CommValue FilterStatus
-------- --------
SMIS# show ip bgp community policy

Community Policy Table
Prefix PrefixLen SendStatus
------ ------ --------
20.0.0.0 8 set-add
30.0.0.0 8 set-none
40.0.0.0 8 modify

SMIS# show ip bgp community peer

Community Peer Table
IpAddress SendStatus
------- --------
10.0.0.2 send
10.0.0.3 donotsend
10.0.0.6 send
10.0.0.8 send

The BGP Speaker Local AS number must be configured.

Related Commands

- **bgp comm-route** – Configures an entry in additive or delete community table
- **bgp comm-peer** – Enables/disables advertisement of community attributes to peer
- **bgp comm-filter** – Allows/filters the community attribute while receiving or advertising
- **bgp comm-policy** – Configures the community attribute advertisement policy for specific destination
- **neighbor - send-community** – Enables advertisement of community attributes to (standard/extended) peer
27.56 show ip bgp extcommunity

This command displays the contents of ext-community tables.

show ip bgp extcommunity {route|peer|policy|filter}

Syntax Description
route - Entry in additive or delete ext community table
peer - Advertisement of ext community attributes to peer
policy - Extended community attribute advertisement policy for specific destination
filter - Filters the ext community attribute while receiving or advertising

Mode
Privileged EXEC Mode

Example:
SMIS# show ip bgp extcommunity route
Additive Ext-Community Table
Prefix PrefixLen AddEcommVal
------ --------- --------
60.0.0.0 8 1:1:22:33:44:55:66:88
75.0.0.0 8 1:1:33:33:33:33:33:33
76.0.0.0 8 1:2:44:33:33:33:33:33
78.0.0.0 8 1:2:33:33:33:33:33:33
78.0.0.0 8 1:2:33:33:33:33:33:44
79.0.0.0 8 1:2:33:33:33:33:34:44
79.0.0.0 8 1:2:33:33:33:33:33:33
Delete Ext-Community Table
Prefix PrefixLen DeleteEcommVal
---------- --------- ---------
40.0.0.0 8 1:1:55:33:44:55:66:77

SMIS# show ip bgp extcommunity filter
Incoming Filter Table
EcommValue FilterStatus

Outgoing Filter Table
EcommValue FilterStatus

SMIS# show ip bgp extcommunity policy
Community Policy Table
Prefix PrefixLen SendStatus

20.0.0.0 8 set-add
30.0.0.0 8 set-none
40.0.0.0 8 modify

SMIS# show ip bgp extcommunity peer
Ext-Community Peer Table
IpAddress SendStatus

10.0.0.2 send
10.0.0.3 donotsend
10.0.0.8 send

The BGP Speaker Local AS number must be configured.

Related Commands

- `bgp ecomm-route` – Configures an entry in additive or delete ext community table
- `bgp ecomm-peer` – Enables/disables advertisement of ext community attributes to peer
- `bgp ecomm-filter` – Allows/filters the ext community attribute while receiving or advertising
- `bgp ecomm-policy` – Configures the extended community attribute advertisement policy for specific destination
27.57 show ip bgp dampened-paths

This command displays the dampened routes.

show ip bgp dampened-paths

Mode
Privileged EXEC Mode

Example:

SMIS# show ip bgp dampened-paths
Status codes: s suppressed, d damped,* valid
Network From LastUpdt Path
------- ---- -------- -----
65.0.0.0 22.0.0.1 00:5:5:1 100
60.0.0.0 22.0.0.1 00:4:15:1 100
80.0.0.0 23.0.0.2 00:4:11:41 300

Related Commands
clear ip bgp - Flap-Statistics - Clears the flap-statistics counters for all paths from the neighbor at the IP address
27.58 show ip bgp flap-statistics

This command displays the statistics of flapped routes.

```
show ip bgp flap-statistics [<ip-address><Mask>]
```

Syntax Description

- **ip-address** - IP Address of the Route
- **Mask** - Subnet Mask

Mode

Privileged EXEC Mode

Example:

```
SMIS# show ip bgp flap-statistics
Status codes: s suppressed, d damped,* valid
Network From Flaps LastUpdt Path
--------- ---- ------ -------- ----
65.0.0.0 22.0.0.1 1 00:5:5:1 100
60.0.0.0 22.0.0.1 4 00:4:15:1 100
80.0.0.0 23.0.0.2 3 00:4:11:41 300
```

Related Commands

- **clear ip bgp - Flap-Statistics** - Clears the flap-statistics counters for all paths from the neighbor at the IP address
IPv6 is a new version of IP which is designed to be an evolutionary step from IPv4. It can be installed as a normal software upgrade in Internet devices and is interoperable with the current IPv4. It has expanded routing and addressing capabilities because of the 128 bit addressing as compared to the 32 bit addressing in IPv4. Its deployment strategy is designed to not have any flag days or other dependencies. IPv6 is designed to run well on high performance networks (e.g. Gigabit Ethernet, OC-12, ATM, etc.) and at the same time still be efficient for low bandwidth networks (e.g. wireless). In addition, it provides a platform for new Internet functionality that will be required in the near future.

IPv6 includes a transition mechanism, which is designed to allow users to adopt and deploy IPv6 in a highly diffuse fashion and to provide direct interoperability between IPv4 and IPv6 hosts. The IPv6 transition allows the users to upgrade their hosts to IPv6, and the network operators to deploy IPv6 in routers, with very little coordination between the two.

The changes from IPv4 to IPv6 fall primarily into the following categories

- Expanded Routing and Addressing Capabilities
- Usage of anycast address
- Header Format Simplification
- Improved Support for Options
- Quality-of-Service Capabilities
- Authentication and Privacy Capabilities

The list of CLI commands for the configuration of IPv6 is as follows:

- `ipv6 enable`
- `ipv6 unicast-routing`
- `ipv6 - address`
- `ipv6 - link local address`
- `ipv6 - static routes`
- `ipv6 - neighbor`
- `ipv6 nd suppress-ra`
- `ipv6 nd managed-config flag`
ipv6 nd other-config flag
ipv6 hop-limit
ipv6 nd ra-lifetime
ipv6 nd dad attempts
ipv6 nd reachable-time
ipv6 nd retrans-time
ipv6 nd ra-interval
ipv6 nd prefix
show ipv6 interface
show ipv6 route
show ipv6 route summary
show ipv6 neighbors
ping ipv6
debug ipv6
traceroute
clear ipv6 neighbors
clear ipv6 traffic
clear ipv6 route
28.1 ipv6 enable

This command enables IPv6 processing on an interface that has not been configured with an explicit IPv6 address. The "no" form of the command disables IPv6 processing on the interface that has not been configured with an explicit IPv6 address.

```
ipv6 enable
```

```
no ipv6 enable
```

Mode
Interface Configuration Mode

Defaults
Disabled

Example:
```
SMIS(config-if)# ipv6 enable
```

IPv6 is enabled on the default VLAN interface.

Related Commands
- `ipv6 address` – Configures IPv6 address on the interface
- `show ipv6 interface` – Displays the IPv6 interfaces
28.2 ipv6 unicast-routing

This command enables unicast routing. The "no" form of the command disables unicast routing.

ipv6 unicast-routing

no ipv6 unicast-routing

Mode
Global Configuration Mode

Defaults
Enabled

Example:
SMIS(config)# ipv6 unicast-routing
28.3 ipv6 - address

This command configures IPv6 address on the interface. The “no” form of the command deletes the configured IPv6 address.

```
ipv6 address <prefix> <prefix Len> [{unicast | anycast | eui64}]
```

```
no ipv6 address <prefix> <prefix Len> [{unicast | anycast | eui64}]
```

Syntax Description
- `prefix` - IPv6 prefix for the interface
- `prefix Len` - IPv6 prefix length
- `unicast` - Unicast type of Prefix
- `anycast` - Anycast type of Prefix
- `eui64` - Type of Prefix where the latter 64 bits are formed from the link layer address

Mode
Interface Configuration Mode

Defaults
unicast

Example:
```
SMIS(config-if)# ipv6 address 3333::1111 64 unicast
```

The prefix length for eui64 type must be 64.

Related Command
- `show ipv6 interface` – Displays the IPv6 interfaces
28.4 ipv6 - link local address

This command configures the IPv6 link-local address on the interface. The "no" form of the command deletes the configured IPv6 link-local address.

`ipv6 address <prefix> link-local`

`no ipv6 address <prefix> link-local`

Syntax Description

- **prefix** - IPv6 Prefix for the interface
- **link-local** - Type of address

Mode

Interface Configuration Mode

Example:

```
SMIS(config-if)# ipv6 address fe80::2222 link-local
```

The prefix specified must be a valid link-local prefix.

Related Command

- `show ipv6 interface` – Displays the IPv6 interfaces
28.5 ipv6 - static routes

This command configures static routes. The "no" form of the command deletes the configured static routes.

```
ipv6 route <prefix> <prefix len> {<NextHop>| {vlan <id>}}
[<administrative distance>] [unicast]

no ipv6 route <prefix> <prefix Len> {<NextHop>| {vlan <id>}}
[<administrative distance>] [unicast]
```

Syntax Description
- `prefix` - IPv6 Prefix of the destination
- `prefix Len` - Destination prefix length
- `Next-Hop` - IPv6 prefix of the next hop that is used to reach the destination network
- `vlan` - VLAN Identifier
- `administrative distance` - Metric to reach the destination
- `unicast` - Unicast type of prefix

Mode
Global Configuration Mode

Defaults
- administrative distance – 1 unicast

Example:
```
SMIS(config)# ipv6 route 2111::1111 64 3111::1111
```

A Route will be configured only when a proper route exists for the next-hop prefix in the route table.

Related Commands
- `ipv6 - link local address` – Configures the IPv6 link-local address on the interface
- `show ipv6 route` – Displays the IPv6 Routes
28.6 ipv6 - neighbor

This command configures a static entry in the IPv6 neighbor cache table. The "no" form of the command removes the static entry from the IPv6 neighbor cache table.

```
ipv6 neighbor <prefix> {vlan <id> } <MAC ADDRESS (xx:xx:xx:xx:xx:xx)}
```

```
no ipv6 neighbor <prefix> {vlan <id>} <MAC ADDRESS (xx:xx:xx:xx:xx:xx)}
```

Syntax Description
- `prefix` - IPv6 Prefix of the neighbor
- `vlan` - VLAN Identifier
- `MAC ADDRESS` - Link layer address of the interface

Mode
Global Configuration Mode

Example:
```
SMIS(config)# ipv6 neighbor 3333::1111 vlan 1 00:11:22:33:44:55
```

Related Command
- `show ipv6 neighbors` – Displays the IPv6 Neighbour Cache Entries
28.7 ipv6 nd suppress-ra

This command suppresses IPv6 router advertisement. The "no" form of the command enables IPv6 router advertisement.

ipv6 nd suppress-ra

no ipv6 nd suppress-ra

Mode
Interface Configuration Mode

Defaults
Router advertisements are suppressed

Example:
SMIS(config-if)# ipv6 nd suppress-ra

Related Commands
show ipv6 interface – Displays the IPv6 interfaces
show ipv6 traffic – Displays the IPv6 ICMP and UDP statistics
28.8 ipv6 nd managed-config flag

This command sets the 'Managed config flag' which allows the host to use DHCP for address configuration. The “no” form of the command resets the 'Managed config flag' which in turn does not allow the host to use DHCP for address configuration.

ipv6 nd managed-config flag

no ipv6 nd managed-config flag

Mode
Interface Configuration Mode

Example:
```bash
SMIS(config-if)# ipv6 nd managed-config flag
```

Related Command

no ipv6 nd suppress-ra – Enables IPv6 router advertisement
28.9 ipv6 nd other-config flag

This command sets the 'other config flag' which allows the host to use DHCP for other stateful configuration. The "no" form of the command resets the 'other config flag' which in turn does not allow the host to use DHCP for other stateful configuration.

```
ipv6 nd other-config flag

no ipv6 nd other-config flag
```

Mode

Interface Configuration Mode

Example:

```
SMIS(config-if)# ipv6 nd other-config flag
```

Related Command

```
no ipv6 nd suppress-ra – Enables IPv6 router advertisement
```
28.10 ipv6 hop-limit

This command configures the maximum hoplimit for all IPv6 packets originating from the interface. The “no” form of the command resets the hoplimit to default value for all IPv6 packets originating from the interface.

ipv6 hop-limit <HopLimit (1-255)>

no ipv6 hop-limit

Mode
Interface Configuration Mode

Defaults
64

Example:
SMIS(config-if)# ipv6 hop-limit 100
28.11 ipv6 nd ra-lifetime

This command sets the IPv6 Router Advertisement lifetime.

```
ipv6 nd ra-lifetime <LifeTime (0-9000)>
```

Mode

Interface Configuration Mode

Defaults

1800 seconds

Example:

```
SMIS(config-if)# ipv6 nd ra-lifetime 100
```

The ND RA lifetime value must be greater than or equal to the RA interval.

Related Commands

- `no ipv6 nd suppress-ra` – Enables IPv6 router advertisement
- `show ipv6 interface` – Displays the IPv6 interfaces
28.12 ipv6 nd dad attempts

This command sets the number of duplicate address detection (dad) attempts. The "no" form of the command resets the duplicate address detection attempts to its default value.

```
ipv6 nd dad attempts <no of attempts (1-10)>
```

```
no ipv6 nd dad attempts
```

Mode
Interface Configuration Mode

Defaults
1

Example:
```
SMIS(config-if)# ipv6 nd dad attempts 5
```

Related Commands
```
show ipv6 interface – Displays the IPv6 interfaces
no ipv6 nd suppress-ra – Enables IPv6 router advertisement
```
28.13 ipv6 nd reachable-time

This command sets the advertised reachability time. The “no” form of the command resets the advertised reachability time to default value.

`ipv6 nd reachable-time <Reachable Time (1-3600)>`

`no ipv6 nd reachable-time`

Mode
Interface Configuration Mode

Defaults
30

Example:
SMIS(config-if)# ipv6 nd reachable-time 500

Related Commands
- `show ipv6 interface` – Displays the IPv6 interfaces
- `no ipv6 nd suppress-ra` – Enables IPv6 router advertisement
28.14 ipv6 nd retrans-time

This command sets the advertised retransmit time. The "no" form of the command resets the advertised retransmit time to its default value 1.

`ipv6 nd retrans-time <Retrans Time (1-3600)>`

`no ipv6 nd retrans-time`

Syntax

`<Retrans Time (1-3600)>` - Any valid number between 1 to 3600

Mode

Interface Configuration Mode

Defaults

1

Example:

```
SMIS(config-if)# ipv6 nd retrans-time 300
```

Related Commands

- `show ipv6 interface` – Displays the IPv6 interfaces
- `no ipv6 nd suppress-ra` – Enables IPv6 router advertisement
28.15 ipv6 nd ra-interval

This command sets the IPv6 Router Advertisement interval. The "no" form of the command resets the IPv6 Router Advertisement interval to its default value.

```
ipv6 nd ra-interval <interval (4-1800)>
```

```
no ipv6 nd ra-interval
```

Mode

Interface Configuration Mode

Defaults

600 seconds

Example:

```
SMIS(config-if)# ipv6 nd ra-interval 200
```

Related Commands

- `show ipv6 interface` – Displays the IPv6 interfaces
- `no ipv6 nd suppress-ra` – Enables IPv6 router advertisement
28.16 ipv6 nd prefix

This command configures the prefix to be advertised in IPv6 Router Advertisement. The “no” form of the command removes the prefix from the IPv6 Router Advertisement.

```
ipv6 nd prefix {<prefix addr> <prefixlen> | default} [{<valid
lifetime> | infinite | at <var valid lifetime>}{<preferred lifetime>
infinite | at <var preferred lifetime>}] [no-advertise]} [off-link]
[no-autoconfig]
```

```
no ipv6 nd prefix {<prefix addr> <prefix len> | default}
```

Syntax Description
- **no-autoconfig** - Sets the no-autoconfig flag
- **prefix addr** - IPv6 prefix to be advertised
- **prefixlen** - Length of the configured prefix
- **default** - Changes the default value of the rest of the parameters
- **valid lifetime** - Sets the valid lifetime value for the prefix
- **infinite** - Sets the infinite valid lifetime value for the prefix
- **at** - Sets the variable valid lifetime value for the prefix
- **preferred lifetime** - Sets the preferred lifetime value for the prefix
- **infinite** - Sets the infinite Preferred lifetime value for the prefix
- **at** - Sets the variable valid lifetime value for the prefix
- **no-advertise** - Sets the No-Advertise flag
- **off-link** - Sets the off-link flag

Mode
Interface Configuration Mode

Defaults
- ra valid lifetime - 25,9200 seconds
- ra preferred lifetime - 60,4800 seconds

Example:
```
SMIS(config-if)# ipv6 nd prefix 3333::1111 64 500 400
```

Valid life-time must be greater than or equal to preferred life-time
Related Command

`show ipv6 interface` – Displays the IPv6 interfaces
28.17 ping ipv6

This command sends IPv6 echo messages.

`ping ipv6 <prefix> [data <hex_str>] [repeat <count>] [size <value>] [anycast] [source {vlan <id> | <source_prefix>}] [timeout <value (1-100)>]

Syntax Description
- **prefix** - IPv6 Destination Prefix
- **data** - Data to be sent in ping message
- **repeat** - Number of ping messages
- **size** - Size of the ping message
- **anycast** - Type of Prefix
- **source** - Source Interface of the ping message can be vlan or source_prefix
- **Timeout** - Duration to wait for the reply

Mode
Privileged EXEC Mode

Defaults
- data - a5a5
- repeat <count> - 5
- size - 100 bytes
- timeout - 5 seconds

Example:
SMIS# ping ipv6 3333::1111 data a6b6
28.18 debug ipv6

This command enables IPv6 Trace. The “no” form of the command disables IPv6 Trace.

```
default debug ipv6 {IP6|ICMP|UDP6|ND|PING6|Packet}
```

no default ipv6

Syntax Description
- **IP6** - IP6 Trace
- **ICMP** - ICMP Trace
- **UDP6** - UDP6 Trace
- **ND** - Neighbor Discovery Trace
- **PING6** - PING6 Trace
- **Packet** - Packet Trace

Mode
Privileged EXEC Mode

Defaults
Disabled

Example:

```
SMIS# debug ipv6 IP6
```
28.19 traceroute

This command traces route to the destination.

```
traceroute [ipv6 <prefix>]
```

Syntax Description
- **ipv6** - IPv6 Destination Prefix

Mode
- Privileged EXEC Mode

Example:
```
SMIS# traceroute ipv6 4444::1111
```
28.20 clear ipv6 neighbors

This command removes all the entries in the IPv6 neighbor table.

clear ipv6 neighbors

Mode
Privileged EXEC Mode

Example:
SMIS# clear ipv6 neighbors

Related Command
show ipv6 neighbors – Displays the IPv6 Neighbour Cache Entries
28.21 clear ipv6 traffic

This command removes all the entries in the IPv6 traffic table.

clear ipv6 traffic

Mode
Privileged EXEC Mode

Example:
SMIS# clear ipv6 traffic

Related Command
show ipv6 traffic – Displays the IPv6 ICMP and UDP statistics
28.22 clear ipv6 route

This command removes all the entries in IPv6 route table.

clear ipv6 route

Mode
Privileged EXEC Mode

Example:
SMIS# clear ipv6 route

Related Command
show ipv6 route – Displays the IPv6 Routes
28.23 show ipv6 interface

This command displays the IPv6 interfaces.

`show ipv6 interface [{vlan <id>}[prefix]]`

Syntax Description

- **vlan** - VLAN Identifier
- **prefix** - Prefix information

Mode

Privileged EXEC Mode

Example:

```
SMIS# show ipv6 interface vlan 1 prefix
Codes: A - Address, P - Prefix-Advertisement
D - Default, N - Not Advertised
 AD 2222:: 64 [LA] Valid lifetime 2592000, Preferred lifetime 604800
 AD 2223:1:2:3:: 64 [LA] Valid lifetime 2592000, Preferred lifetime 604800
 P 3333:: 64 [LA] Valid lifetime 700, Preferred lifetime 600
 PD 3334:: 64 [LA] Valid lifetime 2592000, Preferred lifetime 604800
 PN 3335:: 64 [ ] Valid lifetime 2592000, Preferred lifetime 604800
```

Related Commands

- **ipv6 enable** – Enables IPv6 processing on an interface that has not been configured with an explicit IPv6 address
- **ipv6** – **address** – Configures IPv6 address on the interface
- **ipv6** – **link local address** – Configures the IPv6 link-local address on the interface
- **ipv6 nd suppress-ra** – Suppresses IPv6 router advertisement
- **ipv6 nd ra-lifetime** – Sets the IPv6 Router Advertisement lifetime
- **ipv6 nd dad attempts** – Sets Duplicate Address Detection attempts
ipv6 nd reachable-time – Sets the advertised reachability time
ipv6 nd ra-interval – Sets the IPv6 Router Advertisement interval
ipv6 nd prefix – Configures the prefix to be advertised in IPv6 Router Advertisement
28.24 show ipv6 route

This command displays the IPv6 Routes.

show ipv6 route

Mode
Privileged EXEC Mode

Example:
SMIS# show ipv6 route
IPv6 Routing Table - 4 entries
Codes : C - Connected, S - Static
O - OSPF, R - RIP, B - BGP
C 2222::/64 [1/1]
 via ::, vlan1
C 2223:1:2:3::/64 [1/1]
 via ::, vlan1
S 4444::/64 [1/20]
 via 2222::2222, vlan1
S 4445::/64 [1/20]
 via 2222::2222, vlan1

Related Command
ipv6 - static routes – Configures static routes
28.25 show ipv6 route summary

This command displays the summary of IPv6 Routes.

show ipv6 route summary

Mode
Privileged EXEC Mode

Example:
SMIS# show ipv6 route summary
IPv6 Routing Table Summary - 4 entries
2 Connected, 2 Static, 0 RIP, 0 BGP, 0 OSPF
Number of prefixes:
/64: 4

Related Command
show ipv6 route – Displays the IPv6 Routes
28.26 show ipv6 neighbors

This command displays the IPv6 Neighbour Cache Entries.

show ipv6 neighbors

Mode

Privileged EXEC Mode

Example:

SMIS# show ipv6 neighbors
IPv6 Address Age Link-layer Addr State Interface
5555::1111 58 00:11:22:33:44:55 Static vlan1
5556::1111 58 11:22:33:44:55:66 Static vlan1

Related Command

 ipv6 – neighbor – Configures a static entry in the IPv6 neighbor cache table
28.27 show ipv6 traffic

This command displays the IPv6 ICMP and UDP statistics.

show ipv6 traffic

Mode
Privileged EXEC Mode

Example:
SMIS# show ipv6 traffic
IPv6 Statistics

0 Rcvd 0 HdrErrors 0 TooBigErrors
0 AddrErrors 0 FwdDgrams 0 UnknownProtos
0 Discards 0 Delivers 3 OutRequests
0 OutDiscards 0 OutNoRoutes 0 ReasmReqds
0 ReasmOKs 0 ReasmFails
0 FragOKs 0 FragFails 0 FragCreates
0 RcvdMcastPkt 3 SentMcastPkts 0 TruncatedPkts
0 RcvdRedirects 0 SentRedirects
ICMP Statistics

Received :
0 ICMPPkts 0 ICMPErrPkt 0 DestUnreach 0 TimeExcds
0 ParmProbs 0 PktTooBigMsg 0 ICMPEchoReq 0
ICMPEchoReps
0 RouterSols 0 RouterAdv 0 NeighSols 0 NeighAdv
0 Redirects 0 AdminProhib 0 ICMPBadCode
Sent
0 ICMPMsgs 0 ICMPErrMsgs 0 DstUnReach 0 TimeExcds
0 ParmProbs 0 PktTooBigs 0 EchoReq 0 EchoReply
0 RouterSols 0 RouterAdv 3 NeighSols 0 NeighborAdv
0 RedirectMsgs 0 AdminProhibMsgs
UDP statistics

Received :
0 UDPDgrams 2 UDPNoPorts 0 UDPErrPkts
Sent:
0 UDPDgrams
29 RRD6

RRD6 (Route Redistribution) allows different routing protocols to exchange IPv6 routing information.

The list of CLI commands for the configuration of RRD6 is as follows:

export ospfv3
redistribute-policy
default redistribute-policy
throt
show redistribute-policy ipv6
show redistribute information ipv6
29.1 export ospfv3

This command enables redistribution of OSPF area/External routes to the protocol. The “no” form of the command disables redistribution of OSPF area/External routes to the protocol.

\[\text{export ospfv3 } \{\text{area-route}|\text{external-route}\} \{\text{rip}\} \]

\[\text{no export ospfv3 } \{\text{area-route}|\text{external-route}\} \{\text{rip}\} \]

Syntax Description
- **area-route** - OSPFv3 inter-area and intra-area address/mask pairs to be exported into the routing protocol
- **external-route** - OSPFv3 Type 1 and Type 2 External address/mask pairs to be exported into the routing protocol
- **rip** - Routing Information Protocol

Mode
Global Configuration Mode

Example:
\[\text{SMIS(config)# export ospfv3 area-route rip} \]

Related Command
- **show redistribute information ipv6** – Displays the RTM6 RRD status for registered protocols
29.2 redistribute-policy

This command adds the IPv6 permit/deny Redistribution Policy. The “no” form of the command removes the IPv6 permit/deny Redistribution Policy.

redistribute-policy {ipv6} {permit|deny} <DestIp> <DestRange>
{static|local|rip|ospf} {rip|ospf|all}

no redistribute-policy {ipv6} <DestIp> <DestRange>

Syntax Description

ipv6 - IPv6 Protocol
permit - Sets the default rule for all prefixes to ‘permit’
deny - Sets the default rule for all prefixes to ‘deny’
DestIp - Destination IP address
DestRange - Destination range
static - Static routes
local - Local routes
rip - Routing Information Protocol
ospf - Open Shortest Path First Protocol
all - All

Mode
Global Configuration Mode

Defaults
permit all

Example:

SMIS(config)# redistribute-policy permit 4444::1111 64.static ospf

The addresses learnt within the specified range through the specified routing protocol will be redistributed to other routing protocols
No routes will be exchanged between RTM and the re-distributing protocols

Related Command
show redistribute-policy ipv6 – Displays route redistribution filters
29.3 default redistribute-policy

This command sets the default behavior of the RRD6 Control Table.

default redistribute-policy {ipv6} {permit | deny}

Syntax Description
ipv6 - IPv6 Protocol
permit - Sets the default rule for all prefixes to 'permit'
deny - Sets the default rule for all prefixes to 'deny'

Mode
Global Configuration Mode

Example:
SMIS(config)# default redistribute-policy ipv6 permit

Related Command
show redistribute-policy ipv6 – Displays route redistribution filters
29.4 throt

This command configures the maximum number of routes processed for every iteration.

```
throt <value>
```

Mode
Global Configuration Mode

Defaults
1000

Example:
```
SMIS(config)# throt 100
```
29.5 show redistribute-policy ipv6

This command displays the route redistribution filters

```
show redistribute-policy ipv6
```

Mode
Privileged EXEC Mode

Example:
```
SMIS# show redistribute-policy ipv6
Destination Range SrcProto DestProto Flag
----------- ----- -------- ------------ ----- ----
3434::1111 64 static rip Deny
:: 128 all others Allow
```

Related Commands
- `redistribute-policy` – Adds the IPv6 permit/deny Redistribution Policy
- `default redistribute-policy` – Sets the default behavior of the RRD6 Control Table
29.6 show redistribute information ipv6

This command displays the RTM6 RRD status for registered protocols.

```
show redistribute information ipv6
```

Mode
Privileged EXEC Mode

Example:
```
SMIS# show redistribute information ipv6
Current State is enabled
ProtoName OspfAreaRoutes OspfExtRoutes
--------- --------------- ---------------
local Disable Disable
static Disable Disable
rip Enable Enable
```

Related Command
```
export ospfv3 – Enables redistribution of OSPF area/External routes to the protocol
```
30 RIPv6

RIPv6 functions the same and offers the same benefits as RIP in IPv4. RIPv6 enhancements for IPv6, detailed in RFC 2080, include support for IPv6 addresses and prefixes, and the use of all-RIP-routers multicast group address as the destination address for RIP update messages. This module describes how to configure Routing Information Protocol for IPv6. IPv6 RIP process maintains a local routing table, referred to as a Routing Information Database (RIB). The IPv6 RIP RIB contains a set of IPv6 RIP routes learnt from all its neighboring networking devices.

Before configuring the router to run IPv6 RIP, the ipv6 unicast-routing must be enabled globally, and IPv6 must be enabled on any interface in which IPv6 RIP is to be processed.

The list of CLI commands for the configuration of RIPv6 are as follows:

ipv6 router rip
ipv6 split-horizon
ipv6 rip enable
ipv6 poison reverse
ipv6 rip default-information originate
ipv6 rip metric-offset
redistribute
distribute prefix
debug ipv6 rip
show ipv6 rip database
show ipv6 rip stats
show ipv6 rip filter
30.1 ipv6 router rip

This command enables the router configuration mode and the “no” form of the command disables RIP6 on all the interfaces.

```
ipv6 router rip
```

```
no ipv6 router rip
```

Mode

Global Configuration Mode

Example:

```
SMIS(config)# ipv6 router rip
```

Before configuring the router to run IPv6 RIP, the ipv6 unicast-routing must be enabled globally, and IPv6 must be enabled on any interface in which IPv6 RIP is to be processed.

Related Command

```
show ipv6 rip database  – Displays IPv6 Local RIB and routing protocol information
```
30.2 ipv6 split-horizon

This command enables the split horizon updates and the “no” form of the command disables the split horizon updates.

ipv6 split-horizon

no ipv6 split-horizon

Mode
Interface Configuration Mode

Example:
SMIS(config-if)# ipv6 split-horizon

The value splitHorizon denotes that splitHorizon algorithm must be applied in the response packets that are going out.

Related Command
show ipv6 rip database – Displays IPv6 Local RIB and routing protocol information
30.3 ipv6 rip enable

This command enables RIP Routing and the "no" form of the command disables the RIP Routing.

ipv6 rip enable

no ipv6 rip

Mode
Interface Configuration Mode

Example:
SMIS(config-if)# ipv6 rip enable

Related Command
show ipv6 rip database – Displays IPv6 Local RIB and routing protocol information
30.4 ipv6 poison reverse

This command enables poison reverse.

`ipv6 poison reverse`

Mode
Interface Configuration Mode

Example:
`SMIS(config-if)# ipv6 poison reverse`

The value poison reverse denotes that the poison reverse algorithm must be applied in the response packets that are going out.

Related Command
`show ipv6 rip database` – Displays IPv6 Local RIB and routing protocol information
30.5 ipv6 rip default-information originate

This command configures handling of default route originate and the “no” form of the command disables handling of default route originate.

ipv6 rip default-information originate

no ipv6 rip default-information

Mode

Interface Configuration Mode

Example:

SMIS(config-if)# ipv6 rip default-information originate
The command originates the IPv6 default route into the specified RIP routing process updates sent out of the specified interface.

Related Command

show ipv6 rip database – Displays IPv6 Local RIB and routing protocol information
30.6 ipv6 rip metric-offset

This command adjusts the default metric increment.

ipv6 rip metric-offset <integer (1-15)>

Mode

Interface Configuration Mode

Example:

SMIS(config-if)# ipv6 rip metric-offset 6

The ipv6 rip metric-offset command is used in conjunction with the redistribute router configuration command to cause the current routing protocol to use the same metric value for all redistributed routes.

The maximum metric that RIP can advertise is 16, and a metric of 16 denotes a route that is unreachable.

Related Command

show ipv6 rip database – Displays IPv6 Local RIB and routing protocol information
30.7 redistribute

This command enables redistribution of IPv6 prefix from another protocol into RIP6 and the “no” form of the command disables redistribution of IPv6 prefix from another protocol into RIP6.

```
redistribute {static|connected|ospf} metric <integer(0-16)>
```

```
no redistribute {static|connected|ospf}
```

Syntax Description

- **static** - Statically configured routes to advertise in the RIP6 process
- **connected** - Connected routes to advertise in the RIP6 process
- **ospf** - OSPF routes to advertise in the RIP6 process
- **metric** - Routing metric associated with the route

Mode

Router Configuration Mode

Example:

```
SMIS(config-router)# redistribute static metric 6
```

Related Command

- **show ipv6 rip database** – Displays IPv6 Local RIB and routing protocol information
30.8 distribute prefix

This command enables Filter network in routing updates sent or received and the "no" form of the command disables Filter network in routing updates sent or received.

```
distribute prefix <ip6_addr> {in | out}
```

```
o distribute prefix <ip6_addr> {in | out}
```

Syntax Description

- `ip6_addr` - IPv6 Address
- `in` - Filter network in routing updates received
- `out` - Filter network in routing updates sent out

Mode

Router Configuration Mode

Example:

```
SMIS(config-router)# distribute prefix 3333::1111 in
```

Filtering is controlled by distribute lists. Input distribute lists control route reception and input filtering is applied to advertisements received from neighbors. Only those routes that pass input filtering are inserted in the RIP local routing table and become candidates for insertion into the IPv6 routing table.

Output distribute lists control route advertisement. Output filtering is applied to route advertisements sent to neighbors. Only those routes passing output filtering will be advertised.

Related Commands

- `show ipv6 rip database` – Displays IPv6 Local RIB and routing protocol information
- `show ipv6 rip filter` – Displays peer and Advfilter table
30.9 debug ipv6 rip

This command enables IPv6 RIP routing protocol debugging and the “no” form of the command disables IPv6 RIP routing protocol debugging.

```
debug ipv6 rip { all | data | control }
```

no debug ipv6 rip

Syntax Description

- **all** - All resources
- **data** - Data path messages
- **control** - Control Plane messages

Mode

Privileged EXEC Mode

Defaults

Disabled

Example:

```
SMIS# debug ipv6 rip all
```

Related Commands

- **show ipv6 rip database** – Displays IPv6 Local RIB and routing protocol information
30.10 show ipv6 rip database

This command displays IPv6 Local RIB and routing protocol information.

show ipv6 rip [database]

Syntax Description

database - IPv6 RIP protocol database

Mode
Privileged EXEC Mode

Example:
SMIS# show ipv6 rip database
RIP local RIB
4444::/64, metric 10, local
vlan1/::, expires in 180 secs
5555::/64, metric 10, local
vlan2/::, expires in 180 secs
6666::/64, metric 7, static

Related Commands
ipv6 router rip – Enables the router configuration mode
ipv6 split-horizon – Enables the split horizon updates
ipv6 rip enable – Enables RIP Routing
ipv6 poison reverse – Enables poison reverse
ipv6 rip default-information originate – Configures handling of default route originate
ipv6 rip metric-offset – Adjusts default metric increment
redistribute – Redistributes IPv6 prefix from another protocol into RIP6
distribute prefix – Enables Filter network in routing updates sent or received
debug ipv6 rip – Enables IPv6 RIP routing protocol debugging
30.11 show ipv6 rip stats

This command displays all the interface statistics.

```
show ipv6 rip stats
```

Mode
Privileged EXEC Mode

Example:
```
SMIS# show ipv6 rip stats
Interface vlan1
Rcvd :
Messages 0 Requests 0 Responses 0
UnknownCommds 0 OtherVer 0 Discards 0
Sent :
Messages 1 Requests 1 Responses 0
Trigger Updates 0
```
30.12 show ipv6 rip filter

This command displays peer and Advfilter table.

```
show ipv6 rip filter
```

Mode
Privileged EXEC Mode

Example:
```
SMIS# show ipv6 rip filter
Filter Address FilterType
*************** **********
fe80::200:ff:febb:e01 IN
fe80::200:ff:fecc:102 IN
3333::1111 OUT
```

Related Command
distribute prefix – Enables Filter network in routing updates sent or received
31 OSPFv3

Open Shortest Path First (OSPF) is a link-state, hierarchical Interior Gateway Protocol (IGP) routing algorithm.

OSPFv3 is the modified form of OSPF to support version 6 of the Internet Protocol. The fundamental mechanisms of OSPF (flooding, DR election, area support, SPF calculations, etc.) remain unchanged. However, some changes have been necessary, either due to changes in protocol semantics between IPv4 and IPv6, or simply to handle the increased address size of IPv6.

The list of CLI commands for the configuration of OSPFv3 are as follows:

- `ipv6 router ospf`
- `router-id`
- `area - stub/nssa`
- `area - stability-interval`
- `area - translation-role`
- `timers spf`
- `abr-type`
- `area - default-metric value`
- `area - default-metric type`
- `area - virtual-link`
- `ASBR Router`
- `area - range`
- `area - external summary address`
- `redistribute`
- `passive-interface`
- `host - metric/area-id`
- `no area`
- `nssaAsbrDfRtTrans`
redist-config
as-external lsdb-limit
exit-overflow-interval
demand-extensions
reference-bandwidth
ipv6 ospf area
ipv6 ospf demand-circuit
ipv6 ospf retransmit-interval
ipv6 ospf transmit-delay
ipv6 ospf priority
ipv6 ospf hello-interval
ipv6 ospf dead-interval
ipv6 ospf poll-interval
ipv6 ospf metric
ipv6 ospf network
ipv6 ospf neighbor
ipv6 ospf passive-interface
ipv6 ospf neighbor probing
ipv6 ospf neighbor-probe retransmit-limit
ipv6 ospf neighbor-probe interval
debug ipv6 ospf
show ipv6 ospf interface
show ipv6 ospf neighbor
show ipv6 ospf - request/retrans-list
show ipv6 ospf virtual-links
show ipv6 ospf border-routers
show ipv6 ospf - area-range / summary-prefix
show ipv6 ospf - General Information
show ipv6 ospf - LSA Database
show ipv6 ospf route
show ipv6 ospf areas
show ipv6 ospf host
show ipv6 ospf redist-config
31.1 ipv6 router ospf

This command enables the OSPFv3 routing protocol. The "no" form of the command disables the OSPFv3 routing protocol.

`ipv6 router ospf`

`no ipv6 router ospf`

Mode
Global Configuration Mode

Defaults
Disabled

Example:

```
SMIS(config)# ipv6 router ospf
```

The "no" form of the command disables all the interfaces and triggers flushing of selforiginated LSAs (Link State Advertisements) and deletes the router's Link State Database.
31.2 router-id

This command sets a fixed router ID.

`router-id <IPv4-Address>`

Syntax Description

IPv4-Address - A 32-bit integer that uniquely identifies the router in the autonomous system.

Mode

Router Configuration Mode

Defaults

IPv4-Address - 0.0.0.0

Example:

```
SMIS(config-router)# router-id 11.0.0.1
```

Related Command

`show ipv6 ospf - General Information` – Displays general information about the OSPFv3 routing process
31.3 area - stub/nssa

This command defines an area as a stub area or an NSSA (Not So Stubby Area).

area <area-id> {{ stub | nssa } [no-summary]}

Syntax Description

area-id - A 32-bit integer
stub - Stub area
nssa - NSSA
no-summary - Allows an area to be a stubby/not-so-stubby but does not allow it to have summary routes injected into it

Mode
Router Configuration Mode

Example:
SMIS(config-router)# area 1.1.1.1 stub no-summary

In a stub area, the generation of a summary LSA is optional.
If the no-summary option is specified in the command, then the router neither originates nor propagates summary LSAs into the stubby area /NSSA. It relies entirely on its default route.
If the no-summary option is not specified, the router summarizes and propagates summary LSAs.
The no-summary option can be specified only in the Area Border Routers and by default, it is set to send summary.

Related Command
show ipv6 ospf areas – Displays the Area Table
31.4 area - stability-interval

This command configures the stability interval (in seconds) for the NSSA. The “no” form of the command sets the default value of the stability interval for the NSSA.

area <area-id> stability-interval <1-65535>

no area <area-id> stability-interval

Syntax Description
area-id - A 32 bit integer
stability-interval - The number of seconds after which an elected translator determines that its services are no longer required, and that it must continue to perform its translation duties.

Mode
Router Configuration Mode

Defaults
interval-value - 40

Example:
SMIS(config-router)# area 0.0.0.1 stability-interval 50

Related Command
show ipv6 ospf areas – Displays the Area Table
This command configures the translation role for NSSA. The "no" form of the command configures the default translation role for the NSSA.

```
area <area-id> translation-role { always | candidate }
```

```
no area <area-id> translation-role
```

Syntax Description

- **area-id** - A 32 bit integer
- **translation-role** - An NSSA Border router's ability to perform NSSA Translation of Type-7 LSAs to Type-5 LSAs

Mode

Router Configuration Mode

Defaults

translation-role - candidate

Example:

```
SMIS(config-router)# area 0.0.0.1 translation-role always
```

When the translator role is set to always, the Type-7 LSAs are always translated into Type-5 LSAs.

When the translator role is set to candidate, an NSSA border router participates in the translator election process.

Related Command

- `show ipv6 ospf areas` – Displays the Area Table
31.6 timers spf

This command configures the delay time and the hold time between two consecutive SPF calculations.

The "no" form of the command sets the default values for spf-delay and spf-holdtime.

```
timers spf <spf-delay> <spf-holdtime>
```

```
o timers spf
```

Syntax Description

- **spf-delay** - The interval by which SPF calculation is delayed after receipt of a topology change.
- **spf-holdtime** - The delay between two consecutive SPF calculations.

Mode

Router Configuration Mode

Defaults

- spf-delay - 5
- spf-holdtime - 10

Example:

```
SMIS(config-router)# timers spf 10 20
```

Related Command

- `show ipv6 ospf` - Displays general information about the OSPFv3 routing process.
31.7 **abr-type**

This command sets the ABR (Area Border Router) type. The "no" form of the command sets the default ABR type.

```
abr-type { standard | cisco | ibm }
```

```
no abr-type
```

Syntax Description
- **standard** - Standard ABR type
- **cisco** - CISCO ABR type
- **ibm** - IBM ABR type

Mode
Router Configuration Mode

Defaults
standard

Example:
```
SMIS(config-router)# abr-type cisco
```

Related Command
- **show ipv6 ospf - General Information** - Displays general information about the OSPFv3 routing process
31.8 area - default-metric value

This command sets the default metric value for an area of type NSS/stub only.

```
area <area-id> default-metric <metric>
```

area-id - A 32 bit integer

Syntax Description

- **default-metric** - Cost for the default summary route in a stub/NSS area

Mode

Router Configuration Mode

Defaults

metric - 1

Example:

```
SMIS(config-router)# area 1.1.1.1 default-metric 20
```

Default metric can be defined only for a valid area.

Related Command

- **area - stub/nssa** – Defines an area as a stub area or an NSSA (Not So Stubby Area)
31.9 area - default-metric type

This command sets the default metric-type for an area type of NSS/stub only.

area <area-id> default-metric type <metricType(1-3)>

Syntax Description
area-id - A 32 bit integer
default-metric type - Type of metric

Mode
Router Configuration Mode

Defaults
metricType - 1

Example:
SMIS(config-router)# area 1.1.1.1 default-metric type 2

Default metric can be defined only for a valid area.

Related Command
area - stub/nssa – Defines an area as a stub area or an NSSA (Not So Stubby Area)
This command sets the Virtual Link between areas. In OSPFv3, all areas must be connected to a backbone area. If there is a break in backbone continuity, or the backbone is purposefully partitioned, a virtual link can be established. The two endpoints of a virtual link are ABRs. The virtual link must be configured in both routers. The configuration information in each router consists of the other virtual endpoint (the other ABR) and the non-backbone area that the two routers have in common (called the transit area). If 20.0.0.3 is the Router ID of the Neighbor and 100 is the Interface Index assigned to the OSPFv3 virtual interface, then this interface index is advertised in Hello packet sent over the virtual link and in the router’s router-LSAs.

```
area <area-id> virtual-link <router-id> <if-index> [hello-interval <1-65535>] [retransmit-interval <1-1800>] [transmit-delay <1-1800>] [dead-interval <1-65535>]
```

Syntax Description

- **area-id**: A 32 bit integer
- **virtual-link**: The Router ID of the Virtual Neighbor
- **if-index**: Interface Index assigned to the OSPFv3 virtual interface
- **hello-interval**: The interval between hello packets on the OSPFv3 virtual link interface.
- **retransmit-interval**: The time between link-state advertisement (LSA) retransmissions for adjacencies belonging to the OSPFv3 virtual link interface.
- **transmit-delay**: The estimated time it takes to transmit a link state update packet over this interface.
- **dead-interval**: The interval at which hello packets must not be seen before its neighbors declare the router down.

Mode

Router Configuration Mode

Defaults

- hello-interval - 10
- retransmit-interval - 20
- transmit-delay - 1
- dead-interval - 60

Example:
SMIS(config-router)# area 1.1.1.1 virtual-link 20.0.0.3 1 hellointerval 50 retransmit-interval 6 transmit-delay 6 dead-interval 100

Virtual links cannot be configured through stub areas. hello-interval and dead-interval values must be the same for all routers on a specific network.

Related Commands

- `show ipv6 ospf interface` – Displays the OSPFv3-related interface information
- `show ipv6 ospf virtual-links` – Displays the parameters and the current state of OSPFv3 virtual links
31.11 ASBR Router

This command configures the router as an ASBR. The “no” form of the command disables the ASBR status of the router.

ASBR Router

no ASBR Router

Mode
Router Configuration Mode

Example:
SMIS(config-router)# ASBR Router

Only when ASBR (Autonomous System Border Router) status is configured to enable, routes from other protocols are redistributed into OSPFv3 domain.

Related Command
show ipv6 ospf – General Information – Displays general information about the OSPFv3 routing process
31.12 area - range

This command creates the Internal Aggregation Address Range. The Internal Address Range is of two types:

 Type 3 Aggregation
 Type 7 Translation Aggregation

area <Area-ID> range <IPv6-Prefix> <Prefix-Length> [{ advertise | notadvertise }] { summary | Type7 } [tag <tag-value>]

Syntax Description

Area-ID - A 32-bit integer
range - Internal Aggregation Address Range
IPv6-Prefix - The IPv6 address prefix of the range
Prefix-Length - The prefix length of the address range
advertise - Flushes out all the routes (LSAs) falling in the range and generates aggregated LSA for the range
not-advertise - Suppresses routes that match the prefix/prefix-length pair
summary - Summary LSA
Type7 - Type-7 LSA
tag - Sets the tag value for the aggregated route

Mode
Router Configuration Mode

Defaults

tag - 0

Example:
SMIS(config-router)# area 1.1.1.1 range 3ffe:5000:481d::5 80 advertise Type7 tag 20

When parameter summary is specified, the configured range is used for aggregating Type-3 LSA.
When parameter Type7 is specified, the configured range is used for aggregating Type-7 LSAs.
The optional parameter tag is used to set the tag value for the aggregated route. This is not used by the OSPFv3 protocol alone. It can be used to communicate information between AS boundary routers.

Related Command

`show ipv6 ospf - area-range / summary-prefix` – Displays either the list of all area address ranges information or all external summary address configuration information
31.13 area - external summary address

This command enables route aggregation/filtering while importing routes in the OSPFv3 domain. The command configures Type-5 and Type-7 Address Range specifying whether Type-5/Type-7 LSAs are generated or not for the configured range for the particular area.

area <AreaID> summary-prefix <IPv6-Prefix> <Prefix-Length> [{ allowAll | denyAll | advertise | not-advertise}] [Translation { enabled | disabled }]

Syntax Description
AreaID - A 32-bit integer
summary-prefix - Summary Prefix
IPv6-Prefix - The IPv6 address prefix of the range
Prefix-Length - The prefix length of the address range
allowAll - When set to allowAll and the associated areaId is 0.0.0.0, aggregated Type-5 LSAs are generated for the specified range. In addition, aggregated Type-7 LSAs are generated in all the attached NSSAs for the specified range.
denyAll - When set to denyAll, neither Type-5 LSA nor Type-7 LSAs are generated for the specified range.
advertise - When set to advertise, and the associated areaId is 0.0.0.0, aggregated Type-5 LSAs are generated. Otherwise, if the associated areaId is x.x.x.x (other than 0.0.0.0), aggregated Type-7 LSA is generated in NSSA area x.x.x.x.
not-advertise - When set to doNotAdvertise, and the associated areaId is 0.0.0.0, Type-5 LSA is not generated for the specified range, while all the NSSA LSAs within this range are flushed out and aggregated Type-7 LSA is generated in all attached NSSAs. If associated areaId is x.x.x.x (other than 0.0.0.0), Type-7 LSA is not generated in NSSA x.x.x.x for the specified range.
Translation - When set to enabled, the P-Bit is set in the generated Type-7 LSA. When set to disabled, the P-Bit is cleared in the generated Type-7 LSA for the range.

Mode
Router Configuration Mode

Defaults
Translation – enabled advertise
Example:
SMIS(config-router)# area 0.0.0.0 summary-prefix
3ffe:5000::481d::5 80 allowall Translation enabled
The Value allowAll/denyall is not valid for areaid other than 0.0.0.0.

Related Command
show ipv6 ospf area-range / summary-prefix – Displays either the list of all area address ranges information or all external summary address configuration information
31.14 redistribute

This command configures the protocol from which the routes have to be redistributed into OSPFv3. The "no" form of the command disables the redistribution of routes from the given protocol into OSPFv3.

```
redistribute {static | connected | ripng | bgp}
```

```
no redistribute {static | connected | ripng | bgp }
```

Syntax Description
- **static** - Advertises routes, configured statically in the OSPFv3 routing process
- **connected** - Advertises directly connected networks routes in the OSPFv3 routing process
- **ripng** - Advertises routes that are learnt by the RIP process in the OSPFv3 routing process
- **bgp** - Advertises routes that are learnt by the BGP process in the OSPFv3 routing process

Mode
Router Configuration Mode

Example:
```
SMIS(config-router)# redistribute static
```

To configure Redistribution of routes from other protocols, the following steps must be performed.
1. Configure the router as ASBR.
2. Configure redistribution of routes from particular protocol.

The above order must be maintained and ASBR setting must be done before enabling redistribution.

Related Commands
- **ASBR Router** – Configures the router as an ASBR
- **show ipv6 ospf** – General Information – Displays general information about the OSPFv3 routing process
31.15 passive-interface

This command sets the global default passive interface status. All the interfaces created after executing this command become passive interfaces. The "no" form of the command resets the global default passive interface status. All the interfaces created after executing this command become non-passive interfaces.

passive-interface

no passive-interface

Mode
Router Configuration Mode

Defaults
Disabled

Example:
```bash
SMIS(config-router)# passive-interface
```

Related Command
`show ipv6 ospf - General Information` – Displays general information about the OSPFv3 routing process
31.16 host - metric/area-id

This command configures a host entry with metric and/or area-id. The “no” form of the command deletes a host entry.

host <IPv6-Address> {metric <cost>} [area-id {<AreaID>}]

no host <IPv6-Address>

Syntax Description
IPv6-Address - IPv6 address prefix
metric - Metric to be advertised
area-id - A 32-bit integer

Mode
Router Configuration Mode

Example:
SMIS(config-router)# host 3ffe:481d::5 metric 10 area-id 0.0.0.1

Related Command
show ipv6 ospf host – Displays the Host Table information
31.17 no area

This command deletes an area and does any one of the following based on the optional parameter:

- converts stub/nss area to normal area
- deletes virtual link
- deletes stub cost
- deletes area-range or summary-prefix.

`no area <area-id> [{ stub | nssa | virtual-link <router-id> | default-metric | {range {summary | Type7} | summary-prefix} <IPv6-Prefix> <Prefix-Length>}]`

Syntax Description
- `area-id` - A 32-bit integer
- `stub` - Stub area
- `nssa` - Not So Stubby Area
- `virtual-link` - The Router ID of the virtual neighbor
- `default-metric` - Cost for the default summary route in a stub/NSS area
- `range` - Type-3 or Type-7 or External LSA range
- `IPv6-Prefix` - The IPv6 address prefix of the range
- `Prefix-Length` - The prefix length of the address range

Mode
Router Configuration Mode

Example:
```
SMIS(config-router)# no area 1.1.1.1
SMIS(config-router)# no area 1.1.1.1 stub
SMIS(config-router)# no area 1.1.1.1 default-metric
SMIS(config-router)# no area 1.1.1.1 virtual-link 20.0.0.3
SMIS(config-router)# no area 1.1.1.1 range summary
3ffe:3010:481d::5 80
```

Before deleting an area, it is necessary to delete all the interfaces attached to that area.

Related Commands
show ipv6 ospf areas – Displays the Area Table

show ipv6 ospf - area-range / summary-prefix – Displays either the list of all area address ranges information or all external summary address configuration information

no ipv6 ospf area – Disables OSPFv3 routing protocol on the interface
31.18 nssaAsbrDfRtTrans

This command enables setting of the P bit in the default Type-7 LSA generated by an NSSA internal ASBR. The “no” form of the command disables setting of the P bit in the default Type-7 LSA generated by an NSSA internal ASBR.

nssaAsbrDfRtTrans

no nssaAsbrDfRtTrans

Mode
Router Configuration Mode

Defaults
Disabled

Example:
SMIS(config-router)# nssaAsbrDfRtTrans

Related Commands
show ipv6 ospf - General Information – Displays general information about the OSPFv3 routing process
31.19 redist-config

This command configures the information to be applied to routes learnt from RTM. The “no” form of the command deletes the information applied to routes learnt from RTM.

```
redist-config <IPv6-Prefix> <Prefix-Length> [metric-value <metric>]
[metric-type {asExttype1 | asExttype2}] [tag <tag-value>]
```

```
no redist-config <IPv6-Prefix> <Prefix-Length>
```

Syntax Description

- **IPv6-Prefix** - The IPv6 address prefix
- **Prefix-Length** - The prefix length of the address
- **metric-value** - The Metric value applied to the route before it is advertised into the OSPFv3 Domain
- **metric-type** - The Metric Type applied to the route before it is advertised into the OSPFv3 Domain
- **tag** - The Tag Type describes whether Tags will be automatically generated or will be manually configured

Mode

Router Configuration Mode

Example:

```
SMIS(config-router)# redist-config 3ffe:5000:481d::5 80 metric-value 30 metric-type asExttype1 tag 12
```

Related Command

`show ipv6 ospf redist-config` – Displays the configuration information to be applied to the routes learned from the RTM
31.20 as-external lsdb-limit

This command sets the maximum number of non-default AS-external-LSA entries that can be stored in the link-state database. If the value is -1, then there is no limit.

```
as-external lsdb-limit <lsdb-limit (-1 - 0x7fffffff)>
```

Mode
Router Configuration Mode

Defaults
lsdb-limit - -1

Example:
```
SMIS(config-router)# as-external lsdb-limit 10
```

When the number of non-default AS-external-LSAs in a router’s link-state database reaches the configured limit, the router enters Overflow-State. The router never holds more than the configured non-default AS-external-LSAs in its database.

The LSDB limit MUST be set identically in all routers attached to the OSPFv3 backbone and/or any regular OSPFv3 area. (i.e. OSPFv3 stub areas and NSSAs are excluded).

Related Commands
- `show ipv6 ospf` – General Information – Displays general information about the OSPFv3 routing process
- `exit-overflow-interval` – Sets the number of seconds after which a router will attempt to leave the Overflow State
31.21 exit-overflow-interval

This command sets the number of seconds after which a router will attempt to leave the Overflow State.

`exit-overflow-interval <interval>`

Mode

Router Configuration Mode

Defaults

`interval - 0`

Example:

```
SMIS(config-router)# exit-overflow-interval 10
```

Related Command

`show ipv6 ospf - General Information` – Displays general information about the OSPFv3 routing process
31.22 demand-extensions

This command enables routing support for demand routing. The "no" form of the command disables routing support for demand routing.

demand-extensions

no demand-extensions

Mode
Router Configuration Mode

Defaults
Enabled

Example:
SMIS(config-router)# demand-extensions

Related Command
show ipv6 ospf – General Information – Displays general information about the OSPFv3 routing process
31.23 reference-bandwidth

This command sets the reference bandwidth in kilobits per second for calculating the default interface metrics.

```
reference-bandwidth <ref-bw>
```

Mode

Router Configuration Mode

Defaults

ref-bw - 100,000 KBPS

Example:

```
SMIS(config-router)# reference-bandwidth 100000
```

Related Command

`show ipv6 ospf - General Information` – Displays general information about the OSPFv3 routing process
31.24 ipv6 ospf area

This command enables OSPFv3 for IPv6 on an interface. The “no” form of the command disables OSPFv3 routing protocol on the interface.

ipv6 ospf area <IPv4-Address>

no ipv6 ospf

Syntax Description
IPv4-Address - A 32-bit integer

Mode
Interface Configuration Mode

Defaults
Disabled

Example:
SMIS(config-if)# ipv6 ospf area 0.0.0.0

The no form of the command disables an interface and triggers flushing of selforiginated Link Scope LSAs, and deletes the Link Scope LSAs associated with this interface from the Link State Database. If there is a single interface in the associated area, then this command deletes its Area Scope LSAs from the Link State Database.

Related Commands
show ipv6 ospf - General Information – Displays general information about the OSPFv3 routing process
show ipv6 ospf interface – Displays the OSPFv3-related interface information
31.25 ipv6 ospf demand-circuit

This command configures OSPFv3 to treat the interface as an OSPFv3 demand circuit. It indicates whether Demand OSPFv3 procedures (hello suppression to FULL neighbors and setting the DoNotAge flag on propagated LSAs) must be performed on the configured interface. The "no" form of the command disables the demand circuit on an interface.

```
ipv6 ospf demand-circuit

no ipv6 ospf demand-circuit
```

Mode

Interface Configuration Mode

Defaults

Disabled

Example:

```
SMIS(config-if)# ipv6 ospf demand-circuit
```

The routing support for demand routing must have been enabled (using the demand extensions command) prior to the execution of this command.

Related Commands

- `demand-extensions` – Enables routing support for demand routing
- `show ipv6 ospf interface` – Displays the OSPFv3-related interface information
31.26 ipv6 ospf retransmit-interval

This command sets the time between LSA retransmissions for adjacencies belonging to interface. The “no” form of the command sets the default retransmit interval for an interface.

ipv6 ospf retransmit-interval <interval>

no ipv6 ospf retransmit-interval

Mode
Interface Configuration Mode

Defaults
interval - 5

Example:
SMIS(config-if)# ipv6 ospf retransmit-interval 10

The retransmit time interval is the number of seconds between the link-state advertisement retransmissions for adjacencies belonging to an interface. The retransmit-interval value is also used while retransmitting database description and linkstate request packets.

Related Command
show ipv6 ospf interface – Displays the OSPFv3-related interface information
31.27 **ipv6 ospf transmit-delay**

This command sets the estimated time taken to transmit LS update packet over a particular interface. The “no” form of the command sets the default transmit delay for an interface.

 ipv6 ospf transmit-delay <1-1800>

 no ipv6 ospf transmit-delay

Mode

Interface Configuration Mode

Defaults

delay - 1

Example:

 SMIS(config-if)# ipv6 ospf transmit-delay 10

Related Command

 show ipv6 ospf interface – Displays the OSPFv3-related interface information
31.28 ipv6 ospf priority

This command sets the router priority, which helps to determine the Designated Router for this network. The "no" form of the command sets the default router priority for an interface.

```
ipv6 ospf priority <1-255>
```

```
no ipv6 ospf priority
```

Mode

Interface Configuration Mode

Defaults

priority - 1

Example:

```
SMIS(config-if)# ipv6 ospf priority 7
```

A priority value of 0 signifies that the router is not eligible to become the designated router on a particular network.

Related Command

```
show ipv6 ospf interface
```

– Displays the OSPFv3-related interface information
31.29 ipv6 ospf hello-interval

This command specifies the time interval between the OSPFv3 hello packets on a particular interface (the length of time, in seconds, between the Hello packets that the router sends on the interface). The "no" form of the command sets the default hello interval for an interface.

```
ipv6 ospf hello-interval <1-65535>
```

```
no ipv6 ospf hello-interval
```

Mode

Interface Configuration Mode

Defaults

interval - 10

Example:

```
SMIS(config-if)# ipv6 ospf hello-interval 20
```

The hello interval value must be same for all routers attached to a common link.

Related Command

`show ipv6 ospf interface` – Displays the OSPFv3-related interface information
31.30 ipv6 ospf dead-interval

This command configures the router dead interval. It is configured in seconds and indicates the time period for which the router waits for hello packet from the neighbor before declaring this neighbor down. The "no" form of the command sets the interface dead interval to default value.

```
ipv6 ospf dead-interval <1-65535>
```

```
no ipv6 ospf dead-interval
```

Mode

Interface Configuration Mode

Defaults

interval - 40

Example:

```
SMIS(config-if)# ipv6 ospf dead-interval 50
```

This value must be a multiple of the Hello interval and must be same for all routers attached to a common link.

Related Command

`show ipv6 ospf interface` – Displays the OSPFv3-related interface information
31.31 ipv6 ospf poll-interval

This command configures the larger time interval, in seconds, between the Hello packets sent to an inactive non-broadcast multi-access neighbor. The “no” form of the command sets the default poll interval for an interface.

ipv6 ospf poll-interval <1-65535>

no ipv6 ospf poll-interval

Mode
Interface Configuration Mode

Defaults
interval - 120

Example:
SMIS(config-if)# ipv6 ospf poll-interval 30

Related Command
show ipv6 ospf interface – Displays the OSPFv3-related interface information
31.32 ipv6 ospf metric

This command explicitly specifies the metric value for sending a packet on an interface. The “no” form of the command sets the default value for the interface metric.

`ipv6 ospf metric <1-65535>`

`no ipv6 ospf metric`

Mode
Interface Configuration Mode

Defaults
metric - 10

Example:
`SMIS(config-if)# ipv6 ospf metric 20`

Related Command
`show ipv6 ospf interface` – Displays the OSPFv3-related interface information
31.33 ipv6 ospf network

This command sets the network type for an interface. The "no" form of the command sets the default value for the network type.

```
ipv6 ospf network { broadcast | non-broadcast | point-to-multipoint | point-to-point }
```

```
no ipv6 ospf network
```

Syntax Description

- **broadcast** - Networks supporting many (more than two) attached routers, together with the capability to address a single physical message to all of the attached routers (broadcast)
- **non-broadcast** - Networks supporting many (more than two) routers, but having no broadcast capability
- **point-to-multipoint** - Treats the non-broadcast network as a collection of point-to-point links
- **point-to-point** - A network that joins a single pair of routers

Mode

Interface Configuration Mode

Defaults

broadcast

Example:

```
SMIS(config-if)# ipv6 ospf network non-broadcast
```

If the Interface Network type is NBMA or Point-to-Multipoint, any neighbor must be configured. When there are few configured neighbors on the interface, then both the network type change command and the "no" form of the command will not succeed.

Related Commands

- **ipv6 ospf neighbor** – Configures a neighbor on non-broadcast networks and sets the priority value for the neighbor if specified
- **show ipv6 ospf interface** – Displays the OSPFv3-related interface information
31.34 ipv6 ospf neighbor

This command configures a neighbor on non-broadcast networks and sets the priority value for the neighbor if specified. The “no” form of the command deletes a configured neighbor or sets the default priority value (if the priority option is specified).

```
ipv6 ospf neighbor <IPv6-Address> [priority <1-255>]
no ipv6 ospf neighbor <IPv6-Address> [priority]
```

Syntax Description
- IPv6-Address - IPv6 Address Prefix
- priority - A number that specifies the router priority

Mode
Interface Configuration Mode

Defaults
priority <Number> - 1

Example:
```
SMIS(config-if)# ipv6 ospf neighbor fe80::220:35ff:fe43:6020
priority 2
```

- In the OSPFv3 protocol packets, the IPv6 address indicates the source address of the neighbor. The Link Local address of the neighbor must be used for this field.
- Neighbors can be configured only in NBMA networks and Point-to-Multipoint networks.

Related Commands
- show ipv6 ospf interface – Displays the OSPFv3-related interface information
- show ipv6 ospf neighbor – Displays OSPFv3 neighbors information
31.35 ipv6 ospf passive-interface

This command configures an OSPFv3 interface to be Passive. The execution of the command results in suppressing OSPFv3 protocol packets traffic on this interface. The “no” form of the command configures an OSPFv3 interface to be non-passive.

ipv6 ospf passive-interface

no ipv6 ospf passive-interface

Mode
Interface Configuration Mode

Defaults
Disabled

Example:
SMIS(config-if)# ipv6 ospf passive-interface

Related Command
show ipv6 ospf interface – Displays the OSPFv3 related interface information
31.36 ipv6 ospf neighbor probing

This command enables neighbor probing on demand-circuit enabled interface. The “no” form of the command disables neighbor probing on demand-circuit enabled interface.

ipv6 ospf neighbor probing

no ipv6 ospf neighbor probing

Mode
Interface Configuration Mode

Defaults
Disabled

Example:
SMIS(config-if)# ipv6 ospf neighbor probing

Related Command
show ipv6 ospf interface – Displays the OSPFv3-related interface information
31.37 ipv6 ospf neighbor-probe retransmit-limit

This command sets the number of consecutive LSA retransmissions before the neighbor is deemed inactive. The "no" form of the command sets the default neighbor probe retransmission limit.

```
ipv6 ospf neighbor-probe retransmit-limit <retrans-limit>
```

```
no ipv6 ospf neighbor-probe retransmit-limit
```

Mode

Interface Configuration Mode

Defaults

retrans-limit - 10

Example:

```
SMIS(config-if)# ipv6 ospf neighbor-probe retransmit-limit 30
```

Related Command

`show ipv6 ospf interface` – Displays the OSPFv3-related interface information
31.38 ipv6 ospf neighbor-probe interval

This command sets the number of seconds, that indicates how often neighbor will be probed. The “no” form of the command sets the default neighbor probe interval.

`ipv6 ospf neighbor-probe interval <interval>`

`no ipv6 ospf neighbor-probe interval`

Mode

Interface Configuration Mode

Defaults

interval - 120

Example:

SMIS(config-if)# ipv6 ospf neighbor-probe interval 200

Related Command

`show ipv6 ospf interface` – Displays the OSPFv3-related interface information
31.39 debug ipv6 ospf

This command sets the trace levels. The "no" form of the command resets the trace levels.

```
debug ipv6 ospf [pkt ( [{high | low | hex}] [hp] [ddp] [lrq] [lsa] )] [level ( [fn_entry] [fn_exit] [critical] [mem_alloc_succ] [mem_alloc_fail]))] [module ( [ppp] [rtm] [nssa] [rt_aggrg] [adj Formation] [lsdb] [ism] [nsm] [rt_calc] [interface] [config] ))
```

```
no debug ipv6 ospf [ pkt ( [{high | low | hex}] [hp] [ddp] [lrq] [lsa] )] [level ( [fn_entry] [fn_exit] [critical] [mem_alloc_succ] [mem_alloc_fail] )] [ module ( [ppp] [rtm] [nssa] [rt_aggrg] [adj Formation] [lsdb] [ism] [nsm] [rt_calc] [interface] [config] ) ]
```

Syntax Description

- **pkt** - Packet High Level Dump debug messages
- **high** - Packet High Level Dump Trace
- **low** - Packet Low Level Dump Trace
- **hex** - Packet Hex Dump Trace
- **hp** - Hello packet Trace
- **ddp** - DDP packet Trace
- **lrq** - Link State Request Packet Trace
- **lsu** - Link State Update Packet Trace
- **lsa** - Link State Acknowledge Packet Trace
- **level** - Trace Level Debug Messages
- **fn_entry** - Function Entry Trace
- **fn_exit** - Function Exit Trace
- **critical** - Critical Trace
- **mem_alloc_succ** - Memory Allocation Success Trace
- **mem_alloc_fail** - Memory Allocation Failure Trace
- **module** - OSPFv3 Module Debug Messages
- **ppp** - Protocol Packet Processing Trace
- **rtm** - RTM Module Trace
- **nssa** - NSSA Trace
- **rt_aggrg** - Route Aggregation Trace
- **adj_format** - Adjacency formation Trace
lsdb - Link State Database Trace
ism - Interface State Machine Trace
nsm - Neighbor State Machine Trace
rt_calc - Routing Table Calculation Trace
interface - Interface Trace
config - Configuration Trace

Mode
Privileged EXEC Mode

Defaults
Debugging is disabled by default.

Example:
SMIS# debug ipv6 ospf pkt high hp level fn_entry module ppp

Related Command
show ipv6 ospf - General Information – Displays general information about the OSPFv3 routing process
31.40 show ipv6 ospf interface

This command displays the OSPFv3-related interface information.

```
show ipv6 ospf interface [ vlan <vlan-id(1-4096)> ]
```

Syntax Description

- **Vlan** - VLAN Identifier

Mode

User/Privileged EXEC Mode

Example:

```
SMIS# show ipv6 ospf interface vlan 1
OSPFv3 Interface Information
  Interface Name: vlan2  Interface Id: 1  Area Id: 0.0.0.0
  Local Address: fe80::211:22ff:fe33:4412  Router Id: 11.0.0.2
  Network Type: BROADCAST  Cost: 10  State: WAITING
  Designated Router Id: 0.0.0.0 local address: (null)
  Backup Designated Router Id: 0.0.0.0 local address: (null)
  Transmit Delay: 1 sec  Priority: 1  IfOptions: 0x0
  Timer intervals configured:
    Hello: 10, Dead: 40, Retransmit: 5, Poll: 120
  Demand Circuit: Disable  Neighbor Probing: Disable
  Nbr Probe Retrans Limit: 10  Nbr Probe Interval: 120
  Hello due in 4 sec
  Neighbor Count is: 1
  Adjacent with the neighbor 11.0.0.1
```

Related Commands

- `area virtual-link` – Sets the Virtual Link between Areas
- `ipv6 ospf area` – Enables OSPFv3 for IPv6 on an interface
- `ipv6 ospf demand-circuit` – Configures OSPFv3 to treat the interface as an OSPFV3 demand circuit
- `ipv6 ospf retransmit-interval` – Sets the time between LSA retransmissions for adjacencies belonging to an interface
ipv6 ospf transmit-delay – Sets the estimated time taken to transmit LS update packet over a particular interface
ipv6 ospf priority – Sets the router priority, which helps to determine the Designated Router for this network
ipv6 ospf hello-interval – Specifies the time interval between the OSPFv3 hello packets on a particular interface
ipv6 ospf dead-interval – Configures the router dead interval
ipv6 ospf poll-interval – Configures the larger time interval, in seconds, between the Hello packets sent to an inactive non-broadcast multi-access neighbor
ipv6 ospf metric – Specifies the metric value for sending a packet on an interface
ipv6 ospf network – Sets the network type for an interface
ipv6 ospf neighbor – Configures a neighbor on non-broadcast networks and sets the priority value for the neighbor if specified
ipv6 ospf passive-interface – Configures an OSPFv3 interface to be Passive
ipv6 ospf neighbor probing – Enables neighbor probing on demand-circuit enabled interface
ipv6 ospf neighbor-probe retransmit-limit – Sets the number of consecutive LSA retransmissions before the neighbor is deemed inactive
ipv6 ospf neighbor-probe interval – Sets the number of seconds, that indicates how often neighbor will be probed
31.41 show ipv6 ospf neighbor

This command displays OSPFv3 neighbor information.

```
show ipv6 ospf neighbor [ <Neighbor-RouterID> ]
```

Mode
User/Privileged EXEC Mode

Example:
```
SMIS# show ipv6 ospf neighbor
ID Pri State Dead Address
Time
11.0.0.4 1 FULL/PTOP 31 fe80::211:22ff:fe33:4434
11.0.0.5 10 FULL/BACKUP 35 fe80::260:83ff:fe38:8aa2
```

Related Command
```
ipv6 ospf neighbor  – Configures a neighbor on non-broadcast networks and sets the priority value for the neighbor if specified
```
31.42 show ipv6 ospf - request/retrans-list

This command displays the list of all link state advertisements (LSAs) in request-list or in retransmission-list.

\[
\text{show ipv6 ospf \{ request-list | retrans-list \} [<Neighbor-RouterID>]}
\]

Syntax Description

- **request-list** - The list of Link State Advertisements for which the neighbor has more up-to-date instances.
- **retrans-list** - The list of Link State Advertisements that have been sent but not acknowledged.
- **Neighbor-RouterID** - Neighbor router ID

Mode

User/Privileged EXEC Mode

Example:

SMIS# show ipv6 ospf retrans-list
NeighborId 20.0.0.3, Nbr Address fe80::220:35ff:fe43:6020
Type LsId AdvRtr SeqNo Age Checksum
0x2001 0.0.0.2 11.0.0.2 0x80000011 0 0xcddf

SMIS# show ipv6 ospf request-list
Neighbor 20.0.0.3, Address fe80::220:35ff:fe43:6020
Type LSID ADVRTR SeqNo Age Checksum
8193 0.0.0.1 11.0.0.3 0x80000002 6 0x1211
31.43 show ipv6 ospf virtual-links

This command displays the parameters and the current state of OSPFv3 virtual links.

show ipv6 ospf virtual-links

Mode

User/Privileged EXEC Mode

Example:

SMIS# show ipv6 ospf virtual-links

Interface State: PointToPoint, Neighbor State: FULL

Transit Area: 2.2.2.2, Virtual Neighbor: 11.0.0.7

Intervals Configured for the Virtual Interface:

Hello: 10, Dead: 60, Transit: 1, Retransmit: 20

Related Command

area - virtual-link – Sets the Virtual Link between Areas
31.44 show ipv6 ospf border-routers

This command displays the internal OSPFv3 routing table entries to an ABR/ASBR.

show ipv6 ospf border-routers

Mode
User/Privileged EXEC Mode

Example:
SMIS# show ipv6 ospf border-routers
OSPFv3 Process Border Router Information
Destination Type NextHop Cost Rt Area
Type Id
11.0.0.2 ABR fe80::211:22ff:fe33:4412 10 intraArea 0.0.0.0
11.0.0.2 ABR fe80::211:22ff:fe33:4422 10 intraArea 0.0.0.1
11.0.0.2 ASBR fe80::211:22ff:fe33:4412 10 intraArea 0.0.0.0
11.0.0.2 ASBR fe80::211:22ff:fe33:4422 10 intraArea 0.0.0.0

Related Commands
* **abr-type** – Sets the ABR (Area Border Router) type
* **ASBR Router** – Configures the router as an ASBR
31.45 show ipv6 ospf - area-range / summary-prefix

This command displays either the list of all area address ranges information or all external summary address configuration information.

show ipv6 ospf { area-range | summary-prefix }

Syntax Description

area-range - Area associated with the OSPFv3 address range
summary-prefix - Aggregate addresses for OSPFv3

Mode
User/Privileged EXEC Mode

Example:

SMIS# show ipv6 ospf area-range
OSPFv3 Summary Address Configuration Information
Network Pfx LSA Area Effect Tag
Length Type
3ffe::100:0:0:0 80 Summary 0.0.0.0 advertise 0
3ffe::110:0:0:0 80 Summary 0.0.0.0 doNotAdvertise 0
3ffe::120:0:0:0 80 Summary 0.0.0.1 advertise 0
3ffe::130:0:0:0 80 Type7 0.0.0.1 advertise 0

SMIS# show ipv6 ospf summary-prefix
OSPFv3 External Summary Address Configuration Information
Prefix Pfx Area Effect TranslationState
Length
3ffe::200:0:0:0 80 0.0.0.0 advertise enabled
3ffe::210:0:0:0 80 0.0.0.0 advertise disabled
3ffe::220:0:0:0 80 0.0.0.0 doNotAdvertise enabled
3ffe::230:0:0:0 80 0.0.0.0 allowAll enabled
3ffe::240:0:0:0 80 0.0.0.0 denyAll enabled

Related Commands
area – range – Creates the Internal Aggregation Address Range
area – external summary address – Enables route aggregation/filtering while importing routes in the OSPFv3 domain
no area – Deletes an area
31.46 show ipv6 ospf - General Information

This command displays general information about OSPFv3 routing process.

show ipv6 ospf info

Mode
User/Privileged EXEC Mode

Example:
SMIS# show ipv6 ospf info
Router Id: 11.0.0.1 ABR Type: Standard ABR
SPF schedule delay: 5 secs Hold time between two SPF: 10 secs
Exit Overflow Interval: 0 Ref BW: 100000000 Ext Lsdb Limit: -1
Trace Value: 0x00000800 As Scope Lsa: 0 Checksum Sum: 0x0
Demand Circuit: Enable Passive Interface: Disable
Nssa Asbr Default Route Translation: Disable
It is an Area Border Router
Number of Areas in this router 2
Area 0.0.0.0
Number of interfaces in this area is 1
Number of Area Scope Lsa: 4 Checksum Sum: 0x1210e
Number of Indication Lsa: 0 SPF algorithm executed: 6 times
Area 0.0.0.1
Number of interfaces in this area is 1
Number of Area Scope Lsa: 3 Checksum Sum: 0x18d41
Number of Indication Lsa: 0 SPF algorithm executed: 2 times

Related Commands
router-id – Sets a fixed router ID
timers spf – Configures the delay time and the hold time between two consecutive SPF
calculations

abr-type – Sets the ABR (Area Border Router) type

ASBR Router – Configures the router as an ASBR

passive-interface – Sets the global default passive interface status

nssaAsbrDfRtTrans – Enables setting of P bit in the default Type-7 LSA generated by an NSSA internal ASBR

as-external lsdb-limit – Sets the maximum number of non-default AS-external-LSAs entries that can be stored in the link-state database

exit-overflow-interval – Sets the number of seconds after which a router will attempt to leave the Overflow State

demand-extensions – Enables routing support for demand routing

reference-bandwidth – Sets the reference bandwidth in kilobits per second for calculating the default interface metrics

ipv6 ospf area – Enables OSPFv3 for IPv6 on an interface

debug ipv6 ospf – Sets the trace levels
31.47 show ipv6 ospf - LSA Database

This command displays the LSA information.

```
show ipv6 ospf [area <AreaID>] database [{router|network|as-external|inter-prefix|inter-router|intra-prefix|link|nssa}] [{detail|HEX}]
```

Syntax Description

- **Area** - A 32-bit integer
- **database** - Displays the number of each type of LSA for each area in the database
- **router** - Router LSAs
- **network** - Network LSAs
- **as-external** - AS-External LSAs
- **inter-prefix** - Inter-prefix LSAs
- **inter-router** - Inter-router LSAs
- **intra-prefix** - Intra-prefix LSAs
- **link** - Link State LSAs
- **nssa** - NSSA LSAs
- **detail** - Displays the LSAs information in detail
- **HEX** - Displays the LSAs information in hexadecimal format

Mode

User/Privileged EXEC Mode

Example:

```
SMIS# show ipv6 ospf database
AreaId  RtrId  LsaType  Age  Seq#  Checksum
0.0.0.0 11.0.0.1 0x0008 300 0x80000002 0x323f
0.0.0.0 11.0.0.2 0x0008 300 0x80000001 0xa426
0.0.0.0 11.0.0.1 0x2001 1 0x80000003 0x3b9a
0.0.0.0 11.0.0.2 0x2001 0 0x80000006 0x2fa2
0.0.0.0 11.0.0.2 0x2002 0 0x80000001 0x6081
0.0.0.0 11.0.0.2 0x2009 0 0x80000002 0x504c

SMIS# show ipv6 ospf database detail
```
Age: 300 Seconds LS Type: Link Lsa
Link State Id: 0.0.0.1 Adv Rtr Id: 11.0.0.1
Sequence: 0x80000002 Checksum: 0x323f Length: 60
Router Priority: 1 Options: 0x33
Prefix: fe80::211:22ff:fe33:4411
#Prefixes; 1
Prefix Length (Bytes): 12 Prefix Options: 0x00
Prefix: 3ffe::100:0:0:0

SMIS# show ipv6 ospf database hex
00 00 00 08 00 00 00 02 0b 00 00 01 80 00 00 02 e9 d0 00 2c 01
00 00 33 fe 80 00
00 00 00 00 00 02 11 22 ff fe 33 44 21 00 00 00 00
00 07 00 08 00 00 00 02 0b 00 00 02 80 00 00 02 f9 be 00 2c 01
00 00 33 fe 80 00
00 00 00 00 00 02 11 22 ff fe 33 44 22 00 00 00 00
00 00 20 01 00 00 00 00 0b 00 00 01 80 00 00 01 fe e2 00 28 00
00 00 33 01 00 00
02 00 00 00 02 00 00 00 02 0b 00 00 02
00 06 20 01 00 00 00 00 0b 00 00 02 80 00 00 03 e7 f4 00 28 03
00 00 33 01 00 00
02 00 00 00 02 00 00 00 02 0b 00 00 01
31.48 **show ipv6 ospf route**

This command displays routes learned by the OSPFv3 process

```plaintext
show ipv6 ospf route
```

Mode

User/Privileged EXEC Mode

Example:

SMIS# show ipv6 ospf route

<table>
<thead>
<tr>
<th>Dest/NextHop/ Cost</th>
<th>Rt.Type</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prefix-Length IfIndex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3ffe::10:0:0:0 fe80::290:69ff: 30</td>
<td>interArea</td>
<td>0.0.0.0</td>
</tr>
<tr>
<td>/80 fe90:b4bf /vlan1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3ffe::20:0:0:0 fe80::290:69ff: 20</td>
<td>interArea</td>
<td>0.0.0.0</td>
</tr>
<tr>
<td>/80 fe90:b4bf /vlan1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3ffe::30:0:0:0 :: /vlan1 10</td>
<td>intraarea</td>
<td>0.0.0.0</td>
</tr>
<tr>
<td>/80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3ffe::40:0:0:0 fe80::211:22ff: 20</td>
<td>intraArea</td>
<td>0.0.0.0</td>
</tr>
<tr>
<td>/80 fe33:4423 /vlan1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3ffe::40:0:0:5 fe80::211:22ff: 20</td>
<td>interArea</td>
<td>0.0.0.0</td>
</tr>
<tr>
<td>/128 fe33:4426 /vlan2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3ffe::40:0:0:5 fe80::211:22ff: 20</td>
<td>interArea</td>
<td>0.0.0.0</td>
</tr>
<tr>
<td>/128 fe33:4423 /vlan1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3ffe::50:0:0:0 :: /vlan2 10</td>
<td>intraArea</td>
<td>0.0.0.0</td>
</tr>
<tr>
<td>/80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3ffe::60:0:0:0 fe80::211:22ff: s20</td>
<td>interArea</td>
<td>0.0.0.0</td>
</tr>
<tr>
<td>/80 fe33:4426 /vlan2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3ffe::60:0:0:6 fe80::211:22ff: 10</td>
<td>interArea</td>
<td>0.0.0.0</td>
</tr>
<tr>
<td>/128 fe33:4426 /vlan2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Related Commands

- `ipv6 router ospf` – Enables the OSPFv3 routing protocol
- `router-id` – Sets a fixed router ID
31.49 show ipv6 ospf areas

This command displays the Area Table.

show ipv6 ospf areas

Mode
User/Privileged EXEC Mode

Example:
SMIS# show ipv6 ospf areas
OSPFv3 AREA CONFIGURATION INFORMATION
AreaId: 0.0.0.0 Area Type: NORMAL AREA
Spf Calculation: 3 (times) Area Bdr Rtr Count: 1
As Bdr Rtr Count: 0 Area Summary: Send Summary
AreaId: 0.0.0.1 Area Type: NSS AREA
Spf Calculation: 0 (times) Area Bdr Rtr Count: 1
As Bdr Rtr Count: 0 Area Summary: Send Summary
Stub Metric: 0x1 Stub Metric Type: 1
Translator Role: Candidate Translator State: Disabled
Nssa Stability Interval: 40

Related Commands
area - stub/nssa – Defines an area as a stub area or an NSSA (Not So Stubby Area)
area - stability-interval – Configures the stability interval (in seconds) for the NSSA
area - translation-role – Configures the translation role for NSSA
no area – Deletes an area
31.50 show ipv6 ospf host

This command displays the Host Table information.

show ipv6 ospf host

Mode
User/Privileged EXEC Mode

Example:
SMIS# show ipv6 ospf host
OSPFv3 HOST CONFIGURATION Information
Address AreaId StubMetric
3ffe::80:0:1 0.0.0.0 30

Related Command
host – metric/area-id – Configures a host entry with metric and/or area-id
31.51 show ipv6 ospf redist-config

This command displays the configuration information to be applied to the routes learnt from the RTM.

show ipv6 ospf redist-config

Mode
User/Privileged EXEC Mode

Example:
SMIS# show ipv6 ospf redist-config
Address Prefix PfxLength MetricType Metric TagType TagValue
3ffe:: 64 asExtType2 10 manual 10

Related Command
redist-config – Configures the information to be applied to routes learnt from RTM
32 DiffServ (Differentiated Services)

DiffServ (Differentiated Services) is an architecture for providing different types or levels of service for network traffic. One key characteristic of DiffServ is that flows are aggregated in the network, so that core routers only need to distinguish a comparably small number of aggregated flows, even if those flows contain thousands or millions of individual flows.

Differentiated services are intended to provide a framework and building blocks to enable deployment of scalable service discrimination in the Internet. The differentiated services approach aims to speed deployment by separating the architecture into two major components, one of which is fairly well-understood and the other of which is just beginning to be understood. In this, we are guided by the original design of the Internet where the decision was made to separate the forwarding and routing components.

Packet forwarding is the relatively simple task that needs to be performed on a per-packet basis as quickly as possible. Forwarding uses the packet header to find an entry in a routing table that determines the packet's output interface. Routing sets the entries in that table and may need to reflect a range of transit and other policies as well as to keep track of route failures. Routing tables are maintained as a background process to the forwarding task.

The list of CLI commands for the configuration of DiffServ is as follows:

- `set qos`
- `class-map`
- `policy-map`
- `match`
- `class`
- `set cos`
- `police`
- `cosq scheduling algorithm`
- `traffic class`
show policy-map
show class-map
show cosq algorithm
show cosq weights-bw
32.1 set qos

This command enables differentiated services on the device. The “disable” option is used to disable the QoS feature on the device.

set qos { enable | disable }

Syntax Description
enable - Enables differentiated services
disable - Disables differentiated services

Mode
Global Configuration Mode

Defaults
disable

Example:
SMIS(config)# set qos enable

QoS must be globally enabled prior to the execution of the class-map and policy-map mode commands.

When set as 'enabled', DiffServ Module programs the hardware and starts Protocol Operation. When set as 'disabled', it stops protocol operation by deleting the hardware configuration.

Related Commands
show policy-map - Displays the quality of service (QoS) policy maps
show class-map - Displays quality of service (QoS) class maps
32.2 class-map

This command creates a class map that is meant to be used for matching the packets to the class whose index is specified. This command is also used to enter the class-map configuration mode. The “no” form of this command is used to delete an existing class map and to return to global configuration mode.

```
class-map <class-map-number(1-65535)>

no class-map <class-map-number(1-65535)>
```

Syntax Description

- **class-map-number** - QoS class map number

Mode

Global Configuration Mode

Example:

```
SMIS(config)# class-map 5
```

Differentiated services must have been enabled in the device.

The class-map command and its subcommands are used to define packet classification, marking, and aggregate policing as part of a globally named service policy applied on a per-interface basis.

The **match** command is available from the class-map configuration mode.

Related Command

- **show class-map** - Displays quality of service (QoS) class maps
32.3 policy-map

This command is used to enter the policy-map configuration mode
In the policy-map configuration mode the user can create or modify a policy map. The “no” form
of this command deletes an existing policy map and returns to the global configuration mode

```
policy-map <policy-map-number(1-65535)>
```

```
no policy-map <policy-map-number(1-65535)>
```

Syntax Description

- `policy-map-number` - QoS Policy map number

Mode

Global Configuration Mode

Example:

```
SMIS(config)# policy-map 6
```

- Differentiated services must have been enabled in the device.
- The following two commands are available from the policy-map configuration mode
 - `class`
 - `exit` - Exits from the policy map configuration mode and returns to the global
 configuration mode

Related Command

- `show policy-map` - Displays quality of service (QoS) policy maps
32.4 match

This command specifies the fields in the incoming packets that are to be examined for the classification of the packets. The IP access group / MAC access group can be used as match criteria.

```
match access-group { mac-access-list | ip-access-list } <acl-index-num (1-65535) >
```

Syntax Description
- **mac-access-list** - Access list created based on MAC addresses for non-IP traffic
- **ip-access-list** - Access list created based on IP addresses. The IP-access list can either be defined as a standard IP-access list or an extended IP-access list.
- **acl-index-num** - Specifies the ACL index range. The ACL index range for an IP standard ACL is 1 to 1000 and IP extended ACL is 1001 to 65535. The ACL index range for a MAC extended ACL is 1 to 65535.

Mode
Class Map Configuration Mode

Example:
```
iss (config-cmap)# match access-group mac-access-list 5
```

- Differentiated services must have been enabled in the device.
 - MAC access list and IP access list must have been configured.

Related Commands
- **class-map** - Creates a class map to be used for matching the packets with the class whose name/index is specified
- **show class-map** - Displays QoS Class maps
32.5 class

This command defines a traffic classification for the policy to act. The class-map-number that is specified in the policy map ties the characteristics for that class to the class map and its match criteria, as configured by using the class-map global configuration command. On execution of the class command, the switch enters the policy-map class configuration mode.

The "no" form of this command un-maps the class-map from the current policy-map configuration.

```
class <class-map-number(1-65535)>

no class <class-map-number(1-65535)>
```

Syntax Description

class-map-number - Class Map Number

Mode

Policy-Map Configuration Mode

Example:

```
iss (config-pmap)# class 5
```

- Differentiated services must have been enabled in the device.
- The policy-map global configuration command must be executed prior to using the class command. After a policy map is specified, the user can either configure a policy for new classes or modify a policy for any existing classes in that policy map.
- The following configuration commands are available from the policy map class configuration mode
 - set cos
 - police

Related Commands

- policy-map - Enters the policy map configuration mode
- show policy-map - Displays the QoS policy maps
32.6 set cos

This command defines the in-profile action by setting a class of service (CoS), Differentiated Services Code Point (DSCP), or IP-precedence value in the packet.
The "no" form of the command deletes the configured values.

```
set {cos <new-cos(0-7)> | ip dscp <new-dscp(0-63)> | ip precedence <newprecedence( 0-7)>>}
```

```
no set {cos <new-cos(0-7)> | ip { dscp <new-dscp(0-63)> | precedence <newprecedence( 0-7)>>}}
```

Syntax Description

- `cos` - New COS value assigned to the classified traffic
- `ip dscp` - New DSCP value assigned to the classified traffic
- `ip precedence` - New IP-precedence value assigned to the classified traffic

Mode

Policy-Map Class Configuration Mode

Example:

```
iss (config-pmap-c)# set cos 5
```

- To attach policy maps that contain the following elements to an ingress interface
 - set policy-map class configuration commands must be used. Moreover, the police policy-map class configuration command can be used to mark down (reduce) the DSCP value at the ingress interface.
 - Access control list (ACL) classification.
 - Per-port per-VLAN classification.

Related Commands

- `class` - Defines a traffic classification for the policy set
- `policy-map` - Used to enter the policy map configuration mode
- `class-map` - Creates a class map
- `show policy-map` - Displays the QoS policy map configuration
This command defines a policer for the classified traffic. This command also specifies the action to be taken if the specified rate is exceeded or if there is no match for the policy configured.

```
police <rate-Kbps(64-1048572)> exceed-action {drop | policed-dscp-transmit <new-dscp(0-63)>}
```

Syntax Description
- **rate-Kbps** - Average traffic rate in kilo bits per second (Kbps)
- **exceed-action** - Indicates the action of the switch when the specified rate is exceeded.
 - **drop** - drops the packet
 - **policed-dscp-transmit** - changes the Differentiated Services Code Point (DSCP) of the packet to that specified in the policed-DSCP map and then sends the packet

Mode
Policy-Map Class Configuration Mode

Example:
```
iss (config-pmap-c)# police 128 exceed-action drop
```

Although the command-line help string displays a large range of values, the rate Kbps option cannot exceed the configured port speed. If a larger value is entered, then the switch rejects the policy map when attached to an interface.

Related Commands
- **class** - Defines a traffic classification for the policy to act
- **policy-map** - Used to enter the policy map configuration mode
- **class-map** - Creates a class map used for matching packets
- **show policy-map** - Displays the QoS policy maps
32.8 cosq scheduling algorithm

This command sets the cosq scheduling algorithm. The "no" form of this command configures the scheduling algorithm to its default value strict.

```
cosq scheduling algorithm { strict | rr | wrr | deficit }
```

```
no cosq scheduling algorithm
```

Syntax Description
- **strict** - strict
- **rr** - round robin
- **wrr** - weighted round robin
- **deficit** - deficit

Mode
Interface Configuration mode

Default
strict

Example:
```
SMIS(config-if)# cosq scheduling algorithm strict
```

Related Commands
- **show cosq algorithm** - Displays the CoSq algorithm used for the interface.
- **show cosq weights-bw** - Displays the CoSq weights and the bandwidth for the interface.
32.9 traffic class

This command sets weight and bandwidth for traffic classes. The “no” form of this command removes the minimum and maximum bandwidth settings and resets the weight to the default value 1.

```
traffic-class <integer(0-7)> weight <integer(0-15)> [minbandwidth <integer(64-16777152)>] [maxbandwidth <integer(64-16777152)>]

no traffic-class [<integer(0-7)>] [weight] [minbandwidth] [maxbandwidth]
```

Syntax Description

- `traffic-class` - Configures cosq numbers
- `weight` - Configures cosq weights
- `minbandwidth` - Configures minimum bandwidth in kbps
- `maxbandwidth` - Configures maximum bandwidth in kbps

Mode
Interface Configuration mode

Defaults
weight - 1

Example:
```
SMIS(config-if)# traffic-class 1 weight 7 minbandwidth 1234
```

Related Commands
- `show cosq algorithm` - Displays the CoSq algorithm used for the interface.
- `show cosq weights-bw` - Displays the CoSq weights and the bandwidth for the interface.
32.10 show policy-map

This command displays the quality of service (QoS) policy maps, which defines the classification
criteria for the incoming traffic. Policy maps can include polices that specify the bandwidth
limitations and the action to take if the limits are exceeded.

```
show policy-map [policy-map-num(1-65535)] [class <class-map-num(1-65535)>]]
```

Syntax Description
- `policy-map-num` - Policy map number
- `class` - Class map number

Mode
Privileged/User EXEC Mode

Example:
```
SMIS# show policy-map 24
DiffServ Configurations:
------------------------
Quality of Service has been enabled
Policy Map 24 is not active
Class Map: 20
----------------
Protocol : 255
In Profile Entry
--------------
In profile action : policed-precedence 5
Out Profile Entry
--------------
Metering on
burst bytes/token size : 6
Refresh count : 1000
Out profile action : drop
No Match Entry
--------------
No match action : policed-precedence 5
```
Related Commands

policy-map - Used to enter the policy map configuration mode

class - Defines a traffic classification for the policy to act

set cos - Defines the in-profile action by setting a CoS, DSCP or IP-precedence value in the packet

police - Defines a policer for the classified traffic
32.11 show class-map

This command displays quality of service (QoS) class maps, which defines the match criteria to classify traffic.

```
show class-map [class-map-num(1-65535)]
```

Syntax Description

```
class-map-num - Displays the configured class map number
```

Mode

Privileged/User EXEC Mode

Example:

```
SMIS# show class-map
DiffServ Configurations:
------------------------
Class map 20
----------
Filter-ID : 3
Filter-Type : IP-Filter
```

Related Commands

```
class-map - Creates a class map that is meant to be used for matching the packets to the class whose index is specified
match - Specifies the fields in the incoming packets that are to be examined for the classification of the packets
```
32.12 show cosq algorithm

This command displays the CoSq algorithm used for the interface.

```
show cosq algorithm [ interface <interface-type> <interface-id> ]
```

Syntax Description

- `interface-type` - Interface Type
- `interface-id` - Interface ID

Mode

Global Configuration Mode

Example:
```
SMIS(config)# show cosq algorithm interface
gigabitethernet 0/1
CoSq Algorithm
------------------------
Interface Algorithm
------------
Gi0/1 StrictPriority
........ ....................
------------------------
```
32.13 show cosq weights-bw

This command displays the CoSq weights and the bandwidth for the interface.

`show cosq weights-bw [interface <interface-type> <interface-id>]`

Syntax Description

interface-type - Interface Type
interface-id - Interface ID

Mode

Global Configuration Mode

Example:

```
SMIS(config)# show cosq weights-bw interface gigabitethernet 0/1  
CoSq Weights and Bandwidths  
-----------------------------------------------  
Interface CoSqId CoSqWeight MinBw MaxBw Flag  
-----------------------------------------------  
Gi0/1 0 1 0 0 2  
Gi0/1 1 1 0 0 2  
Gi0/1 2 1 0 0 2  
Gi0/1 3 1 0 0 2  
Gi0/1 4 1 0 0 2  
Gi0/1 5 1 0 0 2  
Gi0/1 6 1 0 0 2  
Gi0/1 7 1 0 0 2  
..... ..... ..... ..... ....  
```

33 ACL (Access Control Lists)

ACLs (Access Control Lists) filter network traffic by controlling whether routed packets are forwarded or blocked at the router's interfaces. ACLs are used to block IP packets from being forwarded by a router.

The router examines each packet to determine whether to forward or drop or redirect the packet, based on the criteria specified within the access lists. Access list criteria can be the source address of the traffic, the destination address of the traffic, the upper-layer protocol or other information.

There are many reasons to configure access lists - access lists can be used to restrict contents of routing updates or to provide traffic flow control. But one of the most important reasons to configure access lists is to provide security for the network.

Access lists must be used to provide a basic level of security for accessing the network. If access lists have not been configured on the router, all packets passing through the router can be allowed onto all parts of the network.

For Example:, access lists can allow one host to access a part of the network and prevent another host from accessing the same area.

The list of CLI commands for the configuration of ACL is as follows:

- `ip access-list`
- `mac access-list extended`
- `permit - standard mode`
- `deny - standard mode`
- `redirect - standard mode`
- `permit- ip/ospf/pim/protocol type`
- `deny - ip/ospf/pim/protocol type`
- `redirect - ip/ospf/pim/protocol type`
- `permit tcp`
- `deny tcp`
redirect tcp
permit udp
deny udp
redirect udp
permit icmp
deny icmp
redirect icmp
ip access-group
mac access-group
permit
deny
redirect
show access-lists
33.1 ip access-list

This command creates IP ACLs and enters the IP Access-list configuration mode.
Standard access lists create filters based on an IP address and network mask only (L3 filters only).

Extended access lists enables the specification of filters based on the type of protocol, range of TCP/UDP ports as well as the IP address and network mask (Layer 4 filters).

Depending on the standard or extended option chosen by the user, this command returns a corresponding IP Access list configuration mode

The "no" form of the command deletes the IP access-list.

```
ip access-list { standard { <access-list-number (1-32768)> | <access-list-name> } | extended { <access-list-number (1-32768)> | <access-list-name> } }
```

```
no ip access-list { standard { <access-list-number (1-32768)> | <access-list-name> } | extended { <access-list-number (1-32768)> | <access-list-name> } }
```

Syntax Description

- **standard** - Standard access-list number
- **extended** - Extended access-list number

IP ACLs can be created with ACL numbers or with ACL names.
access-list-number – could be any number between 1 to 32768
access-list-name – could be any name string up to 32 characters.

Mode

Global Configuration Mode

Example:

```
SMIS(config)# ip access-list standard 1
```

ACLs on the system perform both access control and Layer 3 field classification. To define Layer 3 fields’ access-lists the **ip access-list** command must be used.
Related Commands

permit - **standard mode** - Specifies the packets to be forwarded depending upon the associated parameters

deny - **standard mode** - Denies traffic if the conditions defined in the deny statement are matched

redirect - **standard mode** - Redirects traffic if the conditions defined in the redirect statement are matched

permit - **ip/ospf/pim/protocol type** - Allows traffic for a particular protocol packet if the conditions defined in the permit statement are matched

deny - **ip/ospf/pim/protocol type** - Denies traffic for a particular protocol packet if the conditions defined in the deny statement are matched

redirect - **ip/ospf/pim/protocol type** - Redirects traffic for a particular protocol packet if the conditions defined in the redirect statement are matched

permit tcp - Specifies the TCP packets to be forwarded based on the associated parameters

deny tcp - Specifies the TCP packets to be rejected based on the associated parameters

redirect tcp - Specifies the TCP packets to be redirected based on the associated parameters

permit udp - Specifies the UDP packets to be forwarded based on the associated parameters

deny udp - Specifies the UDP packets to be rejected based on the associated parameters

redirect udp - Specifies the UDP packets to be redirected based on the associated parameters

permit icmp - Specifies the ICMP packets to be forwarded based on the IP address and the associated parameters

deny icmp - Specifies the ICMP packets to be rejected based on the IP address and associated parameters

redirect icmp - Specifies the ICMP packets to be redirected based on the IP address and associated parameters

ip access-group - Enables access control for the packets on the interface

show access-lists - Displays the access list configuration
33.2 **mac access-list extended**

This command creates Layer 2 MAC ACLs, that is, this command creates a MAC access-list and returns the MAC-Access list configuration mode to the user. The “no” form of the command deletes the MAC access-list.

```
mac access-list extended { <access-list-number (1-32768)> | <access-list-name> }
```

```
no mac access-list extended { <access-list-number (1-32768)> | <access-list-name> }
```

Syntax Description

MAC ACLs can be created with ACL numbers or with ACL names.

access-list-number – could be any number from 1 to 32768

access-list-name – could be any name string up to 32 characters.

Mode

Global Configuration Mode

Example:

```
SMIS(config)# mac access-list extended 5
```

ACLs on the system perform both access control and layer 2 field classifications.

To define Layer 2 access lists, the mac access-list command must be used.

Related Commands

- `show access-lists` - Displays the access list configuration
- `permit` - Specifies the packets to be forwarded based on the MAC address and the associated parameters
- `deny` - Specifies the packets to be rejected based on the MAC address and the associated parameters
- `redirect` - Specifies the packets to be redirected based on the MAC address and the associated parameters
33.3 permit - standard mode

This command specifies the packets to be forwarded depending upon the associated parameters.

Standard IP access lists use source addresses for matching operations.

```
permit { any | host <src-ip-address> | < src-ip-address> <mask> } [{
any | host <dest-ip-address> | < dest-ip-address> <mask> } ]
```

Syntax Description

- `any|host <src-ip-address>| < src-ipaddress> <mask>` - Source IP address can be 'any' or the word 'host' and the dotted decimal address or the host that the packet is from and the network mask to use with the source IP address.
- `any|host <dest-ip-address>| < dest-ip-address ><mask>` - Destination IP address can be 'any' or the word 'host' and the dotted decimal address or the host that the packet is destined for and the network mask to use with the destination IP address.

Mode

IP ACL Configuration (standard)

Example:
```
SMIS(config-std-nacl)# permit host 100.0.0.10 host 10.0.0.1
```

Related Commands

- `ip access-list` - Creates IP ACLs and enters the IP Access-list configuration mode.
- `deny - standard mode` - Denies traffic if the conditions defined in the deny statement are matched.
- `redirect - standard mode` - Redirects traffic if the conditions defined in the redirect statement are matched.
- `show access-lists` - Displays the access list configuration.
33.4 deny - standard mode

This command denies traffic if the conditions defined in the deny statement are matched.

```
deny{ any | host <src-ip-address> | <src-ip-address> <mask> } [ { any | host <dest-ip-address> | <dest-ip-address> <mask> } ]
```

Syntax Description

any|*host* src-ip-address| <src-ip-address> <mask> - Source IP address can be 'any' or the word 'host' and the dotted decimal address or number of the network or the host that the packet is from and the network mask to use with the source IP address

any|*host* dest-ip-address| <dest-ipadress><mask> - Destination IP address can be 'any' or the word 'host' and the dotted decimal address or number of the network or the host that the packet is destined for and the network mask to use with the destination IP address

Mode

IP ACL Configuration (standard)

Example:

```
SMIS(config-std-nacl)# deny host 100.0.0.10 any
```

Related Commands

- **ip access-list** - Creates IP ACLs and enters the IP Access-list configuration mode
- **permit - standard mode** - Specifies the packets to be forwarded depending upon the associated parameters
- **redirect - standard mode** - Specifies the packets to be redirected depending upon the associated parameters
- **show access-lists** - Displays the access list configuration
33.5 redirect - standard mode

This command redirects traffic if the conditions defined in the redirect statement are matched.

```
redirect <interface-type> <interface-id> { any | host <src-ip-address>
| <src-ip-address> <mask> } [ { any | host <dest-ip-address> | <dest-ip-address> <mask> } ]
```

Syntax Description

interface-type – may be any of the following:
gigabitethernet – gi
extreme-ethernet – ex
qx-ethernet – qx

interface-id - is in slot/port format for all physical interfaces

any|host src-ip-address| <src-ip-address> <mask> - Source IP address can be
any' or the word 'host' and the dotted decimal address or number of the network or the host that
the packet is from and the network mask to use with the source IP address

any|host dest-ip-address| <dest-ipaddress><mask> - Destination IP address can
be 'any' or the word 'host' and the dotted decimal address or number of the network or the host
that the packet is destined for and the network mask to use with the destination IP address

Mode

IP ACL Configuration (standard)

Example:

```
SMIS(config-std-nacl)# redirect gi 0/1 host 100.0.0.10 any
```

Related Commands

ip access-list - Creates IP ACLs and enters the IP Access-list configuration mode

permit - standard mode - Specifies the packets to be forwarded depending upon the
associated parameters

deny - standard mode - Specifies the packets to be denied depending upon the
associated parameters

show access-lists - Displays the access list configuration
33.6 permit- ip/ospf/pim/protocol type

This command allows traffic for a particular protocol packet if the conditions defined in the permit statement are matched.

```
permit { ip | ospf | pim | <protocol-type (1-255)>} { any | host <src-ip-address> | <src-ip-address> <mask> } { any | host <dest-ip-address> | <dest-ip-address> <mask> } [ {tos <value (0-255)> | dscp <value (0-63)>} ] [ priority <value (1-255)>]
```

Syntax Description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip</td>
<td>ospf</td>
</tr>
<tr>
<td>any</td>
<td>host <src-ip-address></td>
</tr>
<tr>
<td>any</td>
<td>host <dest-ip-address></td>
</tr>
<tr>
<td>tos</td>
<td>- Type of service. Can be of any number value from 0 to 255. This value will be matched against the value of “Type of Service” byte (2nd byte) in the IPv4 header.</td>
</tr>
<tr>
<td>priority</td>
<td>- The priority of the L3 filter is used to decide which filter rule is applicable when the packet matches with more than one filter rules. Higher value of ‘filter priority’ implies a higher priority.</td>
</tr>
</tbody>
</table>

Mode

ACL Extended Access List Configuration Mode

Defaults

- protocol-type - 255
- priority - 1

Example:

```
SMIS(config-ext-nacl)# permit 200 host 100.0.0.10 any tos 6
```
Protocol type with the value 255 indicates that protocol can be anything and it will not be checked against the action to be performed.

Related Commands

- **ip access-list** - Creates IP ACLs and enters the IP Access-list configuration mode
- **show access-lists** - Displays the access list configuration
- **deny ip/ospf/pim/protocol type** - Denies traffic for a particular protocol packet if the conditions defined in the deny statement are matched
- **redirect ip/ospf/pim/protocol type** - Redirects traffic for a particular protocol packet if the conditions defined in the redirect statement are matched
33.7 deny - ip/ospf/pim/protocol type

This command denies traffic for a particular protocol packet if the conditions defined in the deny statement are matched.

deny { ip | ospf | pim | <protocol-type (1-255)>} { any | host <src-ipaddress> | <src-ip-address> <mask> } { any | host <dest-ip-address> | <destip-address> <mask> } [{tos <value (0-255)> | dscp <value (0-63)>}] [priority <value (1-255)>]

Syntax Description
ip| ospf|pim| <protocol-type (1-255)> - Type of protocol for the packet. It can also be a protocol number.
any| host <src-ip-address>| <src-ip-address> <mask> - Source IP address can be ‘any’ or the word ‘host’ and the dotted decimal address or number of the network or the host that the packet is from and the network mask to use with the source address
any|host <dest-ip-address>| <dest-ip-address> <mask> - Destination IP address can be ‘any’ or the word ‘host’ and the dotted decimal address or number of the network or the host that the packet is destined for and the network mask to use with the destination address
tos - Type of service. Can be of any number value between 0 to 255. This value will be matched against the value of “Type of Service” byte (2nd byte) in the IPv4 header.
Priority - The priority of the L3 filter is used to decide which filter rule is applicable when the packet matches with more than one filter rules. Higher value of ‘filter priority’ implies a higher priority.

Mode
ACL Extended Access List Configuration Mode

Defaults
protocol type - 255
priority – 1

Example:
SMIS(config-ext-nacl)# deny ospf any host 10.0.0.1 tos 6

Related Commands
ip access-list - Creates IP ACLs and enters the IP Access-list configuration mode

permit - ip/ospf/pim/protocol type - Allows traffic for a particular protocol packet if the conditions defined in the permit statement are matched

redirect - ip/ospf/pim/protocol type - Redirects traffic for a particular protocol packet if the conditions defined in the redirect statement are matched

show access-lists - Displays the access list configuration
33.8 redirect - ip/ospf/pim/protocol type

This command redirects traffic for a particular protocol packet if the conditions defined in the redirect statement are matched.

`redirect <interface-type> <interface-id> { ip | ospf | pim | <protocol-type (1-255)> } { any | host <src-ip-address> | <src-ip-address> <mask> } { any | host <dest-ip-address> | <dest-ip-address> <mask> } [{tos <value (0-255)> | dscp <value (0-63)> }] [priority <value (1-255)>]`

Syntax Description
interface-type – may be any of the following:
gigabitethernet – gi
extreme-ethernet – ex
qx-ethernet – qx
interface-id - is in slot/port format for all physical interfaces
ip| ospf|pim| <protocol-type (1-255)> - Type of protocol for the packet. It can also be a protocol number.
any| host <src-ip-address> <src-ip-address> <mask> - Source IP address can be 'any' or the word 'host' and the dotted decimal address or number of the network or the host that the packet is from and the network mask to use with the source address
any|host <dest-ip-address> <dest-ip-address> <mask> - Destination IP address can be 'any' or the word 'host' and the dotted decimal address or number of the network or the host that the packet is destined for and the network mask to use with the destination address
tos - Type of service. Can be of any number value from 0 to 255. This value will be matched against the value of "Type of Service" byte (2nd byte) in the IPv4 header.
Priority - The priority of the L3 filter is used to decide which filter rule is applicable when the packet matches with more than one filter rules. Higher value of 'filter priority' implies a higher priority.

Mode
ACL Extended Access List Configuration Mode
Defaults

protocol type - 255
priority – 1

Example:

SMIS(config-ext-nacl)# redirect gi 0/1 ospf any host 10.0.0.1 tos 6

Related Commands

ip access-list - Creates IP ACLs and enters the IP Access-list configuration mode
permit - ip/ospf/pim/protocol type - Allows traffic for a particular protocol packet if the conditions defined in the permit statement are matched
deny - ip/ospf/pim/protocol type- Denies traffic for a particular protocol packet if the conditions defined in the deny statement are matched
show access-lists - Displays the access list configuration
33.9 permit tcp

This command specifies the TCP packets to be forwarded based on the associated parameters.

```
permit tcp {any | host <src-ip-address> | <src-ip-address> <src-mask> }
  [{gt <port-number (1-65535)> | lt <port-number (1-65535)> | eq <port-number (1-65535)> | range <port-number (1-65535)> <port-number (1-65535)>}] { any | host <dest-ip-address> | <dest-ip-address> <dest-mask> }
  [{gt <port-number (1-65535)> | lt <port-number (1-65535)> | eq <port-number (1-65535)> | range <port-number (1-65535)> <port-number (1-65535)>}]
  [{ack | rst }]
  [{tos <value (0-255)> | dscp <value (0-63)>}]
  [priority <short (1-255)>]
```

Syntax Description

tcp - Transport Control Protocol

any| host <src-ip-address>| | <src-ip-address> < src-mask > - Source IP address can be 'any' or the word 'host' and the dotted decimal address or number of the network or the host that the packet is from and the network mask to use with the source address

port-number - Port Number. The input for the source and the destination port-number is prefixed with one of the following operators.

- **eq**=equal
- **lt**=less than
- **gt**=greater than
- **range**=a range of ports; two different port numbers must be specified

any|host <dest-ip-address> | <dest-ip-address> < dest-mask > - Destination IP address can be 'any' or the word 'host' and the dotted decimal address or number of the network or the host that the packet is destined for and the network mask to use with the destination address

ack - TCP ACK bit to be checked against the packet. It can be establish (1), non-establish (2) or any (3).

Rst - TCP RST bit to be checked against the packet. It can be set (1), not set (2) or any (3).

tos - Type of service. Can be of any number value from 0 to 255. This value will be matched against the value of "Type of Service" byte (2nd byte) in the IPv4 header.

priority
- The priority of the filter is used to decide which filter rule is applicable when the packet matches with more than one filter rules. Higher value of 'filter priority' implies a higher priority.

Mode

ACL Extended Access List Configuration Mode

Defaults

tos-value - 0

ack - ‘any’ (3) [indicates that the TCP ACK bit will not be checked to decide the action]

rst - 'any' (3) [indicates that the TCP RST bit will not be checked to decide the action]

Example:

SMIS(config-ext-nacl)# permit tcp any 10.0.0.1 255.255.255.255

Related Commands

ip access-list - Creates IP ACLs and enters the IP Access-list configuration mode

show access-lists - Displays the access list configuration

deny tcp Specifies the TCP packets to be rejected based on the associated parameters

redirect tcp Specifies the TCP packets to be redirected based on the associated parameters
33.10 deny tcp

This command specifies the TCP packets to be rejected based on the associated parameters.

deny tcp {any | host <src-ip-address> | <src-ip-address> <src-mask>
}{{{gt <port-number (1-65535)> | lt <port-number (1-65535)> | eq <port-
number (1- 65535)> | range <port-number (1-65535)> <port-number (1-
65535)>}}{ any | host <dest-ip-address> | <dest-ip-address> <dest-mask>
}{{{gt <port-number (1-65535)> | lt <port-number (1-65535)> | eq <port-
number (1-65535)> | range <port-number (1-65535)> <port-number (1-
65535)>}}{[ack | rst]}{{tos <value (0-255)> | dscp <value (0-63)>}} [
priority <short (1-255)>]

Syntax Description
Tcp - Transmission control protocol
any| host <src-ip-address>| <src-ip-address> <src-mask> - Source IP address
can be ‘any’ or the word ‘host’ and the dotted decimal address or number of the network or the
host that the packet is from and the network mask to use with the source address
port-number - Port Number. The input for the source and the destination port-number is
prefixed with one of the following operators.
eq=equal
lt=less than
gt=greater than
range=a range of ports; two different port numbers must be specified
any|host <dest-ip-address>| <dest-ip-address> <dest-mask> - Destination IP
address can be ‘any’ or the word ‘host’ and the dotted decimal address or number of the network
or the host that the packet is destined for and the network mask to use with the destination
address
ack - TCP ACK bit to be checked against the packet. It can be establish (1), non-establish (2) or
any (3)
rst - TCP RST bit to be checked against the packet. It can be set (1), notset (2) or any (3)
tos - Type of service. Can be of any number value between 0 to 255.
This value will be matched against the value of “Type of Service” byte
(2nd byte) in the IPv4 header.
Priority - The priority of the filter is used to decide which filter rule is applicable when the packet matches with more than one filter rules. Higher value of ‘filter priority’ implies a higher priority.

Mode
ACL Extended Access List Configuration Mode

Defaults
tos-value - 0
ack - ‘any’ (3) [indicates that TCP ACK bit will not be checked to decide the action]
rs - any’ (3) [indicates that TCP RST bit will not be checked to decide the action]

Example:
SMIS(config-ext-nacl)# deny tcp 100.0.0.10 255.255.255.0 eq 20 any

Related Commands
- **ip access-list** - Creates IP ACLs and enters the IP Access-list configuration mode
- **show access-lists** - Displays the access list configuration
- **permit tcp** - Specifies the TCP packets to be forwarded based on the associated parameters
- **redirect tcp** - Specifies the TCP packets to be redirected based on the associated parameters
33.11 redirect tcp

This command specifies the TCP packets to be redirected based on the associated parameters.

```
redirect <interface-type> <interface-id> tcp {any | host <src-ip-address> | <src-ip-address> <src-mask> } [ {gt <port-number (0-65535)> | lt <port-number (1-65535)> | eq <port-number (0-65535)> | range <port-number (0-65535)> <port-number (0-65535)> } ] { any | host <dest-ip-address> | <dest-ip-address> <dest-mask> } [ {gt <port-number (0-65535)> | lt <port-number (1-65535)> | eq <port-number (0-65535)> | range <port-number (0-65535)> <port-number (0-65535)> } ] { ack | rst } [ {tos <value (0-255)> | dscp <value (0-63)> } ] [ priority <short(1-255)> ]
```

Syntax Description

interface-type – may be any of the following:
- gigabitethernet – gi
- extreme-ethernet – ex
- qx-ethernet – qx

interface-id - is in slot/port format for all physical interfaces

Tcp - Transmission control protocol

any| host <src-ip-address>| <src-ip-address> <src-mask> - Source IP address

port-number - Port Number. The input for the source and the destination port-number is prefixed with one of the following operators.
- eq=equal
- lt=less than
- gt=greater than

range=a range of ports; two different port numbers must be specified

any|host <dest-ip-address>| <dest-ip-address> <dest-mask> - Destination IP address can be ‘any’ or the word ‘host’ and the dotted decimal address or number of the network or the host that the packet is destined for and the network mask to use with the destination address

ack - TCP ACK bit to be checked against the packet. It can be establish (1), non-establish (2) or any (3)

rst - TCP RST bit to be checked against the packet. It can be set (1), notset (2) or any (3)
tos - Type of service. Can be of any number value from 0 to 255. This value will be matched against the value of “Type of Service” byte (2nd byte) in the IPv4 header.

Priority - The priority of the filter is used to decide which filter rule is applicable when the packet matches with more than one filter rules. Higher value of ‘filter priority’ implies a higher priority.

Mode
ACL Extended Access List Configuration Mode

Defaults
tos-value - 0
ack - ‘any’ (3) [indicates that TCP ACK bit will not be checked to decide the action]
rst - any’ (3) [indicates that TCP RST bit will not be checked to decide the action]

Example:
SMIS(config-ext-nacl)# redirect gi 0/1 tcp 100.0.0.10 255.255.255.0 eq 20 any

Related Commands
ip access-list - Creates IP ACLs and enters the IP Access-list configuration mode
show access-lists - Displays the access list configuration
permit tcp - Specifies the TCP packets to be forwarded based on the associated parameters
deny tcp Specifies the TCP packets to be denied based on the associated parameters
33.12 permit udp

This command specifies the UDP packets to be forwarded based on the associated parameters.

```
permit udp { any | host <src-ip-address> | <src-ip-address> <src-mask>} [{gt <port-number (1-65535)> | lt <port-number (1-65535)> | eq <port-number (1-65535)> | range <port-number (1-65535)> <port-number (1-65535)>}] [{ any | host <dest-ip-address> | <dest-ip-address> <dest-mask}>] [{ gt <port-number (1-65535)> | lt <port-number (1-65535)> | eq <port-number (1-65535)> | range <port-number (1-65535)> <port-number (1-65535)>}] [{tos <value (0-255)> | dscp <value (0-63)>}] [ priority <short (1-255)>]
```

Syntax Description

udp - User Datagram Protocol

- **any** | host <src-ip-address> | <src-ip-address> <src-mask> - Source IP address can be 'any' or the word 'host' and the dotted decimal address or number of the network or the host that the packet is from and the network mask to use with the source address.
- **port-number** - Port Number. The input for the source and the destination port-number is prefixed with one of the following operators.
 - **eq** = equal
 - **lt** = less than
 - **gt** = greater than
 - **range** = a range of ports; two different port numbers must be specified

- **any** | host <dest-ip-address> | <dest-ip-address> <dest-mask> - Destination IP address can be 'any' or the word 'host' and the dotted decimal address or number of the network or the host that the packet is destined for and the network mask to use with the destination address.

- **tos** - Type of Service. Can be of any number value from 0 to 255. This value will be matched against the value of "Type of Service" byte (2nd byte) in the IPv4 header.

- **Priority** - The priority of the filter is used to decide which filter rule is applicable when the packet matches with more than one filter rules. Higher value of 'filter priority' implies a higher priority.

Mode

ACL Extended Access List Configuration Mode
Example:
SMIS(config-ext-nacl)# permit udp any gt 65000 any dcsp 1

Related Commands
ip access-list - Creates IP ACLs and enters the IP Access-list configuration mode
show access-lists - Displays the access list configuration
deny udp - Specifies the UDP packets to be rejected based on the associated parameters
redirect udp - Specifies the UDP packets to be redirected based on the associated parameters
This command specifies the UDP packets to be rejected based on the associated parameters.

`deny udp { any | host <src-ip-address> | <src-ip-address> <src-mask> } [(gt <port-number (1-65535)>) | lt <port-number (1-65535)>) | eq <port-number (1-65535)>) | range <port-number (1-65535)>) <port-number (1-65535)>) } [any | host <dest-ip-address> | <dest-ip-address> <dest-mask>] [(gt <port-number (1-65535)>) | lt <port-number (1-65535)>) | eq <port-number (1-65535)>) | range <port-number (1-65535)>) <port-number (1-65535)>)] [(tos <value (0-255)>) | dscp <value (0-63)>)] [priority <short (1-255)>]

Syntax Description

- **udp** - User Datagram Protocol
- **any| host <src-ip-address>| <src-ip-address> <src-mask>** - Source IP address can be 'any' or the word 'host' and the dotted decimal address or number of the network or the host that the packet is from and the network mask to use with the source address
- **port-number** - Port Number. The input for the source and the destination port-number is prefixed with one of the following operators.
 - eq=equal
 - lt=less than
 - gt=greater than
 - range=a range of ports; two different port numbers must be specified
- **any|host <dest-ip-address> |<dest-ip-address> <dest-mask>** - Destination IP address can be 'any' or the word 'host' and the dotted decimal address or number of the network or the host that the packet is destined for and the network mask to use with the destination address
- **tos** - Type of service. Can be of any number value from 0 to 255. This value will be matched against the value of "Type of Service" byte (2nd byte) in the IPv4 header.
- **Priority** - The priority of the filter used to decide which filter rule is applicable when the packet matches with more than one filter rules. Higher value of 'filter priority' implies a higher priority.

Mode

ACL Extended Access List Configuration Mode
Example:
SMIS(config-ext-nacl)# deny udp host 10.0.0.1 any eq 20

Related Commands
ip access-list - Creates IP ACLs and enters the IP Access-list configuration mode
show access-lists - Displays the access list configuration
permit udp - Specifies the UDP packets to be forwarded based on the associated parameters
redirect udp - Specifies the UDP packets to be redirected based on the associated parameters
33.14 redirect udp

This command specifies the UDP packets to be redirected based on the associated parameters.

Syntax

```
redirect <interface-type> <interface-id> udp { any | host <src-ip-address> | <src-ip-address> <src-mask>} [{gt <port-number (0-65535)> | lt <port-number (1-65535)> | eq <port-number (0-65535)> | range <port-number (0-65535)> <port-number (0-65535)>}] { any | host <dest-ip-address> | <dest-ip-address> <dest-mask>} [{ gt <port-number (0-65535)> | lt <port-number (1-65535)> | eq <port-number (0-65535)> | range <port-number (0-65535)> <port-number (0-65535)>}] [{tos <value (0-255)> | dscp <value (0-63)>}] [ priority <(1-255)>]
```  

Syntax Description

- **interface-type** – may be any of the following:
 - gigabitethernet – gi
 - extreme-ethernet – ex
 - qx-ethernet – qx

- **interface-id** - is in slot/port format for all physical interfaces

- **udp** - User Datagram Protocol

- **any| host <src-ip-address>| <src-ip-address> <src-mask>** - Source IP address can be 'any' or the word 'host' and the dotted decimal address or number of the network or the host that the packet is from and the network mask to use with the source address

- **port-number** - Port Number. The input for the source and the destination port-number is prefixed with one of the following operators.
 - eq=equal
 - lt=less than
 - gt=greater than

- **range=a range of ports; two different port numbers must be specified**

- **any|host <dest-ip-address> |<dest-ip-address> <dest-mask>** - Destination IP address can be 'any' or the word 'host' and the dotted decimal address or number of the network or the host that the packet is destined for and the network mask to use with the destination address

- **tos** - Type of service. Can be of any number value from 0 to 255. This value will be matched against the value of "Type of Service" byte (2nd byte) in the IPv4 header.
Priority - The priority of the filter used to decide which filter rule is applicable when the packet matches with more than one filter rules. Higher value of 'filter priority' implies a higher priority.

Mode
ACL Extended Access List Configuration Mode

Example:
SMIS(config-ext-nacl)# redirect gi 0/1 udp host 10.0.0.1 any eq 20

Related Commands
- `ip access-list` - Creates IP ACLs and enters the IP Access-list configuration mode
- `show access-lists` - Displays the access list configuration
- `permit udp` - Specifies the UDP packets to be forwarded based on the associated parameters
- `deny udp` - Specifies the UDP packets to be denied based on the associated parameters
33.15 **permit icmp**

This command specifies the ICMP packets to be forwarded based on the IP address and the associated parameters.

```plaintext
permit icmp {any | host <src-ip-address> | <src-ip-address> <mask>} {any | host <dest-ip-address> | <dest-ip-address> <mask>} [message-type (0-255)] [message-code (0-255)] [ priority <value (1-255)>]
```

Syntax Description

- **icmp** - Internet Control Message Protocol
- **any| host <src-ip-address> | <src-ip-address> <mask>** - Source IP address can be 'any' or the word 'host' and the dotted decimal address or number of the network or the host that the packet is from and the network mask to use with the source address
- **any|host <dest-ip-address> | <dest-ip-address> <mask>** - Destination IP address can be 'any' or the word 'host' and the dotted decimal address or number of the network or the host that the packet is destined for and the network mask to use with the destination address
- **message-type** - Message type
- **message-code** - ICMP Message code
- **priority** - The priority of the filter used to decide which filter rule is applicable when the packet matches with more than one filter rules. Higher value of 'filter priority' implies a higher priority.

Mode

ACL Extended Access List Configuration Mode

Defaults

message-type/message code - 255

Example:

SMIS(config-ext-nacl)# permit icmp any any

The ICMP message type can be one of the following:

Value ICMP type

0 Echo reply
3 Destination unreachable
4 Source quench
5 Redirect
8 Echo request
11 Time exceeded
12 Parameter problem
13 Timestamp request
14 Timestamp reply
15 Information request
16 Information reply
17 Address mask request
18 Address mask reply
155 No ICMP type

The ICMP code can be any of the following:

- **Value ICMP code**
 - 0 Network unreachable
 - 1 Host unreachable
 - 2 Protocol unreachable
 - 3 Port unreachable
 - 4 Fragment need
 - 5 Source route fail
 - 6 Destination network unknown
 - 7 Destination host unknown
 - 8 Source host isolated
 - 9 Destination network administratively prohibited
 - 10 Destination host administratively prohibited
 - 11 Network unreachable TOS
 - 12 Host unreachable TOS
 - 255 No ICMP code

Related Commands

- `ip access-list` - Created IP ACLs and enters the IP Access-list configuration mode
- `show access-lists` - Displays the access list configuration
- `deny icmp` - Specifies the ICMP packets to be rejected based on the IP address and associated parameters
- `redirect icmp` - Specifies the ICMP packets to be redirected based on the IP address and associated parameters
33.16 deny icmp

This command specifies the ICMP packets to be rejected based on the IP address and associated parameters.

deny icmp {any | host <src-ip-address>|<src-ip-address> <mask>}{any | host <dest-ip-address> | <dest-ip-address> <mask> }[<message-type (0-255)>] [message-code (0-255)>] [priority <value (1-255)>]

Syntax Description
icmp - Internet Control Message Protocol
any| host <src-ip-address>| <src-ip-address> <mask> - Source IP address can be 'any' or the word 'host' and the dotted decimal address or number of the network or the host that the packet is from and the network mask to use with the source address
any|host <dest-ip-address>| <dest-ip-address> <mask> - Destination IP address can be 'any' or the word 'host' and the dotted decimal address or number of the network or the host that the packet is destined for and the network mask to use with the destination address
message-type - Message type
message-code - ICMP Message code
priority - The priority of the filter used to decide which filter rule is applicable when the packet matches with more than one filter rules. Higher value of 'filter priority' implies a higher priority.

Mode
ACL Extended Access List Configuration Mode

Defaults
message-type / message code - 255

Example:
Smis(config-ext-nacl)# deny icmp host 100.0.0.10 10.0.0.1 255.255.255.255

The ICMP message type can be one of the following:
Value ICMP type
0 Echo reply
3 Destination unreachable
4 Source quench
5 Redirect
8 Echo request
11 Time exceeded
12 Parameter problem
13 Timestamp request
14 Timestamp reply
15 Information request
16 Information reply
17 Address mask request
18 Address mask reply
155 No ICMP type

The ICMP code can be any of the following:

Value ICMP code
0 Network unreachable
1 Host unreachable
2 Protocol unreachable
3 Port unreachable
4 Fragment need
5 Source route fail
6 Destination network unknown
7 Destination host unknown
8 Source host isolated
9 Destination network administratively prohibited
10 Destination host administratively prohibited
11 Network unreachable TOS
12 Host unreachable TOS
255 No ICMP code

Related Commands

- `ip access-list` - Creates IP ACLs and enters the IP Access-list configuration mode
- `show access-lists` - Displays the access list configuration
- `permit icmp` - Specifies the ICMP packets to be forwarded based on the IP address and the associated parameters
- `redirect icmp` - Specifies the ICMP packets to be redirected based on the IP address and associated parameters
33.17 redirect icmp

This command specifies the ICMP packets to be redirected based on the IP address and associated parameters.

```
redirect <interface-type> <interface-id> icmp {any | host <src-ip-address>|<src-ip-address> <mask>} {any | host <dest-ip-address> | <dest-ip-address> <mask> } [<message-type (0-255)>] [<message-code (0-255)>] [priority <(1-255)>]
```

Syntax Description

- **interface-type** – may be any of the following:
 - gigabitethernet – gi
 - extreme-ethernet – ex
 - qx-ethernet – qx

- **interface-id** - is in slot/port format for all physical interfaces

- **icmp** - Internet Control Message Protocol

- **any| host <src-ip-address>| <src-ip-address> <mask>** - Source IP address can be 'any' or the word 'host' and the dotted decimal address or number of the network or the host that the packet is from and the network mask to use with the source address

- **any|host <dest-ip-address>| <dest-ip-address> <mask>** - Destination IP address can be 'any' or the word 'host' and the dotted decimal address or number of the network or the host that the packet is destined for and the network mask to use with the destination address

- **message-type** - Message type

- **message-code** - ICMP Message code

- **priority** - The priority of the filter used to decide which filter rule is applicable when the packet matches with more than one filter rule. A higher value of 'filter priority' implies a higher priority.

Mode

ACL Extended Access List Configuration Mode

Defaults

message-type / message code - 255

Example:

```
Smis(config-ext-nacl)# deny icmp host 100.0.0.10 10.0.0.1 255.255.255.255
```
The ICMP message type can be one of the following:

Value ICMP type
0 Echo reply
3 Destination unreachable
4 Source quench
5 Redirect
8 Echo request
11 Time exceeded
12 Parameter problem
13 Timestamp request
14 Timestamp reply
15 Information request
16 Information reply
17 Address mask request
18 Address mask reply
155 No ICMP type

The ICMP code can be any of the following:

Value ICMP code
0 Network unreachable
1 Host unreachable
2 Protocol unreachable
3 Port unreachable
4 Fragment need
5 Source route fail
6 Destination network unknown
7 Destination host unknown
8 Source host isolated
9 Destination network administratively prohibited
10 Destination host administratively prohibited
11 Network unreachable TOS
12 Host unreachable TOS
255 No ICMP code

Related Commands
```
ip access-list  - Creates IP ACLs and enters the IP Access-list configuration mode```

Release : 1.1i
show access-lists - Displays the access list configuration

permit icmp - Specifies the ICMP packets to be forwarded based on the IP address and the associated parameters

deny icmp - Specifies the ICMP packets to be denied based on the IP address and associated parameters
### 33.18 ip access-group

This command enables access control for the packets on the interface. It controls access to a Layer 2 or Layer 3 interface. The no form of this command removes all access groups or the specified access group from the interface. The direction of filtering is specified using the token in or out.

```
ip access-group <access-list-number (1-32768)> {in | out}
```

```
no ip access-group [<access-list-number (1-32768)>] {in | out}
```

**Syntax Description**

- `access-list-number` - IP access control list number
- `in` - Inbound packets
- `out` - Outbound packets

**Mode**

Interface Configuration Mode

**Example:**

```
SMIS(config-if)# ip access-group 1 in
```

**Related Commands**

- `ip access-list` - Creates IP ACLs and enters the IP Access-list configuration mode
- `show access-lists` - Displays the access list configuration
33.19  mac access-group

This command applies a MAC access control list (ACL) to a Layer 2 interface. The no form of this command can be used to remove the MAC ACLs from the interface.

```
mac access-group <access-list-number (1-32768)> {in | out}
```

```
no mac access-group [<access-list-number (1-32768)>] {in | out}
```

**Syntax Description**

- **access-list-number** - Access List Number
- **in** - Inbound packets
- **out** - Outbound packets

**Mode**

Interface Configuration Mode

**Example:**

```
SMIS(config-if)# mac access-group 5 in
```

MAC access list must have been created.

**Related Commands**

- **mac access-list extended** - Creates Layer 2 MAC ACLs, and returns the MAC-Access list configuration mode to the user
- **show access-lists** - Displays the access list statistics
33.20  permit

This command specifies the packets to be forwarded based on the MAC address and the associated parameters, that is, this command allows non-IP traffic to be forwarded if the conditions are matched.

```
permit { any | host <mac_addr> } { any | host <mac_addr> } [{ aarp | amber | dec-spanning | decnet-iv | diagnostic | dsm | etype-6000 | etype-8042 | lat | lavc-sca | mop-console | mop-dump | msdos | mumps | netbios | vines-echo | vines-ip | xns-id | <short (0-65535)> }] [encapsype <integer (1-65535)>] [vlan <vlan-id (1-4069)>] [priority <short (1-255)>]
```

Syntax Description

- `<mac_addr>` - Source and Destination MAC address to be matched with the packet
- `Aarp` - EtherType AppleTalk Address Resolution Protocol that maps a data-link address to a network address
- `Amber` - EtherType DEC-Amber
- `dec-spanning` - EtherType Digital Equipment Corporation (DEC) spanning tree
- `decnet-iv` - EtherType DECnet Phase IV protocol
- `diagnostic` - EtherType DEC-Diagnostic
- `dsm` - EtherType DEC-DSM/DDP
- `etype-6000` - EtherType 0x6000
- `etype-8042` - EtherType 0x8042
- `lat` - EtherType DEC-LAT
- `lavc-sca` - EtherType DEC-LAVC-SCA
- `mop-console` - EtherType DEC-MOP Remote Console
- `mop-dump` - EtherType DEC-MOP Dump
- `msdos` - EtherType DEC-MSDOS
- `mumps` - EtherType DEC-MUMPS
- `netbios` - EtherType DEC- Network Basic Input/Output System (NETBIOS)
- `vines-echo` - EtherType Virtual Integrated Network Service (VINES) Echo from Banyan Systems
- `vines-ip` - EtherType VINES IP
- `xns-id` - EtherType Xerox Network Systems (XNS) protocol suite
- `encaptype` - Encapsulation Type
**vlan** - VLAN ID to be filtered

**priority** - The priority of the L2 filter is used to decide which filter rule is applicable when the packet matches with more than one filter rules. Higher value of 'filter priority' implies a higher priority

**Mode**
ACL MAC Configuration Mode

**Defaults**
- **vlan-id** - 0
- **priority** - 1

**Example:**
```
SMIS(config-ext-macl)# permit host 00:11:22:33:44:55 any
aarp priority 10
```
MAC access list must have been created.

**Related Commands**
- **mac access-list extended** - Creates Layer 2 MAC ACLs, and returns the MAC-Access list configuration mode to the user
- **mac access-group** - Applies a MAC access control list (ACL) to a Layer 2 interface
- **deny** - Specifies the packets to be rejected based on the MAC address and the associated parameters
- **redirect** - Specifies the packets to be redirected based on the MAC address and the associated parameters
- **show access-lists** - Displays the access list statistics
33.21  deny

This command specifies the packets to be rejected based on the MAC address and the associated parameters.

deny { any | host <mac_addr> } { any | host <mac_addr> } [ { aarp |
amber | dec-spanning | decnet-iv | diagnostic | dsm | etype-6000 |
etype-8042 | lat | lavc-sca | mop-console | mop-dump | msdos | mumps |
netbios | vines-echo | vines-ip | xns-id | <short (0-65535)> } ] [ 
encaptype <integer (1-65535)> ] [ vlan <vlan-id (1-4069)>] [ priority
<short (1-255)>]

Syntax Description
any | host <mac_addr> - Source MAC address to be matched with the packet
any | host <mac_addr> - Destination MAC address to be matched with the packet
aarp - Ethertype AppleTalk Address Resolution Protocol that maps a data-link address to a
      network address
amber - EtherType DEC-Amber
dec-spanning - EtherType Digital Equipment Corporation (DEC) spanning tree
decnet-iv - EtherType DECnet Phase IV protocol
diagnostic - EtherType DEC-Diagnostic
dsm - EtherType DEC-DSM/DDP
etype-6000 - EtherType 0x6000
etype-8042 - EtherType 0x8042
lat - EtherType DEC-LAT
lavc-sca - EtherType DEC-LAVC-SCA
mop-console - EtherType DEC-MOP Remote Console
mop-dump - EtherType DEC-MOP Dump
msdos - EtherType DEC-MSDOS
mumps - EtherType DEC-MUMPS
netbios - EtherType DEC- Network Basic Input/Output System (NETBIOS)
vines-echo - EtherType Virtual Integrated Network Service (VINES) Echo from Banyan Systems
vines-ip - EtherType VINES IP
xns-id - EtherType Xerox Network Systems (XNS) protocol suite
encaptype - Encapsulation Type
vlan - VLAN ID to be filtered

priority - The priority of the L2 filter is used to decide which filter rule is applicable when the packet matches with more than one filter rules. Higher value of 'filter priority' implies a higher priority.

Mode
ACL MAC Configuration Mode

 Defaults
vlan-id - 0
priority - 1

 Example:
SMIS(config-ext-macl)# deny any host 00:11:22:33:44:55
priority 200
MAC access list must have been created.

 Related Commands
mac access-list extended - Creates Layer 2 MAC ACLs, and returns the MAC-Access list configuration mode to the user
mac access-group - Applies a MAC access control list (ACL) to a Layer 2 interface
permit - Specifies the packets to be forwarded based on the MAC address and the associated parameters
redirect - Specifies the packets to be redirected based on the MAC address and the associated parameters
show access-lists - Displays the access list statistics
33.22 redirect

This command specifies the packets to be redirected based on the MAC address and the associated parameters.

redirect <interface-type> <interface-id> { any | host <src-mac-address>} { any | host <dest-mac-address>} [aarp | amber | dec-spanning | decnet-iv | diagnostic | dsm | etype-6000 | etype-8042 | lat | lavc-sca | mop-console | mop-dump | msdos | mumps | netbios | vines-echo | vines-ip | xns-id | <protocol (0-65535)>] [encaptype <value (1-65535)>] [Vlan <vlan-id (1-4069)>] [priority <value (1-255)>]

Syntax Description

interface-type – may be any of the following:
gigabitethernet – gi
extreme-ethernet – ex
qx-ethernet – qx

interface-id - is in slot/port format for all physical interfaces

any | host <mac_addr> - Source MAC address to be matched with the packet
any | host <mac_addr> - Destination MAC address to be matched with the packet
aarp - Ethertype AppleTalk Address Resolution Protocol that maps a data-link address to a network address
amber - EtherType DEC-Amber
dec-spanning - EtherType Digital Equipment Corporation (DEC) spanning tree
decnet-iv - EtherType DECnet Phase IV protocol
diagnostic - EtherType DEC-Diagnostic
dsm - EtherType DEC-DSM/DDP
etype-6000 - EtherType 0x6000
etype-8042 - EtherType 0x8042
lat - EtherType DEC-LAT
lavc-sca - EtherType DEC-LAVC-SCA
mop-console - EtherType DEC-MOP Remote Console
mop-dump - EtherType DEC-MOP Dump
msdos - EtherType DEC-MSDOS
mumps - EtherType DEC-MUMPS
netbios - EtherType DEC- Network Basic Input/Output System (NETBIOS)
vines-echo - EtherType Virtual Integrated Network Service (VINES) Echo from Banyan Systems
vines-ip - EtherType VINES IP
xns-id - EtherType Xerox Network Systems (XNS) protocol suite
encaptype - Encapsulation Type
vlan - VLAN ID to be filtered
priority - The priority of the L2 filter is used to decide which filter rule is applicable when the packet matches with more than one filter rules. Higher value of ‘filter priority’ implies a higher priority.

Mode
ACL MAC Configuration Mode

Defaults
vlan-id - 0
priority - 1

Example:
SMIS(config-ext-macl)# redirect gi 0/1 any host 00:11:22:33:44:55
priority 200
MAC access list must have been created.

Related Commands
mac access-list extended - Creates Layer 2 MAC ACLs, and returns the MAC-Access list configuration mode to the user
mac access-group - Applies a MAC access control list (ACL) to a Layer 2 interface
permit - Specifies the packets to be forwarded based on the MAC address and the associated parameters
deny - Specifies the packets to be denied based on the MAC address and the associated parameters
show access-lists - Displays the access list statistics
### 33.23 show access-lists

This command displays the access lists configuration.

```
show access-lists [{ip | mac}] <access-list-number (1-32768)>
```

**Syntax Description**

- **ip** - IP Access List
- **mac** - MAC Access List

**Mode**

Privileged/User EXEC Mode

**Example:**

```
SMIS# show access-lists
SMIS# show access-lists ip 1
SMIS# show access-lists mac 1
```

**Related Commands**

- **ip access-list** - Creates IP ACLs and enters the IP Access-list configuration mode
- **mac access-list extended** - Creates Layer 2 MAC ACLs, and returns the MAC-Access list configuration mode to the user
- **permit - standard mode** - Specifies the packets to be forwarded depending upon the associated parameters
- **deny - standard mode** - Denies traffic if the conditions defined in the deny statement are matched
- **redirect - standard mode** - Redirects traffic if the conditions defined in the redirect statement are matched
- **permit ip/ospf/pim/protocol type** - Allows traffic for a particular protocol packet if the conditions defined in the permit statement are matched
- **deny ip/ospf/pim/protocol type** - Denies traffic for a particular protocol packet if the conditions defined in the deny statement are matched
- **redirect ip/ospf/pim/protocol type** - Redirects traffic for a particular protocol packet if the conditions defined in the redirect statement are matched
- **permit tcp** - Specifies the TCP packets to be forwarded based on the associated parameters
- **deny tcp** - Specifies the TCP packets to be rejected based on the associated parameters
redirect tcp - Specifies the TCP packets to be redirected based on the associated parameters
permit udp - Specifies the UDP packets to be forwarded based on the associated parameters
deny udp - Specifies the UDP packets to be rejected based on the associated parameters
redirect udp - Specifies the UDP packets to be redirected based on the associated parameters
permit icmp - Specifies the ICMP packets to be forwarded based on the IP address and the associated parameters
deny icmp - Specifies the ICMP packets to be rejected based on the IP address and associated parameters
redirect icmp - Specifies the ICMP packets to be redirected based on the IP address and associated parameters
ip access-group - Enables access control for the packets on the interface
34 Loop protection

Loop protection feature helps to detect and prevent network loops caused by unmanaged network devices. This loop protection feature is independent of the spanning tree protocol. This can be used when the switches are connected to unmanaged devices where spanning tree cannot prevent network loops.

This feature detects networks loops by transmitting Ethernet control packets. The User can configure to disable the loop detected ports for a specific period.

The list of CLI commands for the configuration of loop protection is as follows:

- `loop-protect`
- `loop-protect - interface`
- `loop-protect disable-period`
- `loop-protect receive-action`
- `loop-protect transmit-interval`
- `show loop-protect`
34.1 loop-protect

This command enables or disables the loop protection feature globally on the switch. To enable loop protection on ports, the loop protect command needs to be configured on the corresponding port interfaces also. To enable loop protection on ports, refer to the section `loop protect -- interface`.

Loop protection feature is disabled by default.

```
loop-protect {enable | disable}
```

**Syntax Description**
- enable – Enables the loop protection feature
- disable – Disables the loop protection feature

**Mode**
Global Configuration Mode

**Defaults**
disable

**Example:**
```
SMIS(config)# loop-protect enable
```

**Related Commands**
- show loop-protect – Displays the loop protection feature status.
34.2 loop-protect - interface

This command enables the loop protection feature on the port interface. The "no" form of this command disables the loop protection feature on the port interface.

To use the loop protection feature on any ports, this feature need to be enabled globally also on the switch. To enable the loop protection feature globally, refer the section loop protect.

Loop protection feature is disabled by default on all ports.

loop-protect

no loop-protect

Mode
Interface Configuration Mode

Defaults
disable

Example:
SMIS(config-if)# loop-protect enable

Related Commands
show loop-protect -- Displays the loop protection feature status.
34.3  loop-protect disable-period

Switch disables (shuts down) the loop detected ports. This command configures the disable period for which the loop detected ports are kept down.

By default disable period value is 0 which means the loop detected ports are kept down until user enables it manually.

The no form of this command removes the configured disable period value and reset it to the default value 0.

`loop-protect disable-period <integer(0-604800)>`

`no loop-protect disable-period`

**Syntax Description**

disable-period – number of seconds the loop detected ports are kept down.

**Mode**

Global Configuration Mode

**Defaults**

disable

**Example:**

`SMIS(config)# loop-protect disable-period 30`

**Related Commands**

show loop-protect – Displays the loop protection disable period information.
34.4 loop-protect receive-action

When a loop is detected switch disables the port from which the loop protection packets originated. This command can be used to configure not to disable the port when loop is detected.

The no form of this command resets the receive action to the default value send-disable.

```
loop-protect receive-action {send-disable| no-disable}
```

```
no loop-protect receive-action
```

Syntax Description
send-disable – disables the port from which the loop protection packets originated are getting looped
no-disable – loop detected ports are not disabled

Mode
Global Configuration Mode

Defaults
send-disable

Example:
```
SMIS(config)# loop-protect receive-action no-disable
```

Related Commands
show loop-protect – Displays the loop protection receive action information.
34.5  loop-protect transmit-interval

When loop protection feature is enabled, switch transmits Ethernet control frames periodically to detect the network loops. By default Ethernet control frames are sent once every 5 seconds. This command helps to configure the period on which the Ethernet control frames are transmitted.

The "no" form of this command resets the transmit interval period to the default value of 5 seconds.

`loop-protect transmit-interval <integer(1-10)>`

`no loop-protect transmit-interval`

**Syntax Description**
Transmit-interval – number of seconds between subsequent Ethernet control frames sent out

**Mode**
Global Configuration Mode

**Defaults**
5

**Example:**
`SMIS(config)# loop-protect transmit-interval 10`

**Related Commands**
show loop-protect – Displays the loop protection transmit interval information.
34.6 **show loop-protect**

This command displays the loop protection configuration information.

**show loop-protect**

**Mode**
Privileged/User EXEC Mode

**Example:**
SMIS# show loop-protect

<table>
<thead>
<tr>
<th>Loop Protection</th>
<th>Enabled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmit Interval</td>
<td>5 seconds</td>
</tr>
<tr>
<td>Receive action</td>
<td>send-disable</td>
</tr>
<tr>
<td>Disable Period</td>
<td>0 (Keep Disabled)</td>
</tr>
</tbody>
</table>

Loop Protection Configured Interfaces

<table>
<thead>
<tr>
<th>Interface</th>
<th>Status</th>
<th>Loop-Detected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gi0/1</td>
<td>Down</td>
<td>No</td>
</tr>
<tr>
<td>Gi0/2</td>
<td>Down</td>
<td>No</td>
</tr>
</tbody>
</table>

**Related Commands**

loop-protect – Enable or disable the loop protection feature

loop-protect - interface – Enable or disable the loop protection feature on port interfaces

loop-protect disable-period – Configures the time for which the loop detected ports are kept down

loop-protect receive-action – Configures the action to be taken when loop a loop is detected

loop-protect transmit-interval – Configures the interval on which loop detection packets are sent
35 Link Status Tracking

Link status tracking feature helps to control the link status of downstream interfaces based on the link status of upstream interfaces.

The interfaces connected to servers and other end devices are called downstream interfaces. And the uplink interfaces of the switches are referred as upstream interfaces.

The link status tracking feature dynamically changes the link status of downstream interfaces depending on the link status of upstream interfaces. When the link status of one or more of the upstream interfaces is “up”, it maintains the link status of all the dependent downstream interfaces as “up”. When all the upstream interfaces are “down”, it brings down all the dependent downstream interfaces. This helps servers to choose alternate interfaces to send traffic.

User can configure multiple groups of upstream and downstream interfaces for independent link status tracking among different groups.

The list of CLI commands for the configuration of link status tracking is as follows:

- `link-status-tracking`
- `link-status-tracking group`
- `link-status-tracking group -- interface`
- `show link-status-tracking`
35.1 link-status-tracking

This command enables or disables the link status tracking feature.

Link status tracking feature is disabled by default.

link-status-tracking {enable | disable}

Syntax Description
enable – Enables the link status tracking feature
disable – Disables the link status tracking feature

Mode
Global Configuration Mode

Defaults
disable

Example:
SMIS(config)# link-status-tracking enable

Related Commands
show link-status-tracking – Displays the link status tracking feature information.
35.2  link-status-tracking group

This command creates the link status tracking groups. The "no" form of this command removes the configured link status tracking groups.

link-status-tracking group <short(1-1024)>

no link-status-tracking group <short(1-1024)>

**Syntax Description**

group – Any number between 1 to 1024

**Mode**

Global Configuration Mode

**Example:**

SMIS(config)# link-status-tracking group 1

**Related Commands**

show link-status-tracking – Displays the link status tracking feature information.
35.3 link-status-tracking group - interface

This command adds the interfaces as either downstream or upstream interfaces to the link status tracking groups.

The "no" form of this command removes the interfaces from the link status tracking groups.

`link-status-tracking group <short(1-1024)> {upstream | downstream}`

`no link-status-tracking`

**Syntax Description**

- `group` – Any number between 1 to 1024
- `upstream` – configure this interface as the upstream interface for the given group
- `downstream` - configure this interface as the downstream interface for the given group

**Mode**

Interface Configuration Mode

**Example:**

```
SMIS(config-if)# link-status-tracking group 1 upstream
```

**Related Commands**

- `show link-status-tracking` – Displays the link status tracking feature information.
35.4 show link-status-tracking

This command displays the link status tracking configuration information.

If the group number given it displays the information specific to the given groups. If group is not given, it displays the information for all the configured groups.

`show link-status-tracking [group <short(1-1024)>]`

**Syntax Description**

- **group** – Any number between 1 to 1024

**Mode**

- Privileged/User EXEC Mode

**Example:**

```
SMIS# show link-status-tracking

Link Status Tracking is Enabled

Group :1 down
Upstream Interfaces:
Ex0/1(down)
Downstream Interfaces:
Gi0/1(Dis) Gi0/2(Dis) Gi0/3(Dis) Gi0/4(Dis) Gi0/5(Dis)
Gi0/6(Dis) Gi0/7(Dis) Gi0/8(Dis) Gi0/9(Dis) Gi0/10(Dis)
Gi0/11(Dis) Gi0/12(Dis) Gi0/13(Dis) Gi0/14(Dis) Gi0/15(Dis)
Gi0/16(Dis) Gi0/17(Dis) Gi0/18(Dis) Gi0/19(Dis) Gi0/20(Dis)
```

Group :2 down
Upstream Interfaces:
Ex0/2(down)
Downstream Interfaces:

**Related Commands**

- `link-status-tracking` – enables or disables the link status tracking feature
- `link-status-tracking group` – creates or deletes the link status tracking groups
link-status-tracking group – interface – adds or removes the interfaces in to link status tracking groups.
36 Data Center Bridging

Data Center Bridging (DCB) provides lossless Ethernet connectivity for SAN (Storage Area Network) applications. This achieved by using the Data Center Bridging eXchange (DCBX) protocol, in the form of LLDP TLVs, exchanged between the link partners to create a lossless Ethernet link. Supermicro's DCBX-capable switch products support the CEE standard, widely supported by many DCB devices.

Since DCBX protocol messages are encapsulated in LLDP PDUs, DCBX link stability relies on a well-configured LLDP environment. DCBX requires exactly one LLDP link partner to be a DCBX peer, multiple LLDP neighbours advertising DCBX TLVs are disallowed.

This feature is supported only on the following switch models:

- SBM-XEM-X10SM
- SSE-X24S/R

The DCBX configuration can be divided into two parts:
1. CEE-Map configurations
2. Interface configurations

The first, CEE-Map is a set of DCBX settings. It consists of the following elements:
1. Priority to Priority Group (PG) mapping,
2. Bandwidth percentage for each PG, and
3. PFC for each priority and PG

Up to 4 CEE-Maps can be defined, each DCBX-capable interface can choose to associate with any one of the CEE-Maps, the settings in the associated CEE-Map will be encapsulated in the form of LLDP TLVs, and sent to the peer side for DCBX configurations.

The second is interface configuration mode. The advertisement, willing bit, and enable bit of DCBX TLVs can be controlled here. The commands of this part are described in LLDP section. This section lists the CEE-Map commands:

Priority Group (PG) Declaration and Bandwidth Allocation
- group
- group-bandwidth

Priority-to-PG Mapping Manipulations
- priority
- pri2pg

Priority-based Flow Control (PFC) Settings
- pfc group
- pfc priority

and related commands in interface configuration mode:
- cee
dcbx cee
This command sets a description string to the specified group, and the “no” form of this command resets to default.

```
group <id(0-7,15)> description {<string(63)>}
no group <id(0-7,15)>
```

**Syntax Description**
- `<id>` - The priority-group ID (PGID)
- `<string>` - The description string

**Mode**
- Config-CEE-Map mode

**Example:**
```
SMIS(config)# cee-map 2
SMIS(config-cee-map)# group 4 description SAN-2
SMIS(config-cee-map)# end
SMIS# show cee-map 2
...
Group Bandwidth(%) PFC Description

0 10 No LAN
1 11 Yes SAN
2 12 No
3 11 No
4 13 No SAN-2
5 11 No
6 14 No
7 18 No
15 MAX No
```

**Defaults**
"LAN" for PG 0, "SAN" for PG 1, and empty string for the others.

**Related Commands**
- show cee-map - displays the CEE-MAP settings
36.2 group-bandwidth

This command allocates the maximum egress bandwidth as a percentage for each priority-group (PG). The no form of this command resets to the default allocation. Note that the sum of all bandwidth percentages must be 100. A PG can utilize all of the egress bandwidth if other PGs don’t reach their allocated maximum percentage, hence any PG assigned 0% will not necessarily stop transmission, it can still use any unused bandwidth.

\[\text{group-bandwidth} \ <pg0\_bw> \ <pg1\_bw> \ <pg2\_bw> \ <pg3\_bw> \ <pg4\_bw> \ <pg5\_bw> \ <pg6\_bw> \ <pg7\_bw>\]
\[\text{no group-bandwidth}\]

Syntax Description

- `<pg0_bw>` - The percentage (0-100) of egress bandwidth for PG 0.
- `<pg1_bw>` - The percentage (0-100) of egress bandwidth for PG 1.
- `<pg2_bw>` - The percentage (0-100) of egress bandwidth for PG 2.
- `<pg3_bw>` - The percentage (0-100) of egress bandwidth for PG 3.
- `<pg4_bw>` - The percentage (0-100) of egress bandwidth for PG 4.
- `<pg5_bw>` - The percentage (0-100) of egress bandwidth for PG 5.
- `<pg6_bw>` - The percentage (0-100) of egress bandwidth for PG 6.
- `<pg7_bw>` - The percentage (0-100) of egress bandwidth for PG 7.

Mode

Config-CEE-Map mode

Example:

SMIS(config)#
SMIS(config)# cee-map 2
SMIS(config-cee-map)# group-bandwidth 10 11 12 13 14 15 16 9
SMIS(config-cee-map)# end
SMIS# show cee-map 2

... Group Bandwidth(%) PFC Description

<p>| | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10</td>
<td>No</td>
<td>LAN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>11</td>
<td>Yes</td>
<td>SAN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>12</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>13</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>14</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>15</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>16</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>9</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>MAX</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Defaults

20% egress bandwidth for PG0, and 80% for PG1.

Related Commands

show cee-map - displays the CEE-MAP settings
36.3 pfc priority

This command is used to declare a priority is PFC-enabled or disabled.

Note that if a priority is PFC-disabled, but it joined a PFC-enabled PG, then the PFC function of this priority is automatically enabled. Alternatively, if a priority joined a PG that does not require enabling PFC, the priority can still enable the PFC function individually.

`pfc priority <pri(0-7)> {enable|disable}`

**Syntax Description**

- `<pri>` - The priority ID
- `enable` - Enable PFC function on this priority.
- `disable` - Disable PFC function on this priority.

**Mode**

Config-CEE-Map mode

**Example:**

SMIS# show cee-map 2

```
Priority Group PFC Description

 0 0 No LAN
 1 0 No
 2 0 No
 3 1 Yes FCoE/FIP
 4 0 No
 5 0 No
 6 0 No
 7 0 No
...
```

SMIS# configure terminal
SMIS(config)# cee-map 2
SMIS(config-cee-map)# pfc priority 1 enable
SMIS(config-cee-map)# pfc priority 2 enable
SMIS(config-cee-map)# exit
SMIS(config)# exit
SMIS# show cee-map 2

```
Priority Group PFC Description

 0 0 No LAN
 1 0 Yes
 2 0 Yes
 3 1 Yes FCoE/FIP
 4 0 No
 5 0 No
 6 0 No
 7 0 No
...
```
Defaults
Enabled for priority 3, and disabled for the others.

Related Commands
show cee-map - displays the CEE-MAP settings
36.4 pri2pg

This command maps priorities to priority groups (PGs). The “no” form of this command resets to default mapping. Priorities within a PG share the same egress bandwidth portion.

```
pri2pg <pri0_pg> <pri1_pg> <pri2_pg> <pri3_pg> <pri4_pg> <pri5_pg>
<pri6_pg> <pri7_pg>
no pri2pg [{priority <id(0-7)>| all}]
```

### Syntax Description

- `<pri0_pg>` - The PG that priority 0 maps to.
- `<pri1_pg>` - The PG that priority 1 maps to.
- `<pri2_pg>` - The PG that priority 2 maps to.
- `<pri3_pg>` - The PG that priority 3 maps to.
- `<pri4_pg>` - The PG that priority 4 maps to.
- `<pri5_pg>` - The PG that priority 5 maps to.
- `<pri6_pg>` - The PG that priority 6 maps to.
- `<pri7_pg>` - The PG that priority 7 maps to.
- `<id>` - The priority ID.

### Mode

Config-CEE-Map mode

### Example:

```
SMIS(config)# cee-map 2
SMIS(config-cee-map)# group-bandwidth 20 50 30 0 0 0 0
SMIS(config-cee-map)# pri2pg 0 0 0 1 2 2 2 2
SMIS(config-cee-map)# group 2 description AUDIO_SERVICE
SMIS(config-cee-map)# priority 0 description INTERNET
SMIS(config-cee-map)# priority 1 description DATA_BASE
SMIS(config-cee-map)# priority 2 description DATA_BASE_CONTROL
SMIS(config-cee-map)# priority 4 description AUDIO_DATA_1
SMIS(config-cee-map)# priority 5 description AUDIO_DATA_2
SMIS(config-cee-map)# priority 6 description AUDIO_SYNC
SMIS(config-cee-map)# priority 7 description AUDIO_CONTROL
SMIS(config-cee-map)# end
SMIS# show cee-map 2
...
```

### Priority Group PFC Description

```
<table>
<thead>
<tr>
<th>Priority</th>
<th>Group</th>
<th>PFC</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>No</td>
<td>INTERNET</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>No</td>
<td>DATA_BASE</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>No</td>
<td>DATA_BASE_CONTROL</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>Yes</td>
<td>FCoE/FIP</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>No</td>
<td>AUDIO_DATA_1</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>No</td>
<td>AUDIO_DATA_2</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>No</td>
<td>AUDIO_SYNC</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>No</td>
<td>AUDIO_CONTROL</td>
</tr>
</tbody>
</table>
```

### Group Bandwidth(%) PFC Description

```
<table>
<thead>
<tr>
<th>Group</th>
<th>Bandwidth(%)</th>
<th>PFC</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```
0  20  No  LAN
1  50  Yes  SAN
2  30  No  AUDIO SERVICE
3  0   No
4  0   No
5  0   No
6  0   No
7  0   No
15 MAX No

Defaults
Priority 3 mapped to PG 1 (SAN), and all others are mapped to PG 0 (LAN).

Related Commands
show cee-map - displays the CEE-MAP settings
36.5 pfc group

This command is used to declare whether a priority group (PG) is required to enable PFC or not. If a PG is declared "PFC-enabled", all the priorities mapped to this PG are PFC-enabled automatically. If a PG is declared "PFC-disabled", then the priorities mapped to this PG can choose to or not to enable PFC individually.

`pfc group <id(0-7)> {enable|disable}`

**Syntax Description**

`<id>` - The priority-group ID (PGID)
`enable` - The PG asks all its priorities to enable PFC.
`disable` - The PG does not ask its priorities to enable PFC.

**Mode**

Config-CEE-Map mode

**Example:**

SMIS# show cee-map 2

```
... Group Bandwidth(%) PFC Description

 0 20 No LAN
 1 80 Yes SAN
 2 0 No
 3 0 No
 4 0 No
 5 0 No
 6 0 No
 7 0 No
15 MAX No
...
```

SMIS# configure terminal
SMIS(config)# cee-map 2
SMIS(config-cee-map)# pfc group 0 enable
SMIS(config-cee-map)# end
SMIS# show cee-map 2

```
... Group Bandwidth(%) PFC Description

 0 20 Yes LAN
 1 80 Yes SAN
 2 0 No
 3 0 No
 4 0 No
 5 0 No
 6 0 No
 7 0 No
15 MAX No
...
```

**Defaults**
"LAN" for PG 0, and "SAN" for PG 1.

Related Commands
show cee-map - displays the CEE-MAP settings
36.6 \textbf{pfc priority}

This command is used to declare a priority is PFC-enabled or disabled.

Note that, if a priority is PFC-disabled, but it joined a PFC-enabled PG, then the PFC function of this priority is automatically enabled. Alternatively, if a priority joined a PG that does not require enabling PFC, the priority can still enable the PFC function individually.

\texttt{pfc priority <pri(0-7)> \{enable|disable\}}

**Syntax Description**

\texttt{<pri>} - The priority ID
\texttt{enable} - Enable PFC function on this priority.
\texttt{disable} - Disable PFC function on this priority.

**Example:**

SMIS\# show cee-map 2

```
... Priority Group PFC Description

 0 0 No LAN
 1 0 No
 2 0 No
 3 1 Yes FCoE/FIP
 4 0 No
 5 0 No
 6 0 No
 7 0 No
... SMIS# configure terminal
SMIS(config)# cee-map 2
SMIS(config-cee-map)# pfc priority 1 enable
SMIS(config-pee-map)# pfc priority 2 enable
SMIS(config-cee-map)# exit
SMIS(config)# exit
SMIS# show cee-map 2

... Priority Group PFC Description

 0 0 No LAN
 1 0 Yes
 2 0 Yes
 3 1 Yes FCoE/FIP
 4 0 No
 5 0 No
 6 0 No
 7 0 No
...```
Defaults
Enabled for priority 3, and disabled for the others.

Related Commands
show cee-map - displays the CEE-MAP settings
This command associates an interface with a CEE-Map. The “no” form of this command disassociate from any CEE-Map. For an interface which is performing DCBX, to disassociate the CEE-Map, please execute “no dcbx cee” prior to executing “no cee”.

```
cee <cee-map-id(1-4))>
no cee
```

Syntax Description

- `<cee-map-id>` - The CEE-Map identifier to associate.

Mode

Interface configuration mode.

Example:

```
SMIS# configure terminal
SMIS(config)# interface extreme-ethernet 0/1
SMIS(config-if)# cee 1
SMIS(config-if)#
```

Defaults

There is no CEE-Map associated.

Related Commands

- `cee-map` - Create, modify, or delete a cee-map.
- `dcbx cee` - Start DCBX protocol
- `no dcbx cee` - Stop DCBX protocol
This command starts the DCBX protocol in CEE mode on an interface that is associated with a CEE-Map, and the “no” form of this command stops the CEE mode of the DCBX protocol.

```plaintext
dcbx cee
no dcbx cee
```

Syntax Description

dcbx cee - Encapsulates DCBX TLVs in the LLDP message, starts DCBX.
no dcbx cee - Stops encapsulating DCBX TLVs in the LLDP message, stop DCBX.

Mode

Interface configuration mode.

Example:

```
SMIS# configure terminal
SMIS(config)# interface extreme-ethernet 0/1
SMIS(config-if)# cee 1
SMIS(config-if)# dcbx cee
```

Defaults

There is no CEE-Map associated.

Related Commands

cee-map - Create, modify, or delete a cee-map.
dcbx cee - Start DCBX protocol
no dcbx cee - Stop DCBX protocol
show lldp dcbx interface - Show DCBX interface status
37 LLDP

Link layer discovery protocol (LLDP) helps to learn information about the other devices on the local network. LLDP enabled devices send out information about their identity and capabilities periodically. To share different information LLDP supports many types of TLVs.

The list of CLI commands for the configuration of LLDP is as follows:

- `set lldp`
- `lldp chassis-id-subtype`
- `lldp holdtime-multiplier`
- `lldp notification interval`
- `lldp reinitialization-delay`
- `lldp transmit-interval`
- `lldp tx-delay`
- `clear lldp counters`
- `clear lldp table`
- `lldp notification`
- `lldp port-id-subtype`
- `lldp tlv-select basic-tlv`
- `lldp tlv-select dot1tlv`
- `lldp tlv-select dot3tlv`
- `lldp transmit | receive`
- `debug lldp`
- `show lldp`
- `show lldp errors`
- `show lldp interface`
- `show lldp local`
- `show lldp neighbors`
- `show lldp statistics`
show lldp traffic
37.1 set lldp

This command enables or disables the LLDP feature.

LLDP feature is disabled by default.

set lldp {enable | disable}

Syntax Description
- `enable` – Enables the LLDP feature
- `disable` – Disables the LLDP feature

Mode
- Global Configuration Mode

Defaults
- `disable`

Example:
- SMIS(config)# set lldp enable

Related Commands
- `show lldp` – Displays the LLDP feature information.
37.2 lldp chassis-id-subtype

This command configures chassis identifier type. Chassis identifier can be any one of the following:

- **Chassis Component** - Chassis component string
- **Interface Alias** - Interface alias
- **Port Component** - Port component string
- **MAC Address** - MAC address of the switch
- **Network Address** - Network address of the switch
- **Interface Name** - Interface name
- **Locally Assigned** - Any user defined local string

```plaintext
lldp chassis-id-subtype { chassis-comp <string(255)> | if-alias | port-comp <string(255)> | mac-addr | nw-addr | if-name | local <string(255)> }
```

Syntax Description

- **chassis-comp** - Chassis component string
- **if-alias** - Interface alias. To use the if-alias option, the management interface must have been configured with valid description.
- **port-comp** - Port component string
- **mac-addr** - MAC address of the switch
- **nw-addr** - Network address of the switch
- **if-name** - Interface name
- **local** - Any user defined local string

Mode

Global Configuration Mode

Defaults

MAC address of the switch

Example:

```
SMIS(config)# lldp chassis-id-subtype chassis-comp abcd
```

Related Commands

- `show lldp` – Displays the LLDP feature information.
37.3 lldp holdtime-multiplier

This command helps to configure the time-to-live of LLDP information. The LLDP devices hold the received LLDP information for the time advertised as time-to-live information.

This time-to-live value is calculated as below:
\[
\text{time-to-live} = \text{holdtime multiplier} \times \text{transmit interval}
\]

This command helps to configure this holdtime multiplier. The “no” form of this command resets this hold time multiplier to its default 4.

lldp holdtime-multiplier <value(2-10)>

no lldp holdtime-multiplier

Syntax Description

holdtime-multiplier – any number between 2 to 10

Mode

Global Configuration Mode

Defaults

4

Example:

\[\text{SMIS(config)# lldp holdtime-multiplier 5}\]

Related Commands

show lldp – Displays the LLDP feature information.
37.4 lldp notification interval

This command configures the time interval on which LLDP traps are sent to SNMP managers when LLDP information is changed.

The "no" form of this command resets the notification interval to its default value 5 seconds.

```
lldp notification-interval <seconds(5-3600)>
```

no lldp notification-interval

Syntax Description

notification-interval – any number between 5 to 3600

Mode

Global Configuration Mode

Defaults

5 seconds

Example:

```
SMIS(config)# lldp notification-interval 300
```

Related Commands

show lldp – Displays the LLDP feature information.
37.5 Illdp reinitialization-delay

This command configures time delay used to initialize LLDP on any interface.

The "no" form of this command resets the time delay to its default value 2 seconds.

Illdp reinitialization-delay <seconds(1-10)>

no Illdp reinitialization-delay

Syntax Description
reinitialization-delay – any number between 1 to 10

Mode
Global Configuration Mode

Defaults
2 seconds

Example:
SMIS(config)# illdp reinitialization-delay 8

Related Commands
show illdp – Displays the LLDP feature information.
37.6 lldp transmit-interval

This command configures the time interval on which LLDP update messages are sent.

The "no" form of this command resets the transmit interval to its default value 30 seconds.

lldp transmit-interval <seconds(5-32768)>

no lldp transmit-interval

Syntax Description
transmit-interval – any number between 5 to 32768

Mode
Global Configuration Mode

Defaults
30 seconds

Example:
SMIS(config)# lldp transmit-interval 180

Related Commands
show lldp – Displays the LLDP feature information.
37.7 **lldp tx-delay**

This command configures the minimum time interval maintained between any two subsequent LLDP messages sent out.

The "no" form of this command resets this transmit delay to its default value 2 seconds.

lldp tx-delay <seconds(1-8192)>

no lldp tx-delay

Syntax Description

tx-delay – any number between 1 to 8192

Mode

Global Configuration Mode

Defaults

2 seconds

Example:

SMIS(config)# lldp tx-delay 15

Related Commands

show lldp – Displays the LLDP feature information.
37.8 clear lldp counters

This command resets the LLDP traffic counters.

clear lldp counters

Mode
Global Configuration Mode

Example:
SMIS(config)# clear lldp counters

Related Commands
show lldp traffic – Displays the LLDP traffic counters.
37.9 clear lldp table

This command resets all the LLDP neighbor information learned.

clear lldp table

Mode
Global Configuration Mode

Example:
SMIS(config)# clear lldp table

Related Commands
show lldp neighbors – Displays the LLDP neighbor information.
37.10 lldp notification

This command configures the lldp notification status and notification types on the interface.

The "no" form of this command disables the notification on the interface.

lldp notification [remote-table-chg][mis-configuration]

no lldp notification

Syntax Description
remote-table-chg – configures to send SNMP notification when remote table changes
mis-configuration – configures to send SNMP notification when incorrect configuration detected in the switch
When no options given this command enables lldp notification on the interface.

Mode
Interface Configuration Mode

Defaults
Notification status - disabled
Notification type – mis configuration

Example:
SMIS(config-if)# lldp notification remote-table-chg

Related Commands
show lldp interface – Displays the LLDP feature interface configuration.
37.11 **lldp port-id-subtype**

This command configures the port identifier type. An LLDP port identifier can be any one of the following:

- **Interface Alias** - Interface alias
- **Port Component** - Port component string
- **MAC Address** - MAC address of the switch
- **Interface Name** - Interface name
- **Locally Assigned** - Any user defined local string

```
lldp port-id-subtype { if-alias | port-comp <string(255)> | mac-addr | if-name | local <string(255)> }
```

Syntax Description

- **if-alias** - Interface alias. The if-alias option can be used only for the interfaces which have valid description configured.
- **port-comp** - Port component string up to 255 characters
- **mac-addr** - MAC address of the switch
- **if-name** - Interface name
- **local** - Any user defined local string up to 255 characters

Mode

Interface Configuration Mode

Defaults

Interface name

Example:

```
SMIS(config-if)# lldp port-id-subtype mac-addr
```

Related Commands

show lldp local – Displays the LLDP interface information.
37.12 lldp tlv-select basic-tlv

This command configures basic tlv transmission on interface. It enables the transmission of given tlv on any interface.

The "no" form of this command disables the transmission of given tlv on any interface.

```
lldp tlv-select basic-tlv { [port-descr] [sys-name] [sys-descr] [sys-capab] [mgmt-addr {all | ipv4 <ucast_addr> | ipv6 <ip6_addr>}]}
```

```
no lldp tlv-select basic-tlv { [port-descr] [sys-name] [sys-descr] [sys-capab] [mgmt-addr {all | ipv4 <ucast_addr> | ipv6 <ip6_addr>}]}
```

Syntax Description

- **port-descr** – Enables port description tlv transmission
- **sys-name** - Enables system name tlv transmission
- **sys-descr** - Enables system description tlv transmission
- **sys-capab** - Enables system capabilities tlv transmission
- **mgmt-addr all** - Enables transmission of all management address information
- **mgmt-addr ipv4** - Enables transmission of given IPv4 management address information
- **mgmt-addr ipv6** - Enables transmission of given IPv6 management address information

Mode

Interface Configuration Mode

Defaults

Disabled

Example:

```
SMIS(config-if)# lldp tlv-select basic-tlv sys-name sys-descr sys-capab
```

Related Commands

- `show lldp local` – Displays the LLDP local interface information.
37.13 lldp tlv-select dcbx-cee-pfc

For DCBX-capable switch products, this command configures the PFC (Priority-based Flow Control) feature sub-TLV included in the DCBX TLV. PFC sub-TLV is used to inform the link partner about the PFC settings. By default, the setting is for host CNA (Converged Network Adapter) connectivity, so the "willing" control bit is zero to ask the host to follow the switch side PFC settings.

Moreover, if the port is connected to a FC/FCoE switch (FCF), the "willing" bit might need to be set to 1 to ask the switch to follow FCF's PFC setting. Whether or not to change the willing bit is dependent on the FCF configuration.

Note that flowcontrol (both send and receive) should be turned off, otherwise it will impact PFC operations.

The "no" form of this command resets to the default values.

```
lldp tlv-select dcbx-cee-pfc [advertise {on|off}] [willing {0|1}] [enable {0|1}]
no lldp tlv-select dcbx-cee-pfc
```

This feature is supported only on the following switch models

SBM-XEM-X10SM
SSE-X24SR

Syntax Description
advertise on - Let DCBX TLV carries PFC sub-TLV.
advertise off - Let DCBX TLV does not carry PFC sub-TLV.
willng 0 - Clear the willing control bit, insists using local PFC settings.
willng 1 - Set the willing control bit, will follow peer's PFC settings.
enable 0 - Advertise that local side disabled PFC feature.
enable 1 - Advertise that local side enabled PFC feature.

Mode
Interface Configuration Mode

Defaults
Advertise on, willing 0, and enable 1.

Related Commands
show lldp dcbx interface - displays the current DCBX status of specified interface
show cee-map - displays the CEE-MAP settings
37.14 lldp tlv-select dcbx-cee-pg

For DCBX-capable switch products, this command configures the PG (Priority Group) feature sub-TLV included in the DCBX TLV. PG sub-TLV is used to inform the link partner about the relationship between priorities and priority groups (PGs). By default, the setting is for host CNA (Converged Network Adapter) connectivity, so the "willing" control bit is zero to ask the host follow switch side PG settings. Moreover, if the port is connected to a FC/FCoE switch (FCF), the "willing" bit might need to be set to 1 to ask the switch to follow FCF's PG setting. Whether or not to change the willing bit is dependent on the FCF configuration.

The "no" form of this command resets to the default values.

```
lldp tlv-select dcbx-cee-pg [advertise {on|off}] [willing {0|1}] [enable {0|1}]
no lldp tlv-select dcbx-cee-pg
```

This feature is supported only on the following switch models

SBM-XEM-X10SM
SSE-X24SR

Syntax Description

- advertise on - Let DCBX TLV carries PG sub-TLV.
- advertise off - Let DCBX TLV does not carry PG sub-TLV.
- willing 0 - Clear the willing control bit, insists using local PG settings.
- willing 1 - Set the willing control bit, will follow peer's PG settings.
- enable 0 - Advertise that local side disabled PG feature.
- enable 1 - Advertise that local side enabled PG feature.

Mode

Interface Configuration Mode

Defaults

Advertise on, willing 0, and enable 1.

Related Commands

- show lldp dcbx interface - displays the current DCBX status of specified interface
- show cee-map - displays the CEE-MAP settings
37.15 lldp tlv-select dot1tlv

This command configures 802.1 VLAN tlv transmission on interface. It enables the transmission of given tlv on any interface.

The "no" form of this command disables the transmission of given tlv on any interface.

```
lldp tlv-select dot1tlv {[port-vlan-id] [protocol-vlan-id {all |<vlan-id>}]} [vlan-name {all | <vlan-id>}])

no lldp tlv-select dot1tlv {[port-vlan-id] [protocol-vlan-id {all |<vlan-id>}]} [vlan-name {all | <vlan-id>}])
```

Syntax Description

- **port-vlan-id** – Enables transmission of port vlan identifier tlv
- **protocol-vlan-id all** - Enables transmission of all protocol vlan identifiers tlv
- **protocol-vlan-id <vlan-id>** - Enables transmission of the given protocol vlan identifier tlv
- **vlan-name all** - Enables transmission of all vlan names tlv
- **vlan-name <vlan-id>** - Enables transmission of the given vlan name tlv

Mode

Interface Configuration Mode

Defaults

Disabled

Example:

```
SMIS(config-if)# lldp tlv-select dot1tlv port-vlan-id protocol-vlan-id all
```

Related Commands

show lldp local – Displays the LLDP local interface information.
37.16 lldp tlv-select dot3tlv

This command configures 802.3 standard tlv transmission on interface. It enables the transmission of given tlv on any interface.

The "no" form of this command disables the transmission of given tlv on any interface.

```plaintext
lldp tlv-select dot3tlv { [macphy-config] [link-aggregation] [max-framesize] }

no lldp tlv-select dot3TLV { [macphy-config] [link-aggregation] [max-framesize] }
```

Syntax Description
- `macphy-config` – Enables transmission of MAC and phy configuration and status tlv
- `link-aggregation` - Enables transmission of link aggregation information tlv
- `max-framesize` - Enables transmission of max frame size information tlv

Mode
Interface Configuration Mode

Defaults
Disabled

Example:
```plaintext
SMIS(config-if)# lldp tlv-select dot3tlv macphy-config link-aggregation
```

Related Commands
- `show lldp local` – Displays the LLDP local interface information.
37.17 **lldp transmit | receive**

This command enables the transmit and receive of LLDP messages on any interface.

The "no" form of this command disables the transmit and receive of LLDP messages on any interface.

```
lldp {transmit | receive}
```

```
no lldp {transmit | receive}
```

Syntax Description

- **transmit** – Enables transmission of LLDP messages
- **receive** - Enables receive of LLDP messages

Mode

Interface Configuration Mode

Defaults

Both transmit and receive enabled

Example:

```
SMIS(config-if)# lldp transmit
```

Related Commands

- **show lldp interface** – Displays the LLDP interface information.
37.18 debug lldp

This command enables the display of LLDP debug messages.

The "no" form of this command disables the display of LLDP debug messages.

debug lldp [{all | [init-shut] [mgmt] [data-path] [ctrl] [pkt-dump]
resource} [all-fail] [buf] [neigh-add] [neigh-del] [neigh-updt]
[neigh-drop] [neigh-ageout] [critical] [tlv {all | [chassis-id][port-id]
[ttl] [port-descr] [sys-name] [sys-descr] [sys-cabab] [mgmt-addr]
[port-vlan] [ppvlan] [vlan-name] [proto-id] [mac-phy] [pwr mdi] [lagg]
[max-frame] [dcbx]]})

no debug lldp [{all | [init-shut] [mgmt] [data-path] [ctrl] [pkt-dump]
resource} [all-fail] [buf] [neigh-add] [neigh-del] [neigh-updt]
[neigh-drop] [neigh-ageout] [critical] [tlv {all | [chassis-id][port-id]
[ttl] [port-descr] [sys-name] [sys-descr] [sys-cabab] [mgmt-addr]
[port-vlan] [ppvlan] [vlan-name] [proto-id] [mac-phy] [pwr mdi] [lagg]
[max-frame] [dcbx]]})

Syntax Description
all – displays all debug messages
init-shut – displays initialization and shutdown messages
mgmt – displays management messages
data-path – displays all data path messages
ctrl – displays all control messages
pkt-dump – displays the contents of all LLDP packets
resource – displays the resources (like memory) utilization debug messages
all-fail – displays all failure events
neigh-add – displays all neighbor addition events
neigh-del – displays all neighbor deletion events
neigh-updt – displays all neighbor update events
neigh-drop – displays all neighbor drop events
neigh-ageout – displays all neighbor aging out events
critical – displays all critical event messages
tlv all – displays all TLV information
tlv chassis-id – displays chassis identifier TLV information

tlv port-id – displays port identifier TLV information

tlv ttl – displays time to live TLV information

tlv port-descr – displays port description TLV information

tlv sys-name – displays system name TLV information

tlv sys-descr – displays system description TLV information

tlv sys-capab – displays system capabilities TLV information

tlv mgmt-addr – displays management address TLV information

tlv port-vlan – displays port VLAN TLV information

tlv ppvlan – displays protocol VLAN TLV information

tlv vlan-name – displays VLAN name TLV information

tlv proto-id – displays protocol identifier TLV information

tlv mac-phy – displays MAC and phy TLV information

tlv pwr-mdi – displays power mdi TLV information

tlv lagg – displays link aggregation TLV information

tlv max-frame – displays max frame size TLV information

tlv dcbx – for DCBX-capable products, displays DCBX information

Mode
Privileged/User EXEC Mode

Defaults
Disabled

Example:
SMIS# debug lldp init-shut mgmt data-path pkt-dump

Related Commands
37.19 show lldp

This command displays LLDP configuration information.

show lldp

Syntax Description

Mode
Privileged/User EXEC Mode

Defaults

Example:
SMIS# show lldp

Related Commands
show lldp errors – Displays the LLDP errors
show lldp interface – Displays the LLDP interface configuration information
show lldp local – Displays the LLDP local interface information
show lldp neighbor – Displays the LLDP neighbor table
show lldp statistics – Displays the LLDP statistics
show lldp traffic – Displays the LLDP traffic counters
37.20 show lldp dcbx

This command displays the status of a DCBX TLV exchange, for switch products that support DCBX.

show lldp dcbx interface [<interface-type> <interface-id>]

This feature is supported only on the following switch models
SBM-XEM-X10SM
SSE-X24SR

Syntax Description
interface-type - Interface type, only for DCBX-capable ports.
interface-id - Physical interface ID including slot and port number.

Mode
Privileged/User EXEC Mode

Defaults

Related Commands
lldp tlv-select dcbx-cee-pfc |V Configures the PFC feature sub-TLV
lldp tlv-select dcbx-cee-pg - Configures the PG feature sub-TLV
37.21 show lldp errors

This command displays LLDP error counters.

show lldp errors

Syntax Description

Mode
Privileged/User EXEC Mode

Defaults

Example:
SMIS# show lldp errors

Related Commands
show lldp – Displays the LLDP information
show lldp interface – Displays the LLDP interface configuration information
show lldp local – Displays the LLDP local interface information
show lldp neighbor – Displays the LLDP neighbor table
show lldp statistics – Displays the LLDP statistics
show lldp traffic – Displays the LLDP traffic counters
37.22 show lldp interface

This command displays LLDP interface information.

show lldp interface [<interface-type> <interface-id>]

Syntax Description

interface-type - Interface type, can either be a gi, ex or qx
interface-id - Physical interface ID including slot and port number.

Mode
Privileged/User EXEC Mode

Defaults

Example:
SMIS# show lldp interface gi 0/1

Related Commands

show lldp – Displays the LLDP information
show lldp errors – Displays the LLDP errors
show lldp local – Displays the LLDP local interface information
show lldp neighbor – Displays the LLDP neighbor table
show lldp statistics – Displays the LLDP statistics
show lldp traffic – Displays the LLDP traffic counters
37.23 show lldp local

This command displays LLDP interface configuration and TLV information.

```
show lldp local {[<interface-type> <interface-id>] | [mgmt-addr]}
```

Syntax Description
- `interface-type` - Interface type, can either be a gi, ex or qx
- `interface-id` - Physical interface ID including slot and port number.
- `mgmt-addr` - Management address

Mode
Privileged/User EXEC Mode

Defaults

Example:
SMIS# show lldp local gi 0/1

Related Commands
- `show lldp` – Displays the LLDP information
- `show lldp errors` – Displays the LLDP errors
- `show lldp interface` – Displays the LLDP interface information
- `show lldp neighbor` – Displays the LLDP neighbor table
- `show lldp statistics` – Displays the LLDP statistics
- `show lldp traffic` – Displays the LLDP traffic counters
37.24 show lldp neighbors

This command displays LLDP neighbor information.

show lldp neighbors [chassis-id <string(255)> port-id <string(255)>] [interface-type <interface-id>][detail]

Syntax Description
chassis-id – chassis identifier
port-id – port identifier
interface-type - Interface type, can either be a gi, ex or qx
interface-id - Physical interface ID including slot and port number.
detail – displays more detailed information

Mode
Privileged/User EXEC Mode

Defaults

Example:
SMIS# show lldp neighbors gi 0/1

Related Commands
show lldp – Displays the LLDP information
show lldp errors – Displays the LLDP errors
show lldp interface – Displays the LLDP interface information
show lldp local – Displays the LLDP local interface information
show lldp statistics – Displays the LLDP statistics
show lldp traffic – Displays the LLDP traffic counters
37.25 show lldp statistics

This command displays LLDP statistics.

show lldp statistics

Syntax Description

Mode
Privileged/User EXEC Mode

Defaults

Example:
SMIS# show lldp statistics

Related Commands
show lldp – Displays the LLDP information
show lldp errors – Displays the LLDP errors
show lldp interface – Displays the LLDP interface information
show lldp local – Displays the LLDP local interface information
show lldp neighbors – Displays the LLDP neighbor table
show lldp traffic – Displays the LLDP traffic counters
37.26 show lldp traffic

This command displays LLDP traffic counters.

```
show lldp traffic [<iftype> <ifnum>]
```

Syntax Description
- **iftype** - Interface type, can either be a gi, ex or qx
- **ifnum** - Physical interface ID including slot and port number.

Mode
Privileged/User EXEC Mode

Defaults

Example:
SMIS# show lldp traffic gi 0/1

Related Commands
- show lldp – Displays the LLDP information
- show lldp errors – Displays the LLDP errors
- show lldp interface – Displays the LLDP interface information
- show lldp local – Displays the LLDP local interface information
- show lldp neighbors – Displays the LLDP neighbor table
- show lldp statistics – Displays the LLDP statistics