SUPER®

SAS-216EL1/EL2
BACKPLANE

USER'S GUIDE

Rev. 1.0
The information in this User’s Manual has been carefully reviewed and is believed to be accurate. The vendor assumes no responsibility for any inaccuracies that may be contained in this document, makes no commitment to update or to keep current the information in this manual, or to notify any person or organization of the updates. Please Note: For the most up-to-date version of this manual, please see our web site at www.supermicro.com.

Super Micro Computer, Inc. ("Supermicro") reserves the right to make changes to the product described in this manual at any time and without notice. This product, including software, if any, and documentation may not, in whole or in part, be copied, photocopied, reproduced, translated or reduced to any medium or machine without prior written consent.

IN NO EVENT WILL SUPERMICRO BE LIABLE FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, SPECULATIVE OR CONSEQUENTIAL DAMAGES ARISING FROM THE USE OR INABILITY TO USE THIS PRODUCT OR DOCUMENTATION, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. IN PARTICULAR, SUPERMICRO SHALL NOT HAVE LIABILITY FOR ANY HARDWARE, SOFTWARE, OR DATA STORED OR USED WITH THE PRODUCT, INCLUDING THE COSTS OF REPAIRING, REPLACING, INTEGRATING, INSTALLING OR RECOVERING SUCH HARDWARE, SOFTWARE, OR DATA.

Any disputes arising between manufacturer and customer shall be governed by the laws of Santa Clara County in the State of California, USA. The State of California, County of Santa Clara shall be the exclusive venue for the resolution of any such disputes. Super Micro's total liability for all claims will not exceed the price paid for the hardware product.

FCC Statement: This equipment has been tested and found to comply with the limits for a Class A digital device pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the manufacturer’s instruction manual, may cause harmful interference with radio communications. Operation of this equipment in a residential area is likely to cause harmful interference, in which case you will be required to correct the interference at your own expense.

California Best Management Practices Regulations for Perchlorate Materials: This Perchlorate warning applies only to products containing CR (Manganese Dioxide) Lithium coin cells. “Perchlorate Material-special handling may apply. See www.dtsc.ca.gov/hazardouswaste/perchlorate”

WARNING: Handling of lead solder materials used in this product may expose you to lead, a chemical known to the State of California to cause birth defects and other reproductive harm.

Manual Revision 1.1
Release Date: July 7, 2008

Unless you request and receive written permission from Super Micro Computer, Inc., you may not copy any part of this document.

Information in this document is subject to change without notice. Other products and companies referred to herein are trademarks or registered trademarks of their respective companies or mark holders.

Copyright © 2008 by Super Micro Computer, Inc.
All rights reserved.
Printed in the United States of America
Table of Contents

Contacting Supermicro...v
Returning Merchandise for Service ...vi
Overview of the SAS-216EL1/EL2 Backplanes...vii

Chapter 1 Safety Guidelines
1-1 ESD Safety Guidelines .. 1-1
1-2 General Safety Guidelines .. 1-1
1-3 An Important Note to Users ... 1-2

Chapter 2 Jumper Settings and Pin Definitions
2-1 Rear Components, Connectors and Jumpers ... 2-1
2-2 Rear Connector and Pin Definitions ... 2-2
2-3 Rear Jumper Locations and Pin Definitions ... 2-3
2-4 Front Connectors and LED Indicators ... 2-5
2-5 Front Connectors and Jumpers .. 2-7

Chapter 3 Dual Port and Cascading Configurations
3-1 Single and Dual Port Expanders .. 3-1
3-2 Failover ... 3-2
3-3 Chassis Power Card and Support Cables ... 3-3

3-4 Connecting an Internal Host Bus Adapter to the Backplane 3-4
3-5 Supported Internal HBA Cables .. 3-4
3-6 Connecting an External Host Bus Adapter to the Backplane 3-6
3-7 Single External Host Bus Adapter .. 3-6
3-8 Dual External Host Bus Adapter ... 3-6
3-9 Supported External HBA to Backplane Cable .. 3-7
3-10 Connecting Multiple Backplanes in a Single Channel Environment 3-8
3-11 Single HBA Configuration Cables ... 3-9
3-12 Connecting Multiple Backplanes in a Dual Channel Environment 3-10
Dual HBA Configuration Cables...3-11

3-4 Supported Cascading Configurations ... 3-12
Server System with Single SAS HBA.. 3-13
Dual SAS HBA and Cascaded Configuration .. 3-14
Dual SAS HBA and Cascaded Configuration with Branching 3-15
Contacting Supermicro

Headquarters
Address: Super Micro Computer, Inc.
980 Rock Ave.
San Jose, CA 95131 U.S.A.
Tel: +1 (408) 503-8000
Fax: +1 (408) 503-8008
Email: marketing@supermicro.com (General Information)
support@supermicro.com (Technical Support)
Web Site: www.supermicro.com

Europe
Address: Super Micro Computer B.V.
Het Sterrenbeeld 28, 5215 ML
's-Hertogenbosch, The Netherlands
Tel: +31 (0) 73-6400390
Fax: +31 (0) 73-6416525
Email: sales@supermicro.nl (General Information)
support@supermicro.nl (Technical Support)
rma@supermicro.nl (Customer Support)

Asia-Pacific
Address: Super Micro Computer, Inc.
4F, No. 232-1, Liancheng Rd.
Chung-Ho 235, Taipei County
Taiwan, R.O.C.
Tel: +886-(2) 8226-3990
Fax: +886-(2) 8226-3991
Web Site: www.supermicro.com.tw
Technical Support:
Email: support@supermicro.com.tw
Tel: 886-2-8226-1900
Returning Merchandise for Service

A receipt or copy of your invoice marked with the date of purchase is required before any warranty service will be rendered. You can obtain service by calling your vendor for a Returned Merchandise Authorization (RMA) number. When returning to the manufacturer, the RMA number should be prominently displayed on the outside of the shipping carton, and mailed prepaid or hand-carried. Shipping and handling charges will be applied for all orders that must be mailed when service is complete.

For faster service, RMA authorizations may be requested online (http://www.supermicro.com/support/rma/).

Whenever possible, repack the backplane in the original Supermicro box, using the original packaging materials. If these are no longer available, be sure to pack the backplane in an anti-static bag and inside the box. Make sure that there is enough packaging material surrounding the backplane so that it does not become damaged during shipping.

This warranty only covers normal consumer use and does not cover damages incurred in shipping or from failure due to the alteration, misuse, abuse or improper maintenance of products.

During the warranty period, contact your distributor first for any product problems.
Overview of the SAS-216EL1/EL2 Backplanes

The SAS-216EL1/EL2 series of backplanes consists of a SAS-216EB backplane (A) with one or two SAS-216EL daughter cards (B and C) mounted on the rear of the backplane.

The SAS-216EL1 model consists of the SAS-216EB backplane (A) and one SAS-216EL daughter card (C), mounted on the right-hand side of the backplane.

The SAS-216EL2 model consists of the SAS-216EB backplane (A), and two SAS216EL daughter cards (B and C), mounted on the rear of the backplane.

Components on the front side of the SAS-216ELB backplane include 24 SAS connectors and their respective activity and failure LEDs. Components on the rear side of the backplane include jumpers and power and fan connectors. The daughter card’s components include SAS ports, flash and expander chips, and mode select jumpers.
Chapter 1

Safety Guidelines

To avoid personal injury and property damage, carefully follow all the safety steps listed below when accessing your system or handling the components.

1-1 ESD Safety Guidelines

Electric Static Discharge (ESD) can damage electronic components. To prevent damage to your system, it is important to handle it very carefully. The following measures are generally sufficient to protect your equipment from ESD.

- Use a grounded wrist strap designed to prevent static discharge.
- Touch a grounded metal object before removing a component from the antistatic bag.
- Handle the backplane and daughter cards by their edges only; do not touch its components, peripheral chips, memory modules or gold contacts.
- When handling chips or modules, avoid touching their pins.
- Put the card and peripherals back into their antistatic bags when not in use.

1-2 General Safety Guidelines

- Always disconnect power cables before installing or removing any components from the computer, including the backplane.
- Disconnect the power cable before installing or removing any cables from the backplane.
- Make sure that the backplane is securely and properly installed on the motherboard to prevent damage to the system due to power shortage.
1-3 An Important Note to Users

- All images and layouts shown in this user’s guide are based upon the latest PCB Revision available at the time of publishing. The card you have received may or may not look exactly the same as the graphics shown in this manual.
Chapter 2

Jumper Settings and Pin Definitions

2-1 Rear Components, Connectors and Jumpers

Figure 1-1: Front Connectors on Backplane and Daughter Cards

Rear Components and Connectors

Components

1. Primary Flash Chip
2. Primary Expander Chip
3. SAS Port: PRI_J1
4. SAS Port: PRI_J2
5. SAS Port: PRI_J3
6. EPP Connectors: J24 and J25
7. Fan Connectors: Fan1, Fan2, and Fan3
8. Power Connectors: PWR1 - PWR6
2-2 Rear Connector and Pin Definitions

1. Primary Flash Chips

The Primary Flash Chip enhances the backplane memory.

2. Expander Chips

This Expander Chip allows the backplane to support dual ports, cascading, and failover.

3. - 5. SAS Ports

The primary and secondary sets of SAS ports provide expander features including cascading and failover. From right to left the ports are Primary 1/2/3 and Secondary 1/2/3.

6. EPP Ports

The EPP ports are used for manufacturer diagnostic purposes only.

7. Fan Connectors

The 3-pin connectors, designated FAN1, FAN2, and FAN3, provide power to the fans. See the table on the right for pin definitions.

<table>
<thead>
<tr>
<th>Pin#</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ground</td>
</tr>
<tr>
<td>2</td>
<td>+12V</td>
</tr>
<tr>
<td>3</td>
<td>Tachometer</td>
</tr>
</tbody>
</table>

8. Backplane Main Power Connectors

The 4-pin connectors, designated PWR1, PWR2, PWR3, PWR4, PWR5, and PWR6, provide power to the backplane. See the table on the right for pin definitions.

<table>
<thead>
<tr>
<th>Pin#</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+12V</td>
</tr>
<tr>
<td>2 and 3</td>
<td>Ground</td>
</tr>
<tr>
<td>4</td>
<td>+5V</td>
</tr>
</tbody>
</table>
2-3 Rear Jumper Locations and Pin Definitions

Explanation of Jumpers

To modify the operation of the backplane, jumpers can be used to choose between optional settings. Jumpers create shorts between two pins to change the function of the connector. Pin 1 is identified with a square solder pad on the printed circuit board. Note: On two pin jumpers, "Closed" means the jumper is on and "Open" means the jumper is off the pins.
General Jumper Settings

<table>
<thead>
<tr>
<th>Jumper</th>
<th>Jumper Settings</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRI_MODE1</td>
<td>1-2</td>
<td>Factory Setting</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Do not change</td>
</tr>
<tr>
<td>BUZZER_ENB1</td>
<td>Open: Disable</td>
<td>Buzzer Enable</td>
</tr>
<tr>
<td></td>
<td>Closed: Enable</td>
<td></td>
</tr>
</tbody>
</table>

Socket Settings

<table>
<thead>
<tr>
<th>Socket Setting</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>REMOTE_FAN_FAIL_SOCKET1</td>
<td>Front Panel Fan Fail indicator (Optional)</td>
</tr>
</tbody>
</table>

Front Panel LEDs

<table>
<thead>
<tr>
<th>LED</th>
<th>STATE</th>
<th>SPECIFICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>12V_LED1</td>
<td>OFF</td>
<td>Backplane power failure. Light is on during normal operation.</td>
</tr>
<tr>
<td>5V_LED1</td>
<td>OFF</td>
<td>Backplane power failure. Light is on during normal operation.</td>
</tr>
</tbody>
</table>
2-4 Front Connectors and LED Indicators

<table>
<thead>
<tr>
<th>Rear SAS/SATA Connectors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front Connector</td>
</tr>
<tr>
<td>SAS #J0</td>
</tr>
<tr>
<td>SAS #J1</td>
</tr>
<tr>
<td>SAS #J2</td>
</tr>
<tr>
<td>SAS #J3</td>
</tr>
<tr>
<td>SAS #J4</td>
</tr>
<tr>
<td>SAS #J5</td>
</tr>
<tr>
<td>SAS #J6</td>
</tr>
<tr>
<td>SAS #J7</td>
</tr>
<tr>
<td>SAS #J8</td>
</tr>
<tr>
<td>SAS #J9</td>
</tr>
<tr>
<td>SAS #J10</td>
</tr>
<tr>
<td>SAS #J11</td>
</tr>
</tbody>
</table>
Front LED Indicators

<table>
<thead>
<tr>
<th>Front LED</th>
<th>Hard Drive Activity</th>
<th>Failure LED</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAS #J0</td>
<td>ACT #1</td>
<td>FAIL #1</td>
</tr>
<tr>
<td>SAS #J1</td>
<td>ACT #2</td>
<td>FAIL #2</td>
</tr>
<tr>
<td>SAS #J2</td>
<td>ACT #3</td>
<td>FAIL #3</td>
</tr>
<tr>
<td>SAS #J3</td>
<td>ACT #4</td>
<td>FAIL #4</td>
</tr>
<tr>
<td>SAS #J4</td>
<td>ACT #5</td>
<td>FAIL #5</td>
</tr>
<tr>
<td>SAS #J5</td>
<td>ACT #6</td>
<td>FAIL #6</td>
</tr>
<tr>
<td>SAS #J6</td>
<td>ACT #7</td>
<td>FAIL #7</td>
</tr>
<tr>
<td>SAS #J7</td>
<td>ACT #8</td>
<td>FAIL #8</td>
</tr>
<tr>
<td>SAS #J8</td>
<td>ACT #9</td>
<td>FAIL #9</td>
</tr>
<tr>
<td>SAS #J9</td>
<td>ACT #10</td>
<td>FAIL #10</td>
</tr>
<tr>
<td>SAS #J10</td>
<td>ACT #11</td>
<td>FAIL #11</td>
</tr>
<tr>
<td>SAS #J11</td>
<td>ACT #12</td>
<td>FAIL #12</td>
</tr>
<tr>
<td>SAS #J12</td>
<td>ACT #13</td>
<td>FAIL #13</td>
</tr>
<tr>
<td>SAS #J13</td>
<td>ACT #14</td>
<td>FAIL #14</td>
</tr>
<tr>
<td>SAS #J14</td>
<td>ACT #15</td>
<td>FAIL #15</td>
</tr>
<tr>
<td>SAS #J15</td>
<td>ACT #16</td>
<td>FAIL #16</td>
</tr>
<tr>
<td>SAS #J16</td>
<td>ACT #17</td>
<td>FAIL #17</td>
</tr>
<tr>
<td>SAS #J17</td>
<td>ACT #18</td>
<td>FAIL #18</td>
</tr>
<tr>
<td>SAS #J18</td>
<td>ACT #19</td>
<td>FAIL #19</td>
</tr>
<tr>
<td>SAS #J19</td>
<td>ACT #20</td>
<td>FAIL #20</td>
</tr>
<tr>
<td>SAS #J20</td>
<td>ACT #21</td>
<td>FAIL #21</td>
</tr>
<tr>
<td>SAS #J21</td>
<td>ACT #22</td>
<td>FAIL #22</td>
</tr>
<tr>
<td>SAS #J22</td>
<td>ACT #23</td>
<td>FAIL #23</td>
</tr>
<tr>
<td>SAS #J23</td>
<td>ACT #24</td>
<td>FAIL #24</td>
</tr>
</tbody>
</table>
2-5 Front Connectors and Jumpers

Front Components

1. Power Connectors: PWR1, PWR2, PWR3, PWR4, PWR5, and PWR6
Chapter 3

Dual Port and Cascading Configurations

3-1 Single and Dual Port Expanders

Single Ports

SAS-216EL1 backplanes have a single-port expander on the daughter card, that accesses all 24 drives and supports cascading.

Dual Ports

SAS-216EL2 backplanes have dual-port expanders on the daughter cards, that access all 24 drives. These dual-port expanders support cascading, failover, and recovery.

Figure 3-1: SAS-216EL2 Single Port Configuration

Figure 3-2: SAS-216EL2 Dual Port Configuration
3-2 Failover

The SAS-216EL2 backplane has two expanders which allow effective failover and recovery.

Single Host Bus Adapter

In a single host bus configuration, the backplane connects to one Host Bus Adapter (HBA).

![Single HBA](image)

Single Host Bus Adapter Failover

If the expander or data path in Port A fails, the system automatically switches to Port B.

![Single HBA Failover](image)

Dual Host Bus Adapter

In a Dual Host Bus Configuration, the backplane connects to two Host Bus Adapters (HBA).

![Dual HBA](image)

Dual Host Bus Adapter Failover

If the Expander or data path in Port A fails, the system automatically switches to Port B. This maintains a full connection to all drives.

![Dual HBA Failover](image)
3-3 Chassis Power Card and Support Cables

Chassis Power Card

In a cascaded configuration, the first chassis includes a motherboard and at least one Host Bus Adapter (HBA). Other servers in this enclosed system include a power card. This section describes the supported power card for the SAS-846 series backplane.

For more information, see the Supermicro Web site at http://www.supermicro.com.

<table>
<thead>
<tr>
<th>Power Card</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part Number</td>
</tr>
<tr>
<td>---------------</td>
</tr>
<tr>
<td>CSE-PTJBOD-CB1</td>
</tr>
</tbody>
</table>

Figure 3-7: Chassis Power Card (Sold Separately)
Connectioning an Internal Host Bus Adapter to the Backplane

The following section lists the most common cables used to connect the Host Bus Adapter (HBA) to the backplane.

Figure 3-8: Single Internal Host Bus Adapter

Figure 3-9: Dual Internal Host Bus Adapter

Supported Internal HBA Cables

Use the following listed cables to create connections between the internal HBA and SAS-216EL backplane. The cables required depend on the HBA connector.

Cable Name: IPASS TO 4-LANE
Part #: CBL-0117L
Length: 46 cm (18 inches)
Description: This cable has one SFF-8484 (32 pin) connector on one end and ipass (SFF-8087/mini-sas) connector (36 pins) at the other. This cable connects from the HBA to the SAS-216EL backplane
Cable Name: IPASS (mini SAS) TO IPASS (mini SAS)

Part #: CBL-0108L-02 Length: 39 cm (15 inches)
Part #: CBL-0109L-02 Length: 22 cm (9 inches)
Part #: CBL-0110L-02 Length: 18 cm (7 inches)

Description: This cable has an ipass (SFF-8087/mini-sas) connector (36 pins) at each end. It connects from the HBA to the SAS-216EL backplane.
Connecting an External Host Bus Adapter to the Backplane

This backplane supports external Host Bus Adapters. In this configuration, the HBA and the backplane are in different physical chassis. This allows a JBOD (Just a Bunch Of Drives) configuration from an existing system.

Single External Host Bus Adapter

![Diagram of Single External Host Bus Adapter]

Figure 3-10: Single External Host Adapter

Dual External Host Bus Adapter

![Diagram of Dual External Host Bus Adapter]

Figure 3-11: Dual External Host Bus Adapter
Supported External HBA to Backplane Cable

Use the following cable if your external HBA has an InfiniBand connector.

Figure 3-12: SAS InfiniBand Cable (CBL-0200L)

- **Cable Name**: SAS InfiniBand to Mini SAS X4 1M cable, PBF
- **Part #**: CBL-0200L
- **Length**: 1 meter
- **Description**: This cable has an InfiniBand connector (SFF-8470) on one end and an SFF-8088-1X (26-pins) at the other end.
Connecting Multiple Backplanes in a Single Channel Environment

This section describes the cables used when cascading from a single HBA. These connections use CBL-0167L internal cables and CBL-0166L external cables.

![Diagram of single HBA configuration]

Figure 3-13: Single HBA Configuration
Single HBA Configuration Cables

Single Port Cable Assembly

![Single Port Internal Cable (CBL-0167L)](image)

Figure 3-14: Single Port Internal Cable (CBL-0167L)

Cable Name: SAS EL2/EL1 Backplane Cable (Internal) with 2-port Cascading Cable, 68 cm

Part #: CBL-0167L (SFF-8087 to SFF-8088 x1)

Ports: Single

Placement: Internal cable

Description: Internal cable. Connects the backplane to the Host Bus Adapter (HBA) or external port. Used in single port environments

Cable Name: SAS EL2/EL1 Cascading Cable (External), 68cm

Part #: CBL-0166L (SFF-8088 1x to SFF-8088 x1)

Ports: Single or Dual

Placement: External cable

Description: External cascading cable. Connects ports between servers. With most connectors, use one cable for single port connections and two cables for dual port connections.

![External Cable (CBL-0166L)](image)

Figure 3-15: External Cable (CBL-0166L)
Connecting Multiple Backplanes in a Dual Channel Environment

This section describes the cables used when cascading from dual HBAs. These connections use CBL-0168L internal cables and CBL-0166L external cables.

Figure 3-16: Dual HBA Configuration
Dual HBA Configuration Cables

Cable Name: SAS Dual-port Cable Assembly, 68/76cm
Part #: CBL-0168L
Placement: Internal cable
Ports: Dual
Description: Internal cascading cable. Connects the backplane to the Host Bus Adapter (HBA) or external port. Used in dual port environments.

Figure 3-17: Dual Port Internal Cable (CBL-0168L)

Cable Name: SAS EL2/EL1 Cascading Cable (External), 68cm
Part #: CBL-0166L
Placement: External Cable
Ports: Single or Dual
Description: External cascading cable. Connects ports between servers. Use one cable for single port connections and two cables for dual port connections.

Figure 3-18: External Cable (CBL-0166L)
3-4 Supported Cascading Configurations

Cascading allows the system to access data at a faster rate by allowing several backplanes to share resources to reduce latency time.

The first backplane in a cascaded system requires a motherboard and HBA. Other servers require a power control card with no motherboard and no HBA. For more information, see the SC216 Chassis Manual available at www.supermicro.com.

Figure 3-19: Simple Cascaded Configuration
Server System with Single SAS HBA

The expanders allow horizontal branching. This configuration also applies to dual ports.

Figure 3-20: Cascaded Configuration with Horizontal Branching
Dual SAS HBA and Cascaded Configuration

Figure 3-21: Dual SAS HBA with Cascaded Configuration
Dual SAS HBA and Cascaded Configuration with Branching

Figure 3-22: Dual SAS HBA with Cascaded Configuration and Branching
Disclaimer (cont.)

The products sold by Supermicro are not intended for and will not be used in life support systems, medical equipment, nuclear facilities or systems, aircraft, aircraft devices, aircraft/emergency communication devices or other critical systems whose failure to perform be reasonably expected to result in significant injury or loss of life or catastrophic property damage. Accordingly, Supermicro disclaims any and all liability, and should buyer use or sell such products for use in such ultra-hazardous applications, it does so entirely at its own risk. Furthermore, buyer agrees to fully indemnify, defend and hold Supermicro harmless for and against any and all claims, demands, actions, litigation, and proceedings of any kind arising out of or related to such ultra-hazardous use or sale.