The information in this User’s Manual has been carefully reviewed and is believed to be accurate. The vendor assumes no responsibility for any inaccuracies that may be contained in this document, and makes no commitment to update or to keep current the information in this manual, or to notify any person or organization of the updates. Please Note: For the most up-to-date version of this manual, please see our website at www.supermicro.com.

Super Micro Computer, Inc. ("Supermicro") reserves the right to make changes to the product described in this manual at any time and without notice. This product, including software and documentation, is the property of Supermicro and/or its licensors, and is supplied only under a license. Any use or reproduction of this product is not allowed, except as expressly permitted by the terms of said license.

IN NO EVENT WILL Super Micro Computer, Inc. BE LIABLE FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, SPECULATIVE OR CONSEQUENTIAL DAMAGES ARISING FROM THE USE OR INABILITY TO USE THIS PRODUCT OR DOCUMENTATION, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. IN PARTICULAR, SUPER MICRO COMPUTER, INC. SHALL NOT HAVE LIABILITY FOR ANY HARDWARE, SOFTWARE, OR DATA STORED OR USED WITH THE PRODUCT, INCLUDING THE COSTS OF REPAIRING, REPLACING, INTEGRATING, INSTALLING OR RECOVERING SUCH HARDWARE, SOFTWARE, OR DATA.

Any disputes arising between manufacturer and customer shall be governed by the laws of Santa Clara County in the State of California, USA. The State of California, County of Santa Clara shall be the exclusive venue for the resolution of any such disputes. Supermicro's total liability for all claims will not exceed the price paid for the hardware product.

FCC Statement: This equipment has been tested and found to comply with the limits for a Class A digital device pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in an industrial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the manufacturer's instruction manual, may cause harmful interference with radio communications. Operation of this equipment in a residential area is likely to cause harmful interference, in which case you will be required to correct the interference at your own expense.

California Best Management Practices Regulations for Perchlorate Materials: This Perchlorate warning applies only to products containing CR (Manganese Dioxide) Lithium coin cells. “Perchlorate Material-special handling may apply. See www.dtsc.ca.gov/hazardouswaste/perchlorate”.

WARNING: This product can expose you to chemicals including lead, known to the State of California to cause cancer and birth defects or other reproductive harm. For more information, go to www.P65Warnings.ca.gov.

The products sold by Supermicro are not intended for and will not be used in life support systems, medical equipment, nuclear facilities or systems, aircraft, aircraft devices, aircraft/emergency communication devices or other critical systems whose failure to perform be reasonably expected to result in significant injury or loss of life or catastrophic property damage. Accordingly, Supermicro disclaims any and all liability, and should buyer use or sell such products for use in such ultra-hazardous applications, it does so entirely at its own risk. Furthermore, buyer agrees to fully indemnify, defend and hold Supermicro harmless for and against any and all claims, demands, actions, litigation, and proceedings of any kind arising out of or related to such ultra-hazardous use or sale.

Manual Revision 1.0j
Release Date: May 25, 2022

Unless you request and receive written permission from Super Micro Computer, Inc., you may not copy any part of this document. Information in this document is subject to change without notice. Other products and companies referred to herein are trademarks or registered trademarks of their respective companies or mark holders.

Copyright © 2022 by Super Micro Computer, Inc.
All rights reserved.
Printed in the United States of America
Preface

About this Manual

This manual is written for professional system integrators and PC technicians. It provides information for the installation and use of this server. Installation and maintenance should be performed by experienced technicians only.

Please refer to the SYS-1029U-T Series server specifications page on our website for updates on supported memory, processors and operating systems (https://www.supermicro.com).

Notes

For your system to work properly, please follow the links below to download all necessary drivers/utilities and the user’s manual for your server.

- Supermicro product manuals: https://www.supermicro.com/support/manuals/
- Product drivers and utilities: https://www.supermicro.com/wdl
- Product safety info: https://www.supermicro.com/about/policies/safety_information.cfm

If you have any questions, please contact our support team at: support@supermicro.com

This manual may be periodically updated without notice. Please check the Supermicro website for possible updates to the manual revision level.

Secure Data Deletion

A secure data deletion tool designed to fully erase all data from storage devices can be found on our website: https://www.supermicro.com/about/policies/disclaimer.cfm?url=/wdl/utility/Lot9_Secure_Data_Deletion_Utility/

Warnings

Special attention should be given to the following symbols used in this manual.

⚠️ Warning! Indicates important information given to prevent equipment/property damage or personal injury.

⚠️ Warning! Indicates high voltage may be encountered when performing a procedure.
Contents

Chapter 1 Introduction

1.1 Overview ... 8
1.2 Unpacking the System ... 8
1.3 System Features .. 9
1.4 Chassis Features .. 10
 Control Panel .. 10
 Chassis Front .. 11
 Chassis Rear .. 12
1.5 Motherboard Layout ... 13
 Quick Reference ... 14
 System Block Diagram ... 16
1.6 Where to Get Replacement Components .. 17
1.7 Returning Merchandise for Service ... 17

Chapter 2 Server Installation

2.1 Overview ... 18
2.2 Preparing for Setup ... 18
 Choosing a Setup Location .. 18
 Rack Precautions .. 18
 Server Precautions ... 19
 Rack Mounting Considerations ... 19
 Ambient Operating Temperature ... 19
 Airflow .. 19
 Mechanical Loading ... 19
 Circuit Overloading .. 20
 Reliable Ground ... 20
2.3 Installing the Rails .. 21
 Identifying the Rails ... 21
 Installing the Outer Rails onto the Rack ... 22
2.4 Installing the Chassis into a Rack .. 23
 Removing the Chassis from the Rack ... 24
 Installing the Server into a Telco Rack ... 25
Chapter 3 Maintenance and Component Installation

3.1 Removing Power .. 26
3.2 Accessing the System .. 27
3.3 Motherboard Components 28
 Processor and Heatsink Installation 28
 The Processor Carrier Assembly 28
 Overview of the Processor Heatsink Module 29
 Creating the Processor Carrier Assembly 30
 Assembling the Processor Heatsink Module 31
 Preparing the CPU Socket for Installation 32
 Installing the Processor Heatsink Module 33

Memory ... 34
 Memory Support .. 34
 Memory Population Guidelines 35
 Memory Population Sequence 35
 DCPMM Population Table (24 Slots) based on the 82xx/62xx/52xx/42xx ... 38
 Installing Memory .. 40

Motherboard Battery ... 41

3.4 Chassis Components ... 42
 Storage Drives ... 42
 Drive Carrier Indicators 42
 Installing Drives .. 43
 Hot-Swap for NVMe Drives 45
 Checking the Temperature of an NVMe Drive 46

System Cooling .. 47
 System Fan Replacement 48
 Installing the Air Shroud 49
 Checking the Server Air Flow 50
 Overheating ... 50

Power Supply ... 51
 Power Supply LEDs .. 51

PCI Expansion Cards .. 52
 Internal Expansion Card 55
 Removing the Ultra Riser Card 56
Contacting Supermicro

Headquarters
Address: Super Micro Computer, Inc.
980 Rock Ave.
San Jose, CA 95131 U.S.A.
Tel: +1 (408) 503-8000
Fax: +1 (408) 503-8008
Email: marketing@supermicro.com (General Information)
support@supermicro.com (Technical Support)
Website: www.supermicro.com

Europe
Address: Super Micro Computer B.V.
Het Sterrenbeeld 28, 5215 ML
's-Hertogenbosch, The Netherlands
Tel: +31 (0) 73-6400390
Fax: +31 (0) 73-6416525
Email: sales@supermicro.nl (General Information)
support@supermicro.nl (Technical Support)
rma@supermicro.nl (Customer Support)
Website: www.supermicro.nl

Asia-Pacific
Address: Super Micro Computer, Inc.
3F, No. 150, Jian 1st Rd.
Zhonghe Dist., New Taipei City 235
Taiwan (R.O.C)
Tel: +886-(2) 8226-3990
Fax: +886-(2) 8226-3992
Email: support@supermicro.com.tw
Website: www.supermicro.com.tw
Chapter 1

Introduction

1.1 Overview

This chapter provides a brief outline of the functions and features of the SYS-1029U-T Series server. It is based on the X11DPU motherboard and the SC119UAC2-R751-T Rev.C chassis.

<table>
<thead>
<tr>
<th>System</th>
<th>LAN Ports</th>
<th>Ultra Riser Card</th>
</tr>
</thead>
<tbody>
<tr>
<td>1029U-TR25M</td>
<td>Two 25 GbE</td>
<td>AOC-URN4-M2TS</td>
</tr>
<tr>
<td>1029U-TR4</td>
<td>Four GbE</td>
<td>AOC-UR-i4G</td>
</tr>
<tr>
<td>1029U-TR4T</td>
<td>Four 10GBase-T</td>
<td>AOC-UR-i4XT</td>
</tr>
<tr>
<td>1029U-TR7</td>
<td>Two 10GBase-T</td>
<td>AOC-URN2-i2XT</td>
</tr>
<tr>
<td>1029U-TRTP</td>
<td>Two 10G SFP+</td>
<td>AOC-URN2-i2XS</td>
</tr>
<tr>
<td>1029U-TRTP2</td>
<td>Two GbE, Two 10G SFP+</td>
<td>AOC-URN2-i4GXS</td>
</tr>
</tbody>
</table>

In addition to the motherboard and chassis, several important parts that are included with the system are listed below.

<table>
<thead>
<tr>
<th>Description</th>
<th>Part Number</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power supply modules</td>
<td>PWS-751P-1R</td>
<td>2</td>
</tr>
<tr>
<td>Backplane</td>
<td>BPN-SAS3-116A-N2</td>
<td>1</td>
</tr>
<tr>
<td>Fans</td>
<td>FAN-0101L4</td>
<td>8</td>
</tr>
<tr>
<td>Air Shrouds</td>
<td>MCP-310-81910-0N, MCP-310-81911-0N</td>
<td>1 each</td>
</tr>
<tr>
<td>Heatsinks</td>
<td>SNK-P0067PS</td>
<td>2</td>
</tr>
<tr>
<td>Riser Cards</td>
<td>RSC-R1UW-2E16, RSC-R1UW-E8R</td>
<td>1 each</td>
</tr>
<tr>
<td>Rack mount rails (Outer rails)</td>
<td>MCP-290-00102-0N</td>
<td>2</td>
</tr>
</tbody>
</table>

1.2 Unpacking the System

Inspect the box the system was shipped in and note if it was damaged in any way. If any equipment appears damaged, please file a damage claim with the carrier who delivered it.

Decide on a suitable location for the rack unit that will hold the server. It should be situated in a clean, dust-free area that is well ventilated. Avoid areas where heat, electrical noise and electromagnetic fields are generated. It will also require a grounded AC power outlet nearby. Be sure to read the precautions and considerations noted in Appendix B.
1.3 System Features

The following table is an overview of the main features of the SYS-1029U-T Series server.

<table>
<thead>
<tr>
<th>System Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motherboard</td>
</tr>
<tr>
<td>X11DPU</td>
</tr>
<tr>
<td>Chassis</td>
</tr>
<tr>
<td>SC119UAC2-R751-T Rev.C</td>
</tr>
<tr>
<td>CPU</td>
</tr>
<tr>
<td>Memory</td>
</tr>
<tr>
<td>Twenty-four slots for up to 6 TB of 3DS Load Reduced DIMM (3DS LRDIMM), 3DS Registered DIMM (3DS RDIMM), or up to 3 TB of Load Reduced DIMM (LRDIMM) with speeds of up to 2933 MHz; support for Non-Volatile DIMM (NVDIMM) and Intel Optane DC Persistent Memory (DCPMM)</td>
</tr>
<tr>
<td>Chipset</td>
</tr>
<tr>
<td>Intel C621</td>
</tr>
<tr>
<td>Expansion Slots</td>
</tr>
<tr>
<td>Two full height, full width PCI-E slots, one low profile PCI-E slot, one internal low profile PCI-E x8 slot (Ultra riser)</td>
</tr>
<tr>
<td>Storage Drives</td>
</tr>
<tr>
<td>Ten hot-swap 2.5" bays for SATA3 HDDs; two can be NVMe SSDs; eight support SAS with an optional add-on card (Optional) M.2: Up to two PCI-E M.2 or one SATA3 M.2</td>
</tr>
<tr>
<td>Power</td>
</tr>
<tr>
<td>750 W redundant 80Plus Platinum level modules</td>
</tr>
<tr>
<td>Cooling</td>
</tr>
<tr>
<td>Eight 4-cm counter-rotating fans, two CPU heatsinks, two air shrouds to direct air flow</td>
</tr>
<tr>
<td>Input/Output</td>
</tr>
<tr>
<td>USB 3.0: Two ports on the rear I/O panel (USB 0/1); two ports on the chassis front (USB 3/4) One serial port; one VGA port</td>
</tr>
<tr>
<td>LAN ports</td>
</tr>
<tr>
<td>Two to four, depending on the Ultra riser card model; see previous page for details One dedicated BMC port</td>
</tr>
<tr>
<td>Form Factor</td>
</tr>
<tr>
<td>1U rackmount; (WxHxD) 17.2 x 1.7 x 27.8 in. (437 x 43 x 707 mm)</td>
</tr>
</tbody>
</table>
1.4 Chassis Features

Control Panel

Power switches and status LEDs are located on the control panel on the front of the chassis.

![Control Panel Diagram]

Figure 1-1. Control Panel

<table>
<thead>
<tr>
<th>Control Panel Features</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item</td>
<td>Features</td>
</tr>
<tr>
<td>1</td>
<td>Power button</td>
</tr>
<tr>
<td>2</td>
<td>UID button/LED</td>
</tr>
<tr>
<td>3</td>
<td>Power LED</td>
</tr>
<tr>
<td>4</td>
<td>HDD</td>
</tr>
<tr>
<td>5</td>
<td>NIC LED</td>
</tr>
<tr>
<td>6</td>
<td>NIC LED</td>
</tr>
<tr>
<td>7</td>
<td>Information LED</td>
</tr>
</tbody>
</table>

Information LED

<table>
<thead>
<tr>
<th>Status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuously on and red</td>
<td>An overheat condition has occurred. (This may be caused by cable congestion.)</td>
</tr>
<tr>
<td>Blinking red (1Hz)</td>
<td>Fan failure, check for an inoperative fan.</td>
</tr>
<tr>
<td>Blinking red (0.25Hz)</td>
<td>Power failure, check for a non-operational power supply.</td>
</tr>
<tr>
<td>Solid blue</td>
<td>UID has been activated locally to locate the server in a rack environment.</td>
</tr>
<tr>
<td>Blinking blue</td>
<td>UID has been activated using IPMI to locate the server in a rack environment.</td>
</tr>
</tbody>
</table>
Chassis Front

The illustration below shows the features included on the front of the chassis.

Figure 1-2. Front View

<table>
<thead>
<tr>
<th>Item</th>
<th>Features</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Control Panel</td>
<td>Power buttons and status indicators</td>
</tr>
<tr>
<td>2</td>
<td>USB</td>
<td>Two USB 3.0 ports</td>
</tr>
<tr>
<td>3</td>
<td>Storage Drives</td>
<td>Ten 2.5" drive bays; see the "Storage Drive" section in Chapter 3.4 for details</td>
</tr>
<tr>
<td>4</td>
<td>Service/Asset Tag</td>
<td>Pull-out identifier (with BMC ADMIN default password underneath; see figure below)</td>
</tr>
</tbody>
</table>

Figure 1-3. Location of the BMC Password Label
Chassis Rear

The illustration below shows the features included on the rear of the chassis. Power supply modules display status lights.

Figure 1-4. Rear View

<table>
<thead>
<tr>
<th>Item</th>
<th>Features</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Power Supplies</td>
<td>Two 750 W redundant power supply modules, PWS1 on the left, PWS2 on the right</td>
</tr>
<tr>
<td>2</td>
<td>LAN</td>
<td>Two or four LAN ports, depending on your Ultra riser card (see Section 1.1 Overview for details; also see LAN numbering description below)</td>
</tr>
<tr>
<td>3</td>
<td>USB</td>
<td>Two USB 3.0 ports</td>
</tr>
<tr>
<td>4</td>
<td>BMC LAN</td>
<td>Dedicated LAN port for BMC</td>
</tr>
<tr>
<td>5</td>
<td>COM</td>
<td>Serial port</td>
</tr>
<tr>
<td>6</td>
<td>UID</td>
<td>UID indicator and button to toggle the UID indicators</td>
</tr>
<tr>
<td>7</td>
<td>VGA</td>
<td>Video port</td>
</tr>
<tr>
<td>8</td>
<td>PCI</td>
<td>One PCI-E 3.0 low profile slot</td>
</tr>
<tr>
<td>9</td>
<td>PCI</td>
<td>Two PCI-E 3.0, full height, full length slots (see the Section 3.4, PCI Expansion Cards, for details)</td>
</tr>
</tbody>
</table>

Figure 1-5. LAN Numbering

(The LAN ports in this drawing may look different than your server.)
1.5 Motherboard Layout

Below is a layout of the X11DPU motherboard with jumper, connector and LED locations shown. See the table on the following page for descriptions. For detailed descriptions, pinout information and jumper settings, refer to Chapter 4.

Figure 1-6. Motherboard Layout
Quick Reference

<table>
<thead>
<tr>
<th>Jumper</th>
<th>Description</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>JBT1</td>
<td>CMOS Clear</td>
<td>Open (Normal)</td>
</tr>
<tr>
<td>JWD1</td>
<td>Watch Dog</td>
<td>Pins 1-2 (Reset)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Connector</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP PWR1/2/3/4</td>
<td>8-pin power connectors 1/2/3/4 for backplane use</td>
</tr>
<tr>
<td>BT1</td>
<td>Onboard battery</td>
</tr>
<tr>
<td>COM1</td>
<td>COM port (COM1) on the I/O backplane</td>
</tr>
<tr>
<td>FAN1 - FAN8</td>
<td>System/CPU fan headers</td>
</tr>
<tr>
<td>GPU PWR1/2/3/4</td>
<td>8-pin power connectors 1/2/3/4 used for GPU devices</td>
</tr>
<tr>
<td>IPMI_LAN</td>
<td>Dedicated IPMI LAN Port</td>
</tr>
<tr>
<td>I-SATA0-3, I-SATA4-7</td>
<td>Intel PCH SATA 3.0 ports (0-3, 4-7)</td>
</tr>
<tr>
<td>JF1</td>
<td>Front control panel header</td>
</tr>
<tr>
<td>JHFI1/JHFI2</td>
<td>Host Fabric Interface sideband connection headers—not supported in this system</td>
</tr>
<tr>
<td>JIPMB1</td>
<td>4-pin BMC external IC header (for an IPMI card)</td>
</tr>
<tr>
<td>JL1</td>
<td>Chassis intrusion header</td>
</tr>
<tr>
<td>JNV/PC1/2</td>
<td>NVMe SMBus (I2C) headers used for PCI-E hot-plug SMBus clock and data connections (a proprietary NVMe add-on card and cable are required; for complete systems only)</td>
</tr>
<tr>
<td>JRK1</td>
<td>RAID_ Key for onboard NVMe devices</td>
</tr>
<tr>
<td>JSD1/JSD2</td>
<td>SATA DOM power connectors 1/2</td>
</tr>
<tr>
<td>JSDCARD1</td>
<td>Micro SD card slot (reserved for manufacture use)</td>
</tr>
<tr>
<td>JTPM1</td>
<td>Trusted Platform Module/Port 80 connector</td>
</tr>
<tr>
<td>JUIDB2</td>
<td>UID (Unit Identifier) switch</td>
</tr>
<tr>
<td>JVGA2</td>
<td>Front VGA Port</td>
</tr>
<tr>
<td>JVRM1/JVRM2</td>
<td>VRM I2C headers</td>
</tr>
<tr>
<td>P1_NVMe0/1 & P2_NVMe0/1</td>
<td>Non-Volatile Memory Express (NVMe) 3.0 devices 0/1 supported by CPU1 & CPU2</td>
</tr>
<tr>
<td>PSU1/PSU2</td>
<td>Power Supply Unit (PSU) Connector 1/Power Supply Unit Connector 2</td>
</tr>
<tr>
<td>S-SATA0-3</td>
<td>SATA 3.0 ports 0-3 supported by Intel SCU chip</td>
</tr>
<tr>
<td>S-SATA4/S-SATA5</td>
<td>SATA3.0 ports with power-pin built-in w/support of SuperDOM (Device-On Module)</td>
</tr>
<tr>
<td>SP1</td>
<td>Internal speaker/buzzer</td>
</tr>
<tr>
<td>SXB1A/SXB1B/SXB1C</td>
<td>PCI-E 3.0 (x16 + x16) slot supported by CPU2 for proprietary riser card (w/left riser card support)</td>
</tr>
<tr>
<td>SXB2</td>
<td>PCI-E 3.0 x8 (in x16) slot supported by CPU2 for center right riser card support</td>
</tr>
<tr>
<td>SXB3A/SXB3B/SXB3C</td>
<td>PCI-E 3.0 (x16 + x16 + x8) slot from CPU1 for far_right ultra riser (SAS3 AOM & LAN options)</td>
</tr>
<tr>
<td>T-SGPIO3</td>
<td>Serial_Link General Purpose I/O header for S-SATA4/5</td>
</tr>
<tr>
<td>USB0/1</td>
<td>Backplane Universal Serial Bus (USB) 3.0 ports 0/1</td>
</tr>
<tr>
<td>USB3/4</td>
<td>Front Accessible USB 3.0 header for USB 3/4 connections</td>
</tr>
<tr>
<td>USB2</td>
<td>USB 3.0 Type A Header</td>
</tr>
<tr>
<td>VGA</td>
<td>VGA Port</td>
</tr>
</tbody>
</table>

14
<table>
<thead>
<tr>
<th>LED</th>
<th>Description</th>
<th>State: Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>LED1</td>
<td>UID (Unit Identifier) LED</td>
<td>Solid Blue: Unit Identified</td>
</tr>
<tr>
<td>LEDM1</td>
<td>BMC Heartbeat LED</td>
<td>Blinking Green: BMC Normal</td>
</tr>
<tr>
<td>LEDPWR</td>
<td>Onboard Power LED</td>
<td>Solid Green: Power On</td>
</tr>
</tbody>
</table>

Memory LED

<table>
<thead>
<tr>
<th>LED_P1_A1/LED_P1_A2</th>
<th>Memory Fault LEDs for Memory Module P1_A1/Memory Module P1_A2</th>
<th>Solid Red: Memory Error Occurs</th>
</tr>
</thead>
<tbody>
<tr>
<td>LED_P1_B1/LED_P1_B2</td>
<td>Memory Fault LEDs for Memory Module P1_B1/Memory Module P1_B2</td>
<td>Solid Red: Memory Error Occurs</td>
</tr>
<tr>
<td>LED_P1_C1/LED_P1_C2</td>
<td>Memory Fault LEDs for Memory Module P1_C1/Memory Module P1_C2</td>
<td>Solid Red: Memory Error Occurs</td>
</tr>
<tr>
<td>LED_P1_D1/LED_P1_D2</td>
<td>Memory Fault LEDs for Memory Module P1_D1/Memory Module P1_D2</td>
<td>Solid Red: Memory Error Occurs</td>
</tr>
<tr>
<td>LED_P1_E1/LED_P1_E2</td>
<td>Memory Fault LEDs for Memory Module P1_E1/Memory Module P1_E2</td>
<td>Solid Red: Memory Error Occurs</td>
</tr>
<tr>
<td>LED_P1_F1/LED_P1_F2</td>
<td>Memory Fault LEDs for Memory Module P1_F1/Memory Module P1_F2</td>
<td>Solid Red: Memory Error Occurs</td>
</tr>
<tr>
<td>LED_P2_A1/LED_P2_A2</td>
<td>Memory Fault LEDs for Memory Module P2_A1/Memory Module P2_A2</td>
<td>Solid Red: Memory Error Occurs</td>
</tr>
<tr>
<td>LED_P2_B1/LED_P2_B2</td>
<td>Memory Fault LEDs for Memory Module P2_B1/Memory Module P2_B2</td>
<td>Solid Red: Memory Error Occurs</td>
</tr>
<tr>
<td>LED_P2_C1/LED_P2_C2</td>
<td>Memory Fault LEDs for Memory Module P2_C1/Memory Module P2_C2</td>
<td>Solid Red: Memory Error Occurs</td>
</tr>
<tr>
<td>LED_P2_D1/LED_P2_D2</td>
<td>Memory Fault LEDs for Memory Module P2_D1/Memory Module P2_D2</td>
<td>Solid Red: Memory Error Occurs</td>
</tr>
<tr>
<td>LED_P2_E1/LED_P2_E2</td>
<td>Memory Fault LEDs for Memory Module P2_E1/Memory Module P2_E2</td>
<td>Solid Red: Memory Error Occurs</td>
</tr>
<tr>
<td>LED_P2_F1/LED_P2_F2</td>
<td>Memory Fault LEDs for Memory Module P2_F1/Memory Module P2_F2</td>
<td>Solid Red: Memory Error Occurs</td>
</tr>
</tbody>
</table>
System Block Diagram

Figure 1-7. System Block Diagram
1.6 Where to Get Replacement Components

If you need replacement parts for your system, to ensure the highest level of professional service and technical support, purchase exclusively from our Supermicro Authorized Distributors/System Integrators/Resellers. A list can be found at: http://www.supermicro.com. Click the "Where to Buy" link.

1.7 Returning Merchandise for Service

A receipt or copy of your invoice marked with the date of purchase is required before any warranty service will be rendered. You can obtain service by calling your vendor for a Returned Merchandise Authorization (RMA) number. When returning to the manufacturer, the RMA number should be prominently displayed on the outside of the shipping carton, and mailed prepaid or hand-carried. Shipping and handling charges will be applied for all orders that must be mailed when service is complete.

For faster service, RMA authorizations may be requested online (http://www.supermicro.com/support/rma/).

Whenever possible, repack the chassis in the original Supermicro carton, using the original packaging material. If these are no longer available, be sure to pack the chassis securely, using packaging material to surround the chassis so that it does not shift within the carton and become damaged during shipping.

This warranty only covers normal consumer use and does not cover damages incurred in shipping or from failure due to the alteration, misuse, abuse or improper maintenance of products.

During the warranty period, contact your distributor first for any product problems.
Chapter 2

Server Installation

2.1 Overview

This chapter provides advice and instructions for mounting your system in a server rack. If your system is not already fully integrated with processors, system memory etc., refer to Chapter 4 for details on installing those specific components.

Caution: Electrostatic Discharge (ESD) can damage electronic components. To prevent such damage to PCBs (printed circuit boards), it is important to use a grounded wrist strap, handle all PCBs by their edges and keep them in anti-static bags when not in use.

2.2 Preparing for Setup

The box in which the system was shipped should include the rackmount hardware needed to install it into the rack. Please read this section in its entirety before you begin the installation.

Choosing a Setup Location

- The system should be situated in a clean, dust-free area that is well ventilated. Avoid areas where heat, electrical noise and electromagnetic fields are generated.

- Leave enough clearance in front of the rack so that you can open the front door completely (~25 inches) and approximately 30 inches of clearance in the back of the rack to allow sufficient space for airflow and access when servicing.

- This product should be installed only in a Restricted Access Location (dedicated equipment rooms, service closets, etc.).

- This product is not suitable for use with visual display workplace devices according to §2 of the German Ordinance for Work with Visual Display Units.

Rack Precautions

- Ensure that the leveling jacks on the bottom of the rack are extended to the floor so that the full weight of the rack rests on them.
• In single rack installations, stabilizers should be attached to the rack. In multiple rack installations, the racks should be coupled together.

• Always make sure the rack is stable before extending a server or other component from the rack.

• You should extend only one server or component at a time - extending two or more simultaneously may cause the rack to become unstable.

Server Precautions

• Review the electrical and general safety precautions in Appendix B.

• Determine the placement of each component in the rack *before* you install the rails.

• Install the heaviest server components at the bottom of the rack first and then work your way up.

• Use a regulating uninterruptible power supply (UPS) to protect the server from power surges and voltage spikes and to keep your system operating in case of a power failure.

• Allow any drives and power supply modules to cool before touching them.

• When not servicing, always keep the front door of the rack and all covers/panels on the servers closed to maintain proper cooling.

Rack Mounting Considerations

Ambient Operating Temperature

If installed in a closed or multi-unit rack assembly, the ambient operating temperature of the rack environment may be greater than the room’s ambient temperature. Therefore, consideration should be given to installing the equipment in an environment compatible with the manufacturer’s maximum rated ambient temperature (TMRA).

Airflow

Equipment should be mounted into a rack so that the amount of airflow required for safe operation is not compromised.

Mechanical Loading

Equipment should be mounted into a rack so that a hazardous condition does not arise due to uneven mechanical loading.
Circuit Overloading

Consideration should be given to the connection of the equipment to the power supply circuitry and the effect that any possible overloading of circuits might have on overcurrent protection and power supply wiring. Appropriate consideration of equipment nameplate ratings should be used when addressing this concern.

Reliable Ground

A reliable ground must be maintained at all times. To ensure this, the rack itself should be grounded. Particular attention should be given to power supply connections other than the direct connections to the branch circuit (i.e. the use of power strips, etc.).

To prevent bodily injury when mounting or servicing this unit in a rack, you must take special precautions to ensure that the system remains stable. The following guidelines are provided to ensure your safety:

- This unit should be mounted at the bottom of the rack if it is the only unit in the rack.
- When mounting this unit in a partially filled rack, load the rack from the bottom to the top with the heaviest component at the bottom of the rack.
- If the rack is provided with stabilizing devices, install the stabilizers before mounting or servicing the unit in the rack.
- Slide rail mounted equipment is not to be used as a shelf or a work space.
2.3 Installing the Rails

There are a variety of rack units on the market, which may require a slightly different assembly procedure. This rail set fits a rack between 25.6" and 33" deep.

The following is a basic guideline for installing the system into a rack with the rack mounting hardware provided. You should also refer to the installation instructions that came with the specific rack you are using.

If you are installing into a two-post "telco" rack, skip to that section later in this chapter.

Identifying the Rails

The chassis comes with two sets of rack rails, one set for the right side of the chassis and one for the left. Each set consists of an inner rail that is pre-attached to the chassis, an outer rail that attaches to the rack, and a middle rail that slides forward in the outer rail.

![Figure 2-1. Identifying the Sections of the Rack Rails](image-url)
Installing the Outer Rails onto the Rack

Each end of the assembled outer rail includes a bracket with square pegs to fit into your rack holes. If you have an older rack with round holes, these brackets must be removed, and you must use screws to secure the rail to the rack.

Outer Rail Installation

1. Align the square pegs on the front end of the rail with the square holes on the front of the rack (C). Push the rail into the rack until the quick release bracket snaps into place, securing the rail to the rack. Keep the rail horizontal.

2. Adjust the rail to reach just past the full depth of your rack.

3. Align the square pegs on the rear end of the rail to the holes on the rack (D) and push the rail into the rack until the quick release bracket snaps into place, securing the rail to the rack.

![Bracket with Square Pegs]

Figure 2-2. Installing the Outer Rails to the Rack

Note: The figure above is for illustrative purposes only. Always install servers at the bottom of the rack first.

Stability hazard. The rack stabilizing mechanism must be in place, or the rack must be bolted to the floor before you slide the unit out for servicing. Failure to stabilize the rack can cause the rack to tip over.
2.4 Installing the Chassis into a Rack

Once rails are attached to the chassis and the rack, you can install the server.

1. Pull the middle rail out of the front of the outer rail and make sure that the ball bearing shuttle is locked at the front of the middle rail.

2. Align the rear of the chassis rails with the middle rails and then push evenly on both sides of the chassis until it clicks into the fully extended position.

3. Depress the locking tabs on both sides of the chassis and push the it fully into the rack. The locking tabs should "click".

4. Thumb screws may be used to secure the front of the chassis to the rack.

![Figure 2-3. Installing the Server into the Rack](image)

Note: Keep the ball bearing shuttle locked at the front of the middle rail during installation.

Note: Figure is for illustrative purposes only. Always install servers to the bottom of a rack first.
Removing the Chassis from the Rack

Caution! It is dangerous for a single person to off-load the heavy chassis from the rack without assistance. Be sure to have sufficient assistance supporting the chassis when removing it from the rack. Use a lift.

1. If necessary, loosen the thumb screws on the front of the chassis that hold it in the rack.

2. Pull the chassis forward out the front of the rack until it stops.

3. Press the release latches on each of the inner rails downward simultaneously and continue to pull the chassis forward and out of the rack.

Figure 2-4. Removing the Chassis From the Rack
Installing the Server into a Telco Rack

To install the server into a Telco (or “open”) type rack, use L-shaped brackets (p/n MCP-290-00016-0N) on either side of the chassis (four total).

1. Determine how far the server will extend out from the front of the rack. The chassis should be positioned so that the weight is balanced between front and back.

2. Attach the two front brackets to each side of the chassis, then the two rear brackets positioned with just enough space to accommodate the width of the rack.

3. Finish by sliding the chassis into the rack and tightening the brackets to the rack.

Figure 2-5. Installing the Server into a Telco Rack

Note: The figure above is for illustrative purposes only. Always install servers at the bottom of the rack first.
Chapter 3

Maintenance and Component Installation

This chapter provides instructions on installing and replacing main system components. To prevent compatibility issues, only use components that match the specifications and/or part numbers given.

Installation or replacement of most components require that power first be removed from the system. Please follow the procedures given in each section.

3.1 Removing Power

Use the following procedure to ensure that power has been removed from the system. This step is necessary when removing or installing non hot-swap components or when replacing a non-redundant power supply.

1. Use the operating system to power down the system.

2. After the system has completely shut-down, disconnect the AC power cord(s) from the power strip or outlet. (If your system has more than one power supply, remove the AC power cords from all power supply modules.)

3. Disconnect the power cord(s) from the power supply module(s).
3.2 Accessing the System

The SC119U chassis features a removable top cover, which allows easy access to the inside of the chassis.

Removal of the Top Cover

1. Press the two release buttons and slide the cover toward the rear.

2. Lift the top cover up.

Check that all ventilation openings on the top cover and the top of the chassis are clear and unobstructed.

Caution: Except for short periods of time, do not operate the server without the cover in place. The chassis cover must be in place to allow for proper airflow and to prevent overheating.
3.3 Motherboard Components

Processor and Heatsink Installation
The processor (CPU) and processor carrier should be assembled together first to form the processor carrier assembly. This will be attached to the heatsink to form the processor heatsink module (PHM) before being installed onto the CPU socket.

Notes:

- Use ESD protection.
- Unplug the AC power cord from all power supplies after shutting down the system.
- Check that the plastic protective cover is on the CPU socket and none of the socket pins are bent. If they are, contact your retailer.
- When handling the processor, avoid touching or placing direct pressure on the LGA lands (gold contacts). Improper installation or socket misalignment can cause serious damage to the processor or CPU socket, which may require manufacturer repairs.
- Thermal grease is pre-applied on a new heatsink. No additional thermal grease is needed.
- Refer to the Supermicro website for updates on processor support.
- All graphics in this manual are for illustration only. Your components may look different.

The Processor Carrier Assembly
The assembly is the processor and a plastic carrier.

Figure 3-2. Processor and Carrier
Overview of the Processor Heatsink Module

The Processor Heatsink Module (PHM) contains a heatsink, a processor carrier assembly.

Heatsink with Thermal Grease

Processor Carrier

Processor

Processor Heatsink Module

Bottom View
Creating the Processor Carrier Assembly

To install a processor into the processor carrier, follow the steps below:

1. Hold the processor with the LGA lands (gold contacts) facing up. Locate the small, gold triangle in the corner of the processor and the corresponding hollowed triangle on the processor carrier. These triangles indicate pin 1. See the images below.

2. Using the triangles as a guide, carefully align and place Point A of the processor into Point A of the carrier. Then gently flex the other side of the carrier for the processor to fit into Point B.

3. Examine all corners to ensure that the processor is firmly attached to the carrier.
Assembling the Processor Heatsink Module

After creating the processor carrier assembly, mount it onto the heatsink to create the processor heatsink module (PHM):

1. Note the label on top of the heatsink, which marks the heatsink mounting holes as 1, 2, 3, and 4. If this is a new heatsink, the thermal grease has been pre-applied on the underside. Otherwise, apply the proper amount of thermal grease.

2. Turn the heatsink over with the thermal grease facing up. Hold the processor carrier assembly so the processor's gold contacts are facing up, then align the triangle on the assembly with hole 1 of the heatsink. Press the processor carrier assembly down. The plastic clips of the assembly will lock outside of holes 1 and 2, while the remaining clips will snap into their corresponding holes.

3. Examine all corners to ensure that the plastic clips on the processor carrier assembly are firmly attached to the heatsink.
Preparing the CPU Socket for Installation

This motherboard comes with a plastic protective cover on the CPU socket. Remove it carefully to install the Processor Heatsink Module (PHM).

Remove the plastic protective cover from the CPU socket. Do not touch or bend the socket pins.
Installing the Processor Heatsink Module

After assembling the Processor Heatsink Module (PHM), install it onto the CPU socket:

1. Align hole 1 of the heatsink with the printed triangle on the CPU socket. See the left image below.

2. Make sure all four holes of the heatsink are aligned with the socket before gently placing the heatsink on top.

3. With a T30 Torx-bit screwdriver, gradually tighten screws #1 – #4 to assure even pressure. The order of the screws is shown on the label on top of the heatsink. To avoid damaging the processor or socket, do not use a force greater than 12 lbf-in when tightening the screws.

4. Examine all corners to ensure that the PHM is firmly attached to the socket.

If at any time the PHM must be removed, power off, then loosen the screws in the sequence of #4, #3, #2, and #1.
Memory

Memory Support

The X11DPU has 24 DIMM slots for up to 6 TB of 3DS Load Reduced DIMM (3DS LRDIMM), 3DS Registered DIMM (3DS RDIMM), or up to 3 TB of Load Reduced DIMM (LRDIMM) with speeds of up to 2933 MHz. In addition it supports Non-Volatile DIMMs (NV-DIMM) and Intel Optane DC Persistent Memory (DCPMM).

<table>
<thead>
<tr>
<th>DDR4 Memory Support for 81xx/61xx/51xx/41xx/31xx Processors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>RDIMM</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>RDIMM 3Ds</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>LRDIMM</td>
</tr>
<tr>
<td>LRDIMM 3Ds</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

DDR4 Memory Support for 82xx/62xx/52xx/42xx/32xx Processors

Type	**Ranks Per DIMM and Data Width**	**DIMM Capacity (GB)**	**Speed (MT/s)**				
			One Slot per Channel	Two Slots per Channel			
		DRAM Density					
		4 Gb*	8 Gb	16 Gb	1.2 Volts	1.2 Volts	1.2 Volts
RDIMM	SRx4	4 GB	8 GB	16 GB			
	SRx8	8 GB	16 GB	32 GB			
	DRx8	8 GB	16 GB	32 GB			
	DRx4	16 GB	32 GB	64 GB			
RDIMM 3Ds	QRX4	N/A	2H-64GB	2H-128GB			
	8RX4	N/A	4H-128GB	4H-256GB			
LRDIMM	QRx4	32 GB	64 GB	128 GB			
LRDIMM 3Ds	QRx4	N/A	2H-64GB	2H-64GB			
	8RX4	N/A	4H-128 GB	4H-256 GB			

*4Gb DRAM density is only supported on speeds up to 2666 MT/s
**Only the 82xx and 62xx series support 2933 MT/s; for other processors, memory speed as supported by the CPU.

Check the Supermicro website for possible updates to memory support.
Memory Population Guidelines

- All DIMMs must be DDR4.
- Balance memory. Using unbalanced memory topology, such as populating two DIMMs in one channel while populating one DIMM in another channel, reduces performance. It is not recommended for Supermicro systems.
- In dual-CPU configurations, memory must be installed in the slots associated with the installed CPUs.

Guidelines Regarding Mixing DIMMs

- Populating slots with a pair of DIMM modules of the same type and size results in interleaved memory, which improves memory performance.
- Use memory modules of the same type and speed, as mixing is not allowed.
- x4 and x8 DIMMs can be mixed in the same channel.
- Mixing of LRDIMMs and RDIMMs is not allowed in the same channel, across different channels, and across different sockets.
- Mixing of non-3DS and 3DS LRDIMM is not allowed in the same channel, across different channels, and across different sockets.

DIMM Construction

- RDIMM (non-3DS) Raw Cards: A/B (2Rx4), C (1Rx4), D (1Rx8), E (2Rx8)
- 3DS RDIMM Raw Cards: A/B (4Rx4)
- LRDIMM (non-3DS) Raw Cards: D/E (4Rx4)
- 3DS LRDIMM Raw Cards: A/B (8Rx4)

Memory Population Sequence

Blue slots versus black slots: Install the first DIMM in the blue memory slot, which is the first of a memory channel. Then, if using two DIMMs per channel, install the second DIMM in the black slot.

The following memory population sequence table was created based on guidelines provided by Intel to support Supermicro motherboards. The diagram is for illustrative purposes; your motherboard may look different.
<table>
<thead>
<tr>
<th>CPUs/DIMMs</th>
<th>Memory Population Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 CPU & 1 DIMM</td>
<td>CPU1: P1-DIMMA1</td>
</tr>
<tr>
<td>1 CPU & 2 DIMMs</td>
<td>CPU1: P1-DIMMA1/P1-DIMMD1</td>
</tr>
<tr>
<td>1 CPU & 3 DIMMs</td>
<td>CPU1: P1-DIMMC1/P1-DIMMB1/P1-DIMMA1</td>
</tr>
<tr>
<td>1 CPU & 4 DIMMs</td>
<td>CPU1: P1-DIMMB1/P1-DIMMA1/P1-DIMMD1/P1-DIMME1</td>
</tr>
<tr>
<td>1 CPU & 5 DIMMs*</td>
<td>CPU1: P1-DIMMC1/P1-DIMMB1/P1-DIMMA1/P1-DIMMD1/P1-DIMME1</td>
</tr>
<tr>
<td>1 CPU & 6 DIMM</td>
<td>CPU1: P1-DIMMC1/P1-DIMMB1/P1-DIMMA1/P1-DIMMD1/P1-DIMME1/P1-DIMMF1</td>
</tr>
<tr>
<td>1 CPU & 7 DIMMs*</td>
<td>CPU1: P1-DIMMB1/P1-DIMMA1/P1-DIMMD1/P1-DIMME1/P1-DIMMF1</td>
</tr>
<tr>
<td>1 CPU & 8 DIMMs</td>
<td>CPU1: P1-DIMMC1/P1-DIMMB1/P1-DIMMA1/P1-DIMMD1/P1-DIMME1/P1-DIMMF1</td>
</tr>
<tr>
<td>1 CPU & 9 DIMMs*</td>
<td>CPU1: P1-DIMMC1/P1-DIMMB1/P1-DIMMA1/P1-DIMMD1/P1-DIMME1/P1-DIMMF1</td>
</tr>
<tr>
<td>1 CPU & 10 DIMMs*</td>
<td>CPU1: P1-DIMMC1/P1-DIMMB1/P1-DIMMA1/P1-DIMMD1/P1-DIMME1/P1-DIMMF1</td>
</tr>
<tr>
<td>1 CPU & 11 DIMMs*</td>
<td>CPU1: P1-DIMMC1/P1-DIMMB1/P1-DIMMA1/P1-DIMMD1/P1-DIMME1/P1-DIMMF1</td>
</tr>
<tr>
<td>1 CPU & 12 DIMMs</td>
<td>CPU1: P1-DIMMB1/P1-DIMMA1/P1-DIMMD1/P1-DIMME1/P1-DIMMF1</td>
</tr>
<tr>
<td>1 CPU & 13 DIMMs*</td>
<td>CPU1: P1-DIMMB1/P1-DIMMA1/P1-DIMMD1/P1-DIMME1/P1-DIMMF1</td>
</tr>
<tr>
<td>1 CPU & 14 DIMMs</td>
<td>CPU1: P1-DIMMB1/P1-DIMMA1/P1-DIMMD1/P1-DIMME1/P1-DIMMF1</td>
</tr>
<tr>
<td>1 CPU & 15 DIMMs*</td>
<td>CPU1: P1-DIMMB1/P1-DIMMA1/P1-DIMMD1/P1-DIMME1/P1-DIMMF1</td>
</tr>
<tr>
<td>1 CPU & 16 DIMMs</td>
<td>CPU1: P1-DIMMB1/P1-DIMMA1/P1-DIMMD1/P1-DIMME1/P1-DIMMF1</td>
</tr>
<tr>
<td>2 CPUs & 2 DIMMs</td>
<td>CPU1: P1-DIMMA1/P1-DIMMD1</td>
</tr>
<tr>
<td>2 CPUs & 4 DIMMs</td>
<td>CPU1: P1-DIMMA1/P1-DIMMD1</td>
</tr>
<tr>
<td>2 CPUs & 6 DIMMs</td>
<td>CPU1: P1-DIMMA1/P1-DIMMD1/P1-DIMME1</td>
</tr>
<tr>
<td>2 CPUs & 8 DIMMs</td>
<td>CPU1: P1-DIMMA1/P1-DIMMD1/P1-DIMME1/P1-DIMMF1</td>
</tr>
<tr>
<td>2 CPUs & 10 DIMMs</td>
<td>CPU1: P1-DIMMA1/P1-DIMMD1/P1-DIMME1/P1-DIMMF1</td>
</tr>
<tr>
<td>2 CPUs & 12 DIMMs</td>
<td>CPU1: P1-DIMMA1/P1-DIMMD1/P1-DIMME1/P1-DIMMF1</td>
</tr>
<tr>
<td>2 CPUs & 14 DIMMs</td>
<td>CPU1: P1-DIMMA1/P1-DIMMD1/P1-DIMME1/P1-DIMMF1</td>
</tr>
<tr>
<td>2 CPUs & 16 DIMMs</td>
<td>CPU1: P1-DIMMA1/P1-DIMMD1/P1-DIMME1/P1-DIMMF1</td>
</tr>
<tr>
<td>2 CPUs & 18 DIMMs</td>
<td>CPU1: P1-DIMMA1/P1-DIMMD1/P1-DIMME1/P1-DIMMF1</td>
</tr>
<tr>
<td>2 CPUs & 20 DIMMs</td>
<td>CPU1: P1-DIMMA1/P1-DIMMD1/P1-DIMME1/P1-DIMMF1</td>
</tr>
<tr>
<td>2 CPUs & 22 DIMMs*</td>
<td>CPU1: P1-DIMMA1/P1-DIMMD1/P1-DIMME1/P1-DIMMF1</td>
</tr>
<tr>
<td>2 CPUs & 24 DIMMs</td>
<td>CPU1: all slots</td>
</tr>
</tbody>
</table>

*Unbalanced, not recommended.
Figure 3-3. Memory Slots
DCPMM Population Table (24 Slots) based on the 82xx/62xx/52xx/42xx

Symmetric Population for Each CPU

<table>
<thead>
<tr>
<th>DCP & DIMMs</th>
<th>Modes</th>
<th>P1/P2-DIMMF1</th>
<th>P1/P2-DIMMF2</th>
<th>P1/P2-DIMME1</th>
<th>P1/P2-DIMME2</th>
<th>P1/P2-DIMMD1</th>
<th>P1/P2-DIMMD2</th>
<th>P1/P2-DIMMA1</th>
<th>P1/P2-DIMMB1</th>
<th>P1/P2-DIMMC1</th>
<th>P1/P2-DIMMC2</th>
<th>Channel Config.</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 DCP</td>
<td>AD</td>
<td>M1</td>
<td>DCP</td>
<td>M1</td>
<td>DCP</td>
<td>M1</td>
<td>DCP</td>
<td>DCP</td>
<td>M1</td>
<td>DCP</td>
<td>M1</td>
<td>DCP</td>
</tr>
<tr>
<td>12 DIMM</td>
<td>MM</td>
<td>M1</td>
<td>DCP</td>
<td>M1</td>
<td>DCP</td>
<td>M1</td>
<td>DCP</td>
<td>M1</td>
<td>DCP</td>
<td>M1</td>
<td>DCP</td>
<td>M1</td>
</tr>
<tr>
<td>AD + MM</td>
<td>M3</td>
<td>DCP</td>
<td>M3</td>
<td>DCP</td>
<td>M3</td>
<td>DCP</td>
<td>M3</td>
<td>DCP</td>
<td>M3</td>
<td>DCP</td>
<td>M3</td>
<td>2-2-2</td>
</tr>
<tr>
<td>4 DCP</td>
<td>AD</td>
<td>M1</td>
<td>-</td>
<td>M1</td>
<td>-</td>
<td>M1</td>
<td>DCP</td>
<td>M1</td>
<td>-</td>
<td>M1</td>
<td>-</td>
<td>2-1-1</td>
</tr>
<tr>
<td>12 DIMM</td>
<td>MM</td>
<td>M2</td>
<td>-</td>
<td>M2</td>
<td>-</td>
<td>M2</td>
<td>DCP</td>
<td>M2</td>
<td>-</td>
<td>M2</td>
<td>-</td>
<td>2-1-1</td>
</tr>
<tr>
<td>AD + MM</td>
<td>M3</td>
<td>M3</td>
<td>-</td>
<td>M3</td>
<td>-</td>
<td>M3</td>
<td>DCP</td>
<td>M3</td>
<td>-</td>
<td>M3</td>
<td>-</td>
<td>2-1-1</td>
</tr>
<tr>
<td>8 DCP</td>
<td>AD</td>
<td>M1</td>
<td>-</td>
<td>M1</td>
<td>DCP</td>
<td>M1</td>
<td>DCP</td>
<td>DCP</td>
<td>M1</td>
<td>DCP</td>
<td>M1</td>
<td>2-2-1</td>
</tr>
<tr>
<td>12 DIMM</td>
<td>MM</td>
<td>M1</td>
<td>-</td>
<td>M1</td>
<td>DCP</td>
<td>M1</td>
<td>DCP</td>
<td>DCP</td>
<td>M1</td>
<td>DCP</td>
<td>M1</td>
<td>2-2-1</td>
</tr>
<tr>
<td>AD + MM</td>
<td>M3</td>
<td>M3</td>
<td>-</td>
<td>M3</td>
<td>DCP</td>
<td>M3</td>
<td>DCP</td>
<td>DCP</td>
<td>M3</td>
<td>DCP</td>
<td>M3</td>
<td>2-2-1</td>
</tr>
<tr>
<td>4 DCP</td>
<td>AD</td>
<td>DCP</td>
<td>-</td>
<td>M1</td>
<td>-</td>
<td>M1</td>
<td>-</td>
<td>M1</td>
<td>-</td>
<td>M1</td>
<td>-</td>
<td>DCP</td>
</tr>
<tr>
<td>8 DIMM</td>
<td>MM</td>
<td>DCP</td>
<td>-</td>
<td>M1</td>
<td>-</td>
<td>M1</td>
<td>-</td>
<td>M1</td>
<td>-</td>
<td>M1</td>
<td>-</td>
<td>DCP</td>
</tr>
<tr>
<td>AD + MM</td>
<td>DCP</td>
<td>-</td>
<td>M3</td>
<td>-</td>
<td>M3</td>
<td>-</td>
<td>M3</td>
<td>-</td>
<td>M3</td>
<td>-</td>
<td>DCP</td>
<td>1-1-1</td>
</tr>
<tr>
<td>4 DCP</td>
<td>AD</td>
<td>DCP</td>
<td>-</td>
<td>M1</td>
<td>M1</td>
<td>M1</td>
<td>M1</td>
<td>M1</td>
<td>M1</td>
<td>M1</td>
<td>-</td>
<td>DCP</td>
</tr>
<tr>
<td>16 DIMM</td>
<td>AD</td>
<td>DCP</td>
<td>-</td>
<td>M1</td>
<td>M1</td>
<td>M1</td>
<td>M1</td>
<td>M1</td>
<td>M1</td>
<td>M1</td>
<td>-</td>
<td>DCP</td>
</tr>
</tbody>
</table>

AD: App Direct, MM: Memory Mode, M1/M2/M3: DRAM (see Legend below)

Asymmetric Population for Each CPU

<table>
<thead>
<tr>
<th>DCP & DIMMs</th>
<th>Modes</th>
<th>P1/P2-DIMMF1</th>
<th>P1/P2-DIMMF2</th>
<th>P1/P2-DIMME1</th>
<th>P1/P2-DIMME2</th>
<th>P1/P2-DIMMD1</th>
<th>P1/P2-DIMMD2</th>
<th>P1/P2-DIMMA1</th>
<th>P1/P2-DIMMB1</th>
<th>P1/P2-DIMMC1</th>
<th>P1/P2-DIMMC2</th>
<th>Channel Config.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2/1 DCP</td>
<td>AD</td>
<td>M1</td>
<td>-</td>
<td>M1</td>
<td>-</td>
<td>M1</td>
<td>-</td>
<td>M1</td>
<td>-</td>
<td>M1</td>
<td>-</td>
<td>2/1-1-1</td>
</tr>
<tr>
<td>12DIMM</td>
<td>AD*</td>
<td>M1</td>
<td>-</td>
<td>M1</td>
<td>-</td>
<td>M1</td>
<td>-</td>
<td>M1</td>
<td>-</td>
<td>M1</td>
<td>-</td>
<td>2/1-1-1</td>
</tr>
</tbody>
</table>

*Second socket has no DCPMM

Legend (for the two tables above)

<table>
<thead>
<tr>
<th>DDR4 Type</th>
<th>Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>RDIMM</td>
</tr>
<tr>
<td>M2</td>
<td>RDIMM</td>
</tr>
<tr>
<td>M3</td>
<td>RDIMM</td>
</tr>
</tbody>
</table>

Note: DDR4 single rank x8 is not available for DCP Memory Mode or App-Direct Mode.

Validation Matrix (DDR4 DIMMs Validated with DCPMM)

<table>
<thead>
<tr>
<th>DIMM Type</th>
<th>Ranks Per DIMM & Data Width (Stack)</th>
<th>DIMM Capacity (GB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRAM</td>
<td>1Rx4</td>
<td>8GB</td>
</tr>
<tr>
<td></td>
<td>2Rx8</td>
<td>8GB</td>
</tr>
<tr>
<td></td>
<td>2Rx4</td>
<td>16GB</td>
</tr>
<tr>
<td>LRDIMM</td>
<td>4Rx4</td>
<td>N/A</td>
</tr>
<tr>
<td>LRDIMM 3DS</td>
<td>8Rx4 (4H)</td>
<td>N/A</td>
</tr>
<tr>
<td>DRAM</td>
<td>4Gb</td>
<td>16GB</td>
</tr>
<tr>
<td></td>
<td>8Gb</td>
<td>16GB</td>
</tr>
<tr>
<td></td>
<td>16GB</td>
<td>32GB</td>
</tr>
<tr>
<td></td>
<td>32GB</td>
<td>64GB</td>
</tr>
<tr>
<td></td>
<td>64GB</td>
<td>128GB</td>
</tr>
</tbody>
</table>
Notes:

- For MM, general NM/FM ratio is between 1:4 and 1:16. Excessive capacity for FM can be used for AD. (NM = Near Memory; FM = Far Memory).

- For each individual population, rearrangements between channels are allowed as long as the resulting population is compliant with the PDG rules for the 82xx/62xx/52xx/42xx platform.

- For each individual population, use the same DDR4 DIMM in all slots.

- For each individual population, sockets are normally symmetric with exceptions for one DCPMM per socket and one DCPMM per node case. Currently, DCPMM modules operate at 2666 MHz.

- Do not mix DCPMM and NVDIMM within the same platform.

- This DCPMM population guide targets a balanced DCPMM-to-DRAM-cache ratio in MM and MM + AD modes.

Installing Memory

ESD Precautions

Electrostatic Discharge (ESD) can damage electronic components including memory modules. To avoid damaging DIMM modules, it is important to handle them carefully. The following measures are generally sufficient.

- Use a grounded wrist strap designed to prevent static discharge.
- Handle the memory module by its edges only.
- Put the memory modules into the antistatic bags when not in use.

Installing Memory

Begin by removing power from the system as described in Section 3.1, and remove the node from the chassis. Follow the memory population sequence in the table above.

1. Push the release tabs outwards on both ends of the DIMM slot to unlock it.

2. Align the key of the DIMM with the receptive point on the memory slot and with your thumbs on both ends of the module, press it straight down into the slot until the module snaps into place.

3. Press the release tabs to the locked position to secure the DIMM module into the slot.

Caution: Exercise extreme caution when installing or removing memory modules to prevent damage to the DIMMs or slots.

Removing Memory

To remove a DIMM, unlock the release tabs then pull the DIMM from the memory slot.
Motherboard Battery

The motherboard uses non-volatile memory to retain system information when system power is removed. This memory is powered by a lithium battery residing on the motherboard.

Replacing the Battery

Begin by removing power from the system as described in section 3.1.

1. Push aside the small clamp that covers the edge of the battery. When the battery is released, lift it out of the holder.

2. To insert a new battery, slide one edge under the lip of the holder with the positive (+) side facing up. Then push the other side down until the clamp snaps over it.

Note: Handle used batteries carefully. Do not damage the battery in any way; a damaged battery may release hazardous materials into the environment. Do not discard a used battery in the garbage or a public landfill. Please comply with the regulations set up by your local hazardous waste management agency to dispose of your used battery properly.

![Figure 3-4. Installing the Onboard Battery](image)

Warning: There is a danger of explosion if the onboard battery is installed upside down (which reverses its polarities). This battery must be replaced only with the same or an equivalent type recommended by the manufacturer (CR2032).
3.4 Chassis Components

This section provides instructions on installing and replacing system components. To assure compatibility, only use components that match the specifications or part numbers given.

Storage Drives

The system supports ten hot-swap 2.5" storage drives. These are SATA3, but two are hybrid ports that also support NVMe. The other eight ports can support SAS drives with an optional add-on card.

For VROC configurations, refer to the VROC appendix in this manual.

Note: Enterprise level hard disk drives are recommended for use in Supermicro chassis and servers. For information on recommended HDDs, visit the Supermicro website product pages at https://www.supermicro.com/products/nfo/Ultra.cfm.

The drives are mounted in toolless drive carriers that simplify their removal from the chassis. These carriers also help promote proper airflow.

Drive Carrier Indicators

Each drive carrier has two LED indicators: an activity indicator and a status indicator. For RAID configurations using a controller, the meaning of the status indicator is described in the table below. For OS RAID or non-RAID configurations, some LED indications are not supported, such as hot spare.

<table>
<thead>
<tr>
<th>Drive Carrier LED Indicators</th>
</tr>
</thead>
<tbody>
<tr>
<td>Color</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>Activity LED</td>
</tr>
<tr>
<td>Blue</td>
</tr>
<tr>
<td>Blue</td>
</tr>
<tr>
<td>Status LED</td>
</tr>
<tr>
<td>Red</td>
</tr>
<tr>
<td>Green</td>
</tr>
<tr>
<td>Amber</td>
</tr>
</tbody>
</table>
Installing Drives

The system supports ten SATA drives, but two hybrid ports can support NVMe SSDs.

Figure 3-5. Hybrid Bays for NVMe

Removing a Hot-Swap Drive Carrier from the Chassis

1. Press the release button on the drive carrier, which will extend the drive carrier handle.

2. Use the drive carrier handle to pull the drive out of the chassis.

Figure 3-6. Removing a Drive Carrier
Installing a Drive

1. Remove the dummy drive, which comes pre-installed in the drive carrier, by removing the screws securing the dummy drive to the carrier. These screws are not used to mount the actual hard drive.

2. Insert a drive into the carrier with the PCB side facing down and the connector end toward the rear of the carrier. Align the drive in the carrier so that the screw holes line up. Note that there are holes in the carrier marked “SATA” to aid in correct installation.

3. Secure the drive to the carrier with four M3 screws included in the chassis accessory box.

4. Insert the drive carrier with the disk drive into its bay, keeping the carrier oriented so that the hard drive is on the top of the carrier and the release button is on the right side. When the carrier reaches the rear of the bay, the release handle will retract.

5. Push the handle in until it clicks into its locked position.

Figure 3-7. Removing the Dummy Drive from a Carrier
Hot-Swap for NVMe Drives

Supermicro Ultra servers support NVMe surprise hot-swap. For even better data security, NVMe orderly hot-swap is recommended. NVMe drives can be ejected and replaced remotely using IPMI.

Note: If you are using VROC, see the VROC appendix in this manual instead.

Ejecting a Drive

1. IPMI > Server Health > NVMe SSD

2. Select Device, Group and Slot, and click **Eject**. After ejecting, the drive Status LED indicator turns green.

3. Remove the drive.

Note that *Device* and *Group* are categorized by the CPLD design architecture. The 1029U-T Series server has one Device and one Group, except the 2029U-TN24 server which has one Device and two Groups.

Slot is the slot number on which the NVMe drives are mounted.

Replacing the Drive

1. Insert the replacement drive.

2. IPMI > Server Health > NVMe SSD

3. Select Device, Group and slot and click **Insert**. The drive Status LED indicator flashes red, then turns off. The Activity LED turns blue.
Checking the Temperature of an NVMe Drive

There are two ways to check using IPMI.

Checking a Drive

- **IPMI > Server Health > NVMe SSD** – Shows the temperatures of all NVMe drives, as in Figure 3-4.

- **IPMI > Server Health > Sensor Reading > NVME_SSD** – Shows the single highest temperature among all the NVMe drives.
System Cooling

Eight 4-cm counter-rotating fans provide the cooling for the system. Each fan unit is actually made up of two fans joined back-to-back, which rotate in opposite directions. This counter-rotating action generates exceptional airflow and works to dampen vibration levels.

Make sure the chassis top cover makes a good seal so the cooling air circulates properly through the chassis.

Figure 3-9. Fan Positions
System Fan Replacement

Fan speed is controlled by IPMI depending on the system temperature. If a fan fails, the remaining fans will ramp up to full speed. The system can continue to run with a failed fan. Replace any failed fan at your earliest convenience with the same model. Failed fans can be identified through the BIOS. The fan numbers are printed on the floor of the chassis.

Changing a System Fan

1. If necessary, open the chassis while the system is running to determine which fan has failed. Never run the server for an extended period of time with the chassis cover open.

2. Power down the system as described in section 3.1.

3. Unplug the fan cable from the serverboard and remove the failed fan from the chassis.

4. Replace the failed fan with an identical 4cm fan, available from Supermicro.

5. Push the new fan into the vacant space in the housing while making sure the arrows on the top of the fan (indicating air direction) point in the same direction as the arrows on the other fans.

6. Reposition the fan housing back over the two mounting posts in the system, then reconnect the fan wires to the same fan headers on the serverboard.

7. Power up the system and check that the fan is working properly and that the LED on the control panel has turned off. Finish by replacing the chassis cover.

3-10. Fans in Housing
Installing the Air Shroud

Air shrouds concentrate airflow to maximize fan efficiency. The serverboard air shroud does not require screws to install.

1. Position the air shroud in the chassis as illustrated below.

2. Align the notch on the air shroud with the pin on the expansion card bracket.

3. Slide the pin into the back of the notch.

4. Lower the front of the air shroud over the fan tray, sliding the front notches over the pins on the fan tray.

![Figure 3-11. Installing the Air Shroud](image-url)
Checking the Server Air Flow

- Make sure there are no objects to obstruct airflow in and out of the server.
- Do not operate the server without drives or drive carriers in the drive bays.
- Use only recommended server parts.
- Make sure no wires or foreign objects obstruct air flow through the chassis. Pull all excess cabling out of the airflow path or use shorter cables.

The control panel LEDs display system heat status. See “Control Panel” in Chapter 1 for details.

Overheating

There are several possible responses if the system overheats.

Overheat Temperature Setting

Some backplanes allow the overheat temperature to be set at 45, 50, or 55 by changing a jumper setting. For more information, consult the backplane user manual at www.supermicro.com. (Click Support, then the Manuals link.)

Responses

If the server overheats:

1. Use the LEDs to determine the nature of the overheating condition.
2. Confirm that the chassis covers are installed properly.
3. Make sure all fans are present and operating normally.
4. Check the routing of the cables.
5. Verify that the heatsinks are installed properly.
Power Supply
The chassis features redundant power supplies. The system will continue to operate if one module fails. It should be replaced as soon as convenient. The power supply modules are hot-swappable, meaning they can be changed without powering down the system. New units can be ordered directly from Supermicro or authorized distributors.

These power supplies are auto-switching capable. This feature enables them to automatically sense the input voltage and operate at a 100-120v or 180-240v.

Power Supply LEDs
On the rear of the power supply module, an LED displays the status.

- **Solid Green**: When illuminated, indicates that the power supply is on.

- **Blinking Green**: When blinking, indicates that the power supply is plugged in and turned off by the system.

- **Blinking Amber**: When blinking, indicates that the power supply has a warning condition and continues to operate.

- **Solid Amber**: When illuminated, indicates that the power supply is plugged in, and is in an abnormal state. The system might need service. Please contact Supermicro technical support.

Changing the Power Supply Module:
1. Unplug the AC cord from the module to be replaced.

2. On the back of the module, push the release tab sideways, as illustrated.

3. Pull the module out using the handle.

4. Push the new power supply module into the power bay until it clicks. Replace with the same model.

5. Plug the AC power cord back into the module.

Figure 3-12. Replacing the Power Supply
PCI Expansion Cards

The system accepts two full height full-length expansion cards or one double width GPU, and one low profile card, mounted on a riser card and riser bracket. There is also an internal expansion slot in the center of the chassis.

![PCI Expansion Card Chassis Slots](image)

Expansion Card Configurations

<table>
<thead>
<tr>
<th>Slot</th>
<th>Mechanical Description</th>
<th>Electrical</th>
</tr>
</thead>
<tbody>
<tr>
<td>1*</td>
<td>Internal low profile, half length</td>
<td>x8 (CPU1)</td>
</tr>
<tr>
<td>2</td>
<td>Low profile, half length</td>
<td>x8 (CPU2)</td>
</tr>
<tr>
<td>3</td>
<td>Full Height, full length</td>
<td>x16 (CPU2)</td>
</tr>
<tr>
<td>4</td>
<td>Full Height, full length</td>
<td>x16 (CPU2)</td>
</tr>
</tbody>
</table>

* This slot supports only Supermicro SAS Cards listed below.

Supermicro SAS Cards

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AOC-S3008L-L8e (8-port HBA)</td>
<td>Std LP, 8 internal ports, 12 Gb/s per port, Gen 3, 122HDD, HBA</td>
</tr>
<tr>
<td>AOC-S3008L-L8i (8-port SW RAID)</td>
<td>Std LP, 8 internal ports, 12 Gb/s per port, Gen 3, 63HDD, RAID 0, 1, 1E</td>
</tr>
<tr>
<td>AOC-S3108L-H8iR (8-port HW RAID)</td>
<td>Std LP, 8 internal ports, 12 Gb/s per port, Gen 3, 240HDD, RAID 0, 1, 5, 6, 10, 50, 60</td>
</tr>
<tr>
<td>AOC-S3108L-H8iR-16DD (8-port HW RAID)</td>
<td>Std LP, 8 internal ports, 12 Gb/s per port, Gen 3, 16HDD, RAID 0, 1, 5, 6, 10, 50, 60</td>
</tr>
</tbody>
</table>

Full height = 4.2", Low profile = 2.5", Full length = 10.5", Half length = 6.6"
Installing a Full Height or GPU Expansion Card

1. Power down the system as described in section 3.1 and remove the cover.

2. Remove the bracket and sections of the chassis in the rear.

3. If necessary, attach the riser card to the riser card bracket using screws.

4. Insert the expansion card into a slot on the riser card while aligning the expansion card backplate with the open slot in the rear of the chassis.

5. Insert the riser card into the motherboard expansion slot while aligning the riser card bracket with the rear of the chassis.

6. If necessary, connect the GPU power cables to one of the 8-pin power connectors on the motherboard.
Figure 3-15. Expansion cards Installed
Internal Expansion Card

For most models, the pre-installed Ultra riser card that holds your LAN ports also offers another internal low profile card slot for Supermicro SAS only.

Installing the Internal Expansion Card

1. Remove the cover.

2. Locate the mounting bracket in the accessories box. Mount the bracket to hold the SAS expansion card onto the Ultra riser card.

![Figure 3-16. Bracket for Mounting an Internal Expansion Card on the Ultra Riser Card (four port Ultra card shown in this example)](image)

3. Insert the SAS card into the expansion slot on the Ultra riser card and secure it to the bracket.
Removing the Ultra Riser Card

To remove the Ultra riser card, use two hands. One hand lifts the mylar release tab and the other hand lifts at the PCI-E x8 slot at the same time. **Caution**: Lifting at only one of these points may cause damage to connectors on the motherboard.

![Mylar Lift Tab](image)

Figure 3-17. Removing the Ultra Riser Card
This section describes the connections on the motherboard and provides pinout definitions. Note that depending on how the system is configured, not all connections are required. The LEDs on the motherboard are also described here. A motherboard layout indicating component locations may be found in Chapter 1.

Please review the Safety Precautions in Appendix B before installing or removing components.

4.1 Power Connections

Two power connections supply the motherboard and several more supply for onboard devices.

Main Power Connector

Two proprietary main power headers are located at PSU1 and PSU2. Connect appropriate power supply units to these two headers to provide adequate power to your system.

Important: To provide adequate power to the motherboard, connect the both main power connectors to the power supply. Failure to do so may void the manufacturer's warranty on your power supply and motherboard.

Backplane Power Connectors & GPU Power Connectors

In addition to the main power headers, eight 8-pin power connectors are also located on the motherboard to supply power to onboard devices. GPU Power Connectors 1-4 are used for GPU devices, while BP PWR 1-4 are used for backplane devices. Connect these connectors to your power supply to provide adequate power to your onboard devices.

<table>
<thead>
<tr>
<th>8-pin GPU Power Pin Definitions</th>
<th>8-pin Backplane Power Pin Definitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin#</td>
<td>Definition</td>
</tr>
<tr>
<td>1 - 4</td>
<td>Ground</td>
</tr>
<tr>
<td>5 - 8</td>
<td>+12 V</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4.2 Headers and Connectors

Fan Headers
There are eight fan headers on the motherboard. These are 4-pin fan headers, although pins 1-3 are backward compatible with traditional 3-pin fans. Four-pin fans allow fan speeds to be controlled by Thermal Management in IPMI. When using the Thermal Management setting, use all 3-pin fans or all 4-pin fans.

<table>
<thead>
<tr>
<th>Pin#</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ground (Black)</td>
</tr>
<tr>
<td>2</td>
<td>+12V (Red)</td>
</tr>
<tr>
<td>3</td>
<td>Tachometer</td>
</tr>
<tr>
<td>4</td>
<td>PWM Control</td>
</tr>
</tbody>
</table>

T-SGPIO3 Header
A Serial General Purpose Input/Output header (T-SGPIO3) is located next to the TPM/Port 80 on the motherboard. This header is used to communicate with the enclosure management chip on the backplane.

<table>
<thead>
<tr>
<th>Pin#</th>
<th>Definition</th>
<th>Pin#</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NC</td>
<td>2</td>
<td>NC</td>
</tr>
<tr>
<td>3</td>
<td>Ground</td>
<td>4</td>
<td>DATA Out</td>
</tr>
<tr>
<td>5</td>
<td>Load</td>
<td>6</td>
<td>Ground</td>
</tr>
<tr>
<td>7</td>
<td>Clock</td>
<td>8</td>
<td>NC</td>
</tr>
</tbody>
</table>

NC = No Connection

Disk-On-Module Power Connector
The Disk-On-Module (DOM) power connectors at JSD1 and JSD2 provide 5V power to a solid-state DOM storage devices connected to one of the SATA ports.

<table>
<thead>
<tr>
<th>Pin#</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5V</td>
</tr>
<tr>
<td>2</td>
<td>Ground</td>
</tr>
<tr>
<td>3</td>
<td>Ground</td>
</tr>
</tbody>
</table>
TPM Header

The JTPM1 header is used to connect a Trusted Platform Module (TPM)/Port 80, which is available from Supermicro. A TPM/Port 80 connector is a security device that supports encryption and authentication in hard drives. It allows the motherboard to deny access if the TPM associated with the storage drive is not installed in the system.

<table>
<thead>
<tr>
<th>Pin#</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>P3V3</td>
</tr>
<tr>
<td>2</td>
<td>SPI_TPM_CS_N</td>
</tr>
<tr>
<td>3</td>
<td>PCI-E_RESET_N#</td>
</tr>
<tr>
<td>4</td>
<td>SPI_PCH_MISO</td>
</tr>
<tr>
<td>5</td>
<td>SPI_PCH_CLK#</td>
</tr>
<tr>
<td>6</td>
<td>Ground</td>
</tr>
<tr>
<td>7</td>
<td>SPI_PCH_MOSI</td>
</tr>
<tr>
<td>8</td>
<td>N/A</td>
</tr>
<tr>
<td>9</td>
<td>JTPM1_P3V3A</td>
</tr>
<tr>
<td>10</td>
<td>IRQ_TPM_SPIN_N</td>
</tr>
</tbody>
</table>

Internal Speaker/Buzzer

The Internal Speaker/Buzzer (SP1) is used to provide audible indications for various beep codes.

<table>
<thead>
<tr>
<th>Pin#</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pos (+)</td>
</tr>
<tr>
<td>2</td>
<td>Neg (-)</td>
</tr>
</tbody>
</table>

4-pin BMC External I²C Header

A System Management Bus header for IPMI 2.0 is located at JIPMB1. Connect a cable to this header to use the IPMB I²C connection on your system.

<table>
<thead>
<tr>
<th>Pin#</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Data</td>
</tr>
<tr>
<td>2</td>
<td>Ground</td>
</tr>
<tr>
<td>3</td>
<td>Clock</td>
</tr>
<tr>
<td>4</td>
<td>No Connection</td>
</tr>
</tbody>
</table>

Chassis Intrusion

A Chassis Intrusion header is located at JL1 on the motherboard. Attach the appropriate cable from the chassis to the header to inform you when the chassis is opened.

<table>
<thead>
<tr>
<th>Pins</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Intrusion Input</td>
</tr>
<tr>
<td>2</td>
<td>Ground</td>
</tr>
</tbody>
</table>
RAID Key Header
A RAID Key header is located at JRK1 on the motherboard. It supports VMD used in creating optional advanced NVMe RAID configurations.

<table>
<thead>
<tr>
<th>RAID Key Header Pin Definitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin#</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
</tbody>
</table>

Front VGA Port
One VGA port is located at JVGA2 on the motherboard. This VGA port provides front accessible video display.

Micro SD Card Slot
JSDCARD1: Micro SSD card slot (reserved for manufacture use only).

NVMe SMBus Headers
NVMe SMBus (I²C) headers (JNVI²C1/2), used for PCI-E SMBus clock and data connections, provide hot-plug support through a dedicated SMBus interface. This feature is only available for a Supermicro complete system with a proprietary NVMe add-on card and cable installed.

<table>
<thead>
<tr>
<th>NVMe SMBus Header Pin Definitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin#</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
</tbody>
</table>
Control Panel

JF1 contains header pins for various control panel connections. See the figure below for the pin locations and definitions of the control panel buttons and LED indicators.

All JF1 wires have been bundled into a single cable to simplify this connection. Make sure the red wire plugs into pin 1 as marked on the motherboard. The other end connects to the control panel PCB board.

Figure 4-1. JF1 Control Panel Pins

Power Button

The Power Button connection is located on pins 1 and 2 of JF1. Momentarily contacting both pins will power on/off the system. This button can also be configured to function as a suspend button (with a setting in the BIOS - see Chapter 6). To turn off the power when the system is in suspend mode, press the button for 4 seconds or longer.

<table>
<thead>
<tr>
<th>Pin#</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Signal</td>
</tr>
<tr>
<td>2</td>
<td>Ground</td>
</tr>
</tbody>
</table>

Reset Button

The Reset Button connection is located on pins 3 and 4 of JF1. Attach it to a hardware reset switch on the computer case.

<table>
<thead>
<tr>
<th>Pin#</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Reset</td>
</tr>
<tr>
<td>4</td>
<td>Ground</td>
</tr>
</tbody>
</table>
Power Fail LED
The Power Fail LED connection is located on pins 5 and 6 of JF1.

<table>
<thead>
<tr>
<th>Power Fail LED Pin Definitions (JF1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin#</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
</tbody>
</table>

Overheat (OH)/Fan Fail
Connect an LED cable to pins 7 and 8 of JF1 to use the Overheat/Fan Fail LED connections. The LED on pin 8 provides warnings of overheat or fan failure.

<table>
<thead>
<tr>
<th>OH/Fan Fail Indicator Status Pin Definitions (JF1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin#</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
</tbody>
</table>

NIC1/NIC2 (LAN1/LAN2)
The NIC (Network Interface Controller) LED connection for LAN port 1 is located on pins 11 and 12 of JF1, and the LED connection for LAN Port 2 is on Pins 9 and 10. Attach the NIC LED cables here to display network activity.

<table>
<thead>
<tr>
<th>LAN1/LAN2 LED Pin Definitions (JF1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin#</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td>12</td>
</tr>
</tbody>
</table>

HDD LED/UID Switch
The HDD LED/UID Switch connection is located on pins 13 and 14 of JF1. Attach a cable to Pin 14 to show hard drive activity status. Attach a cable to Pin 13 to use UID switch. Refer to the table below for pin definitions.

<table>
<thead>
<tr>
<th>HDD LED Pin Definitions (JF1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin#</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>13</td>
</tr>
<tr>
<td>14</td>
</tr>
</tbody>
</table>
Power LED

The Power LED connection is located on pins 15 and 16 of JF1.

<table>
<thead>
<tr>
<th>Pin#</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>3.3V</td>
</tr>
<tr>
<td>16</td>
<td>Power LED</td>
</tr>
</tbody>
</table>

NMI Button

The non-maskable interrupt button header is located on pins 19 and 20 of JF1.

<table>
<thead>
<tr>
<th>Pin#</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>Control</td>
</tr>
<tr>
<td>20</td>
<td>Ground</td>
</tr>
</tbody>
</table>
4.3 Input/Output Ports

Rear I/O Ports

See the figure below for the locations and descriptions of the I/O ports on the rear of the motherboard.

<table>
<thead>
<tr>
<th>#</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>USB 0 (3.0)</td>
</tr>
<tr>
<td>2</td>
<td>USB 1 (3.0)</td>
</tr>
<tr>
<td>3</td>
<td>IPMI Dedicated LAN</td>
</tr>
<tr>
<td>4</td>
<td>COM Port 1</td>
</tr>
<tr>
<td>5</td>
<td>UID switch/LED (not pictured)</td>
</tr>
<tr>
<td>6</td>
<td>VGA</td>
</tr>
</tbody>
</table>

LAN Ports

There are two or four LAN ports on the chassis rear provided by the Ultra add-on card, depending on the model. There is also a dedicated IPMI LAN port on the I/O back panel. For more information on IPMI, refer to the IPMI User’s Guide posted on our website at http://www.supermicro.com.

Unit Identifier Switch/UID LED Indicator

A Unit Identifier (UID) switch and a UID LED indicator are located on the rear of the system. When you press the UID switch, both front and rear UID LED indicators are toggled on or off. The UID indicators provide easy identification of a system in a rack.

Note: UID can also be triggered using IPMI.
4.4 Jumpers

Explanation of Jumpers

To modify the operation of the motherboard, jumpers are used to choose between optional settings. Jumpers create shorts between two pins to change the function associated with it. Pin 1 is identified with a square solder pad on the printed circuit board. See the motherboard layout page for jumper locations.

Note: On a two-pin jumper, "Closed" means the jumper is on both pins and "Open" indicates the jumper is either on only one pin or has been completely removed.

<table>
<thead>
<tr>
<th>Connector Pins</th>
<th>Jumper</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

CMOS Clear

JBT1 is used to clear CMOS, which will also clear any passwords. Instead of pins, this jumper consists of contact pads to prevent accidentally clearing the contents of CMOS.

To Clear CMOS

1. First power down the system and unplug the power cord(s).
2. Remove the cover of the chassis to access the motherboard.
3. Remove the onboard battery from the motherboard.
4. Short the CMOS pads with a metal object such as a small screwdriver for at least four seconds.
5. Remove the screwdriver (or shorting device).
6. Replace the cover, reconnect the power cord(s) and power on the system.

Notes: Clearing CMOS will also clear all passwords. Do not use the PW_ON connector to clear CMOS.

JBT1 contact pads
Watch Dog

JWD controls the Watch Dog function. Watch Dog is a monitor that can reboot the system when a software application hangs. Jumping pins 1-2 will cause Watch Dog to reset the system if an application hangs. Jumping pins 2-3 will generate a non-maskable interrupt signal for the application that hangs. Watch Dog must also be enabled in BIOS.

The default setting is Reset.

Note: When Watch Dog is enabled, the user needs to write their own application software to disable it.

<table>
<thead>
<tr>
<th>Watch Dog Jumper Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jumper Setting</td>
</tr>
<tr>
<td>Pins 1-2</td>
</tr>
<tr>
<td>Pins 2-3</td>
</tr>
<tr>
<td>Open</td>
</tr>
</tbody>
</table>

I²C Bus for VRM

Jumpers JVRM1 and JVRM2 allow the BMC or the PCH to access CPU and memory VRM controllers. See the table below for jumper settings.

<table>
<thead>
<tr>
<th>VRM Jumper Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jumper Setting</td>
</tr>
<tr>
<td>Pins 1-2</td>
</tr>
<tr>
<td>Pins 2-3</td>
</tr>
</tbody>
</table>
4.5 LED Indicators

LAN LEDs
The Ethernet ports each have two LEDs. One LED indicates activity when flashing, while the other LED may be green, amber or off to indicate the speed of the connection.

<table>
<thead>
<tr>
<th>LED Color</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>10 Mb/s</td>
</tr>
<tr>
<td>Green</td>
<td>100 Mb/s</td>
</tr>
<tr>
<td>Amber</td>
<td>1 Gb/s</td>
</tr>
</tbody>
</table>

IPMI-Dedicated LAN LEDs
A dedicated IPMI LAN port is also included on the motherboard. The amber LED on the right of the IPMI LAN port indicates activity, while the green LED on the left indicates the speed of the connection.

<table>
<thead>
<tr>
<th>IPMI LAN LED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Color</td>
</tr>
<tr>
<td>Off</td>
</tr>
<tr>
<td>Green</td>
</tr>
</tbody>
</table>

Unit ID LED
A rear unit identifier (UID) indicator at LED1 is located near the UID switch on the I/O back panel. It provides easy identification of a unit that may need service.

Onboard Power LED
LEDPWR is an Onboard Power LED. When this LED is lit, it means power is present on the motherboard. In suspend mode this LED will blink on and off. Be sure to turn off the system and unplug the power cord(s) before removing or installing components.
BMC Heartbeat LED

LEDM1 is the BMC heartbeat LED. When the LED is blinking green, BMC is functioning normally.

<table>
<thead>
<tr>
<th>Onboard Power LED Indicator</th>
</tr>
</thead>
<tbody>
<tr>
<td>LED Color</td>
</tr>
<tr>
<td>Green: Blinking</td>
</tr>
</tbody>
</table>

Memory Fault Indication LEDs

The memory fault LEDs provide visual notification to a service technician which memory DIMM slot(s) are at fault due to un-correctable memory errors during POST (Power-On Self-Test). A memory fault LED will remain "on" even after system reboots (or repeated "power cycling") until it is reset manually by the technician using the BIOS setup menu to turn it off. This feature allows the technician to easily identify and replace any bad DIMMs that may be at fault in the system.

<table>
<thead>
<tr>
<th>Memory Fault LED Indicators</th>
</tr>
</thead>
<tbody>
<tr>
<td>LED</td>
</tr>
<tr>
<td>LED_P1_A1-A2</td>
</tr>
<tr>
<td>LED_P1_B1-B2</td>
</tr>
<tr>
<td>LED_P1_C1-C2</td>
</tr>
<tr>
<td>LED_P1_D1-D2</td>
</tr>
<tr>
<td>LED_P1_E1-E2</td>
</tr>
<tr>
<td>LED_P1_F1-F2</td>
</tr>
<tr>
<td>LED_P2_A1-A2</td>
</tr>
<tr>
<td>LED_P2_B1-B2</td>
</tr>
<tr>
<td>LED_P2_C1-C2</td>
</tr>
<tr>
<td>LED_P2_D1-D2</td>
</tr>
<tr>
<td>LED_P2_E1-E2</td>
</tr>
<tr>
<td>LED_P2_F1-F2</td>
</tr>
</tbody>
</table>
4.6 Storage Ports

I-SATA 3.0 and S-SATA 3.0 Ports

The X11DPU has eight I-SATA 3.0 ports (I-SATA0-3, I-SATA4-7) which are supported by the Intel C621 chipset. In addition, it also has six S-SATA 3.0 ports (S-SATA0-3, S-SATA4/ S-SATA5) that are supported by the Intel SCU. S-SATA4/5 can be used with Supermicro SuperDOMs which are yellow SATA DOM connectors with power pins built in, and do not require external power cables. Supermicro SuperDOMs are backward-compatible with regular SATA HDDs or SATA DOMs that need external power cables.

NVM Express Connections

Four NVM Express ports are located on the motherboard. These NVMe ports provide PCI-E 3.0 x4 connections. P1_NVME0/1 are supported by CPU1. P2_NVME0/1 are supported by CPU2. The NVMe ports provide high-speed low-latency connections directly from the CPU to NVMe Solid State drives (SSDs). This greatly increases SSD data-throughput performance and significantly reduces PCI-E latency by simplifying driver/software requirements resulting from direct PCI-E interface from the CPU to the NVMe SSD drives.
Chapter 5

Software

After the hardware has been installed, you can install the Operating System (OS), configure RAID settings and install the drivers.

5.1 Microsoft Windows OS Installation

If you will be using RAID, you must configure RAID settings before installing the Windows OS and the RAID driver. Refer to the RAID Configuration User Guides posted on our website at www.supermicro.com/support/manuals.

Installing the OS

1. Create a method to access the MS Windows installation ISO file. That can be a USB flash or media drive.

2. Retrieve the proper RST/RSTe driver. Go to the Supermicro web page for your motherboard and click on "Download the Latest Drivers and Utilities", select the proper driver, and copy it to a USB flash drive.

3. Boot from a bootable device with Windows OS installation. You can see a bootable device list by pressing F11 during the system startup.

Figure 5-1. Select Boot Device
4. During Windows Setup, continue to the dialog where you select the drives on which to install Windows. If the disk you want to use is not listed, click on “Load driver” link at the bottom left corner.

![Figure 5-2. Load Driver Link](image)

To load the driver, browse the USB flash drive for the proper driver files.

- For RAID, choose the SATA/sSATA RAID driver indicated then choose the storage drive on which you want to install it.

- For non-RAID, choose the SATA/sSATA AHCI driver indicated then choose the storage drive on which you want to install it.

5. Once all devices are specified, continue with the installation.

6. After the Windows OS installation has completed, the system will automatically reboot multiple times.
5.2 Driver Installation

The Supermicro website contains drivers and utilities for your system at https://www.supermicro.com/wdl/driver. Some of these must be installed, such as the chipset driver.

After accessing the website, go into the CDR_Images (in the parent directory of the above link) and locate the ISO file for your motherboard. Download this file to a USB flash or media drive. (You may also use a utility to extract the ISO file if preferred.)

Another option is to go to the Supermicro website at http://www.supermicro.com/products/. Find the product page for your motherboard, and "Download the Latest Drivers and Utilities". Insert the flash drive or disk and the screenshot shown below should appear.

![Driver & Tool Installation Screen](image)

Figure 5-3. Driver & Tool Installation Screen

Note: Click the icons showing a hand writing on paper to view the readme files for each item. Click the computer icons to the right of these items to install each item (from top to the bottom) one at a time. **After installing each item, you must re-boot the system before moving on to the next item on the list.** The bottom icon with a CD on it allows you to view the entire contents.
5.3 SuperDoctor® 5

The Supermicro SuperDoctor 5 is a program that functions in a command-line or web-based interface for Windows and Linux operating systems. The program monitors such system health information as CPU temperature, system voltages, system power consumption, fan speed, and provides alerts via email or Simple Network Management Protocol (SNMP).

SuperDoctor 5 comes in local and remote management versions and can be used with Nagios to maximize your system monitoring needs. With SuperDoctor 5 Management Server (SSM Server), you can remotely control power on/off and reset chassis intrusion for multiple systems with SuperDoctor 5 or IPMI. SuperDoctor 5 Management Server monitors HTTP, FTP, and SMTP services to optimize the efficiency of your operation.

Figure 5-4. SuperDoctor 5 Interface Display Screen (Health Information)
5.4 BMC

The motherboard provides remote access, monitoring and management through the baseboard management controller (BMC) and other management controllers distributed among different system modules. There are several BIOS settings that are related to BMC. For general documentation and information on BMC, visit our website at:

BMC ADMIN User Password

For security, each system is assigned a unique default BMC password for the ADMIN user. This can be found on a sticker on the chassis and a sticker on the motherboard. The sticker also displays the BMC MAC address. If necessary, the password can be reset using the Supermicro IPMI CFG tool.

![BMC Password Label](image)

Figure 5-5. BMC Password Label

See Chapter 1 for the locations of the labels.
Chapter 6

UEFI BIOS

6.1 Introduction

This chapter describes the UEFI BIOS setup utility for the X11DPU and provides the instructions on navigating the setup screens. The BIOS is stored in a Flash EEPROM and can be updated.

Note: Due to periodic changes to the BIOS, some settings may have been added or deleted since this manual was published.

Starting BIOS Setup Utility

To enter the AMI BIOS setup utility screens, press the <Delete> key while the system is booting up. (There are a few cases when other keys are used, such as <F1>, <F2>, etc.)

The BIOS screens have three main frames. The large left frame displays options can be configured by the user. These are blue. When an option is selected, it is highlighted in white. Settings printed in Bold are the default values.

In the left frame, a "►" indicates a submenu. Highlighting such an item and pressing the <Enter> key opens the list of settings in that submenu.

The upper right frame displays helpful information for the user. The AMI BIOS has default informational messages built in. The manufacturer retains the option to include, omit, or change any of these informational messages.

The lower right frame lists navigational methods. The AMI BIOS setup utility uses a key-based navigation system called hot keys. Most of these hot keys can be used at any time during setup navigation. These keys include <F3>, <F4>, <Enter>, <ESC>, arrow keys, etc.

Some system parameters can be changed.

6.2 Main Setup

When running the AMI BIOS setup utility, it starts with the Main screen. You can always return to it by selecting the Main tab on the top of the screen.
The Main tab page allows you to set the date and time, and it displays system information.

System Date/System Time

Use this option to change the system date and time. Highlight **System Date** or **System Time** using the arrow keys. Enter new values using the keyboard. Press the <Tab> key or the arrow keys to move between fields. The date must be entered in MM/DD/YYYY format. The time is entered in HH:MM:SS format.

Note: The time is in the 24-hour format. For example, 5:30 P.M. appears as 17:30:00. The date’s default value is 01/01/2016 after RTC reset.

Supermicro X11DPU (Motherboard model)

BIOS Version

Build Date (of the BIOS)

CPLD (Complex Programmable Logic Device) Version: This item displays the CPLD version used in the system.

Memory Information

Total Memory (for the system)
6.3 Advanced Setup Configurations

Use the arrow keys to select the Advanced tab and press <Enter> to access the submenu items.

Caution: Take caution when changing the Advanced settings. An incorrect value, a very high DRAM frequency, or an incorrect DRAM timing setting may make the system unstable. If this occurs, revert to the manufacture default settings.

boot Feature

Quiet Boot
Use this feature to select the screen display between the POST messages and the OEM logo upon bootup. Select Disabled to display the POST messages. Select Enabled to display the OEM logo instead of the normal POST messages. The options are Disabled and Enabled.

Option ROM Messages
Use this feature to set the display mode for the Option ROM. Select Keep Current to display the current AddOn ROM setting. Select Force BIOS to use the Option ROM display set by the system BIOS. The options are Force BIOS and Keep Current.

Bootup NumLock State
Use this feature to set the Power-on state for the <Numlock> key. The options are On and Off.
Wait For "F1" If Error
Use this feature to force the system to wait until the 'F1' key is pressed if an error occurs. The options are Disabled and Enabled.

INT19 (Interrupt 19) Trap Response
Interrupt 19 is the software interrupt that handles the boot disk function. When this feature is set to Immediate, the ROM BIOS of the host adaptors will "capture" Interrupt 19 at bootup immediately and allow the drives that are attached to these host adaptors to function as bootable disks. If this feature is set to Postponed, the ROM BIOS of the host adaptors will not capture Interrupt 19 immediately and allow the drives attached to these adaptors to function as bootable devices at bootup. The options are Immediate and Postponed.

Re-try Boot
When EFI (Expansible Firmware Interface) Boot is selected, the system BIOS will automatically reboot the system from an EFI boot device after an initial boot failure. Select Legacy Boot to allow the BIOS to automatically reboot the system from a Legacy boot device after an initial boot failure. The options are Disabled, Legacy Boot, and EFI Boot.

Install Windows 7 USB support
Enable this feature to use the USB keyboard and mouse during the Windows 7 installation, since the native XHCI driver support is unavailable. Use a SATA optical drive as a USB drive. USB CD/DVD drives are not supported. Disable this feature after the XHCI driver has been installed in Windows. The options are Disabled and Enabled.

Port 61h Bit-4 Emulation
Select Enabled to support the emulation of Port 61h bit-4 toggling in SMM (System Management Mode). The options are Disabled and Enabled.

Power Configuration

Watch Dog Function
If enabled, the Watch Dog Timer will allow the system to reset or generate NMI based on jumper settings when it is expired for more than 5 minutes. The options are Disabled and Enabled.

Restore on AC Power Loss
Use this feature to set the power state after a power outage. Select Stay-Off for the system power to remain off after a power loss. Select Power-On for the system power to be turned on after a power loss. Select Last State to allow the system to resume its last power state before a power loss. The options are Stay Off, Power On, and Last State.
Power Button Function
This feature controls how the system shuts down when the power button is pressed. Select 4 Seconds Override for the user to power off the system after pressing and holding the power button for 4 seconds or longer. Select Instant Off to instantly power off the system as soon as the user presses the power button. The options are Instant Off and 4 Seconds Override.

Throttle on Power Fail
Throttling improves reliability and reduces power consumption in the processor via automatic voltage control during processor idle states. Select Enabled to decrease the system power by throttling CPU frequency when one power supply is failed. The options are Disabled and Enabled.

CPU Configuration
This submenu displays the information of the CPU as detected by the BIOS. It also allows the user to configuration CPU settings:
• Processor BSP Revision
• Processor Socket
• Processor ID
• Processor Frequency
• Processor Max Ration
• Processor Min Ration
• Microcode Revision
• L1 Cache RAM
• L2 Cache RAM
• L3 Cache RAM
• Processor 0 Version
• Processor 1 Version

Hyper-Threading [All] (Available when supported by the CPU)
Select Enabled to support Intel® Hyper-threading Technology to enhance CPU performance. The options are Disable and Enable.
Execute Disable Bit (Available if supported by the OS & the CPU)

Select Enable to enable the Execute-Disable Bit which will allow the processor to designate areas in the system memory where an application code can execute and where it cannot, thus preventing a worm or a virus from flooding illegal codes to overwhelm the processor or damage the system during an attack. (Please refer to Intel's website for more information.) The options are Disable and Enable.

Intel Virtualization Technology (Available when supported by the CPU)

Select Enable to use Intel® Virtualization Technology which will allow multiple workloads to share the same set of common resources. On shared virtualized hardware, various workloads (or tasks) can co-exist, sharing the same resources, while functioning in full independence from each other, and migrating freely across multi-level infrastructures and scale as needed. The options are Disable and Enable.

Note: If a change is made to this setting, you will need to reboot the system for the change to take effect. Refer to Intel's website for detailed information.

PPIN Control

Select Unlock/Enable to use the Protected-Processor Inventory Number (PPIN) in the system. The options are Unlock/Disable and Unlock/Enable.

Hardware Prefetcher (Available when supported by the CPU)

If this feature is set to Enable, the hardware prefetcher will prefetch streams of data and instructions from the main memory to the L2 cache to improve CPU performance. The options are Enable and Disable.

Adjacent Cache Prefetch (Available when supported by the CPU)

The CPU prefetches the cache line for 64 bytes if this feature is set to Disable. The CPU prefetches both cache lines for 128 bytes as comprised if this feature is set to Enable. The options are Enable and Disable.

DCU Streamer Prefetcher (Available when supported by the CPU)

Select Enabled to enable Intel® CPU Advanced Encryption Standard (AES) Instructions for CPU to enhance data integrity. The options are Enable and Disable.

DCU IP Prefetcher (Available when supported by the CPU)

If this feature is set to Enable, the DCU (Data Cache Unit) IP prefetcher will prefetch IP addresses in advance to improve network connectivity and system performance. The options are Enable and Disable.

LLC Prefetch

Select Enable to support the LLC prefetch on all threads. The options are Disable and Enable.
Extended APIC (Extended Advanced Programmable Interrupt Controller)
Select Enable to use the extended APIC (Advanced Programmable Interrupt Control) support to enhance power management. The options are Disable and Enable.

AES-NI
Select Enable to use the Intel® Advanced Encryption Standard (AES) New Instructions (NI) to ensure data security. The options are Disable and Enable.

► Advanced Power Management Configuration

► CPU P State Control

SpeedStep (Pstates)
EIST (Enhanced Intel® SpeedStep™ Technology) allows the system to automatically adjust processor voltage and core frequency to reduce power consumption and heat dissipation. The options are Disable and Enable.

Activate PBF (Available when SpeedStep is set to Enable)
Select Enable to enable Prioritized Base Frequency (PBF) feature support which will enhance CPU performance. The options are Disable and Enable.

Configure PBF (Available when Activate PBF is set to Enable)
Select Enable to allow the BIOS to configure high priority CPU cores as Prioritized Base Frequency (PBF) so that software programs do not have to configure the PBF (Prioritized Base Frequency) settings. The options are Enable and Disable.

EIST PSD Function
This feature allows the user to change the P-State (Power-Performance State) coordination type. P-State is also known as "SpeedStep" for Intel® processors. Select HW_ALL to change the P-State coordination type for all hardware components only. Select SW_ALL to change the P-State coordination type for all software installed in the system. Select SW_ANY to change the P-State coordination type for a particular software program specified by the user in the system. The options are HW_ALL, SW_ALL, and SW_ANY.

Turbo Mode (Available when Intel® EIST Technology is enabled)
Select Enable to use the Turbo Mode to boost system performance. The options are Disable and Enable.

► Hardware PM State Control

Hardware P-States
This feature enables the hardware P-States support. The options are Disable, Native Mode, Out of Band Mode, and Native Mode with No Legacy Support.
CPU C State Control

Autonomous Core C-State
Use this feature to enable the autonomous core C-State control. The options are Disable and Enable.

CPU C6 report
Select Enable to allow the BIOS to report the CPU C6 State (ACPI C3) to the operating system. During the CPU C6 State, the power to all cache is turned off. The options are Disable, Enable, and Auto.

Enhanced Halt State (C1E)
Select Enable to use Enhanced Halt-State technology, which will significantly reduce the CPU's power consumption by reducing the CPU's clock cycle and voltage during a Halt-state. The options are Disable and Enable.

Package C State Control

Package C State
This feature allows the user to set the limit on the C-State package register. The options are C0/C1 state, C2 state, C6 (non Retention) state, C6 (Retention) state, No Limit, and Auto.

CPU T State Control

Software Controlled T-States
This feature enables the software controlled T-States support. The options are Disable and Enable.

Chipset Configuration

Warning: Setting the wrong values in the following features may cause the system to malfunction.

North Bridge
This feature allows the user to configure the following North Bridge settings.

UPI Configuration

UPI Configuration
The following information will be displayed:
• Number of CPU
• Number of IIO
• Current UPI Link Speed
• Current UPI Link Frequency
• UPI Global MMIO Low Base/Limit
• UPI Global MMIO High Base/Limit
• UPI Pci-e Configuration Base/Size

Degrade Precedence
Select **Topology Precedence** to degrade features if system options are in conflict. Select Feature Precedence to degrade topology if system options are in conflict. The options are **Topology Precedence** and Feature Precedence.

Link L0p Enable
Select Enable for the QPI to enter the L0p state for power saving. The options are Disable, Enable, and **Auto**.

Link L1 Enable
Select Enable for the QPI to enter the L1 state for power saving. The options are Disable, Enable, and **Auto**.

IO Directory Cache (IODC)
Use this feature to enable the IO Directory Cache (IODC) support. The options are Disable, **Auto**, Enable for Remote InvItoM Hybrid Push, InvItoM AllocFlow, Enable for Remote InvItoM Hybrid AllocNonAlloc, and Enable for Remote InvItoM and Remote WVILF.

Isoc Mode
Select Enable to enable Isochronous support to meet QoS (Quality of Service) requirements. This feature is especially important for Virtualization Technology. The options are Disable, Enable, and **Auto**.

▶ **Memory Configuration**

Integrated Memory Controller (iMC)

Enforce POR
Select Enable to enforce POR restrictions on DDR4 frequency and voltage programming. The options are **POR** and Disable.

PPR Type
Post Package Repair (PPR) is a new feature available for the DDR4 Technology. PPR provides additional spare capacity within a DDR4 DRAM module that is used to replace
faulty cell areas detected during system boot. PPR offers two types of memory repairs. Soft Post Package Repair (sPPR) provides a quick, temporary fix on a raw element in a bank group of a DDR4 DRAM device, while hard Post Package Repair (hPPR) will take a longer time to provide permanent repair on a raw element. The options are Auto, Hard PPR, Soft PPR, and PPR Disabled.

Memory Frequency
Use this feature to set the maximum memory frequency for onboard memory modules. The options are Auto, 1866, 2000, 2133, 2400, 2666, and 2933. (Note: 2933 MHz memory is supported by 2nd Gen Intel Xeon Scalable-SP (82xx/62xx series) processors only.)

Data Scrambling for NVMDIMM
Select Enable to enable data scrambling to enhance system performance and data integrity. The options are Auto, Disable, and Enable.

Data Scrambling for DDR4
Use this feature to enable data scrambling for DDR4. The options are Auto, Disable, and Enable.

Enable ADR
Select Enable for ADR (Automatic Diagnostic Repository) support to enhance memory performance. The options are Disable and Enable.

Refresh Options
Use this feature to select the self refresh mode. The options are Accelerated Self Refresh and 2x Refresh.

▶ **Memory Topology**
The following information will be displayed: P1 DIMMA1/P1 DIMMB1/P1 DIMMC1/P1 DIMMD1/P1 DIMME1/P1 DIMMF1

▶ **Memory RAS (Reliability_Availability_Serviceability) Configuration**

Memory RAS Configuration Setup
Use this submenu to configure the following Memory RAS settings.

Static Virtual Lockstep Mode
Select Enable to support the static virtual lockstep mode. The options are Disable and Enable.
Mirror Mode
Use this feature to select the mirror mode. The options are Disable, Mirror Mode 1LM, and Mirror Mode 2LM. If this feature is set to Mirror Mode 1LM or Mirror Mode 2LM, the available memory capacity will be reduced by 50 percent.

UEFI ARM Mirror
Select Enable to support the UEFI-based address range mirroring with setup option. The options are Disable and Enable.

Memory Rank Sparing
Select Enable to enable memory-sparing support for memory ranks to improve memory performance. The options are Disable and Enable.

*If the feature, Memory Rank Sparing, is set to Enable, the following features will become available for user's configuration:

Multi Rank Sparing
Use this feature to set the multiple rank sparing number. The default setting and the maximum is two ranks per channel. The options are One Rank and Two Rank.

Correctable Error Threshold
Use this feature to enter the threshold value for correctable memory errors. The default setting is 10.

SDDC Plus One
Single Device Data Correction (SDDC) allows data to be reconstructed when one of the memory devices fails on a DIMM. Use this feature to enable the SDDC support. The options are Disable and Enable.

ADDDC Sparing
Adaptive Double Device Data Correction (ADDDC) Sparing detects the predetermined threshold for correctable errors, copying the contents of the failing DIMM to spare memory. The failing DIMM or memory rank will then be disabled. The options are Disable and Enable.

Patrol Scrub
Patrol Scrubbing is a process that allows the CPU to correct correctable memory errors detected on a memory module and send the correction to the requestor (the original source). When this feature is set to Enable, read-and-write will be performed every 16K cycles per cache line if there is no delay caused by internal processing. The options are Disable and Enable.
Patrol Scrub Interval

This feature allows you to decide how many hours the system should wait before the next complete patrol scrub is performed. Use the keyboard to enter a value from 0-24. The Default setting is 24.

IIO Configuration

IIO Configuration

EV DFX Features

When this feature is set to Enable, the EV_DFX Lock Bits that are located on a processor will always remain clear during electric tuning. The options are Disable and Enable.

CPU1 Configuration

IOU0 (IIO PCIe Br1)

This feature configures the PCI-E port Bifurcation setting for a PCI-E port specified by the user. The options are x4x4x4x4, x4x4x8, x8x4x4, x8x8, x16, and Auto.

IOU1 (IIO PCIe Br2)

This feature configures the PCI-E port Bifurcation setting for a PCI-E port specified by the user. The options are x4x4x4x4, x4x4x8, x8x4x4, x8x8, x16, and Auto.

IOU2 (IIO PCIe Br3)

This feature configures the PCI-E port Bifurcation setting for a PCI-E port specified by the user. The options are x4x4x4x4, x4x4x8, x8x4x4, x8x8, x16, and Auto.

P1_NVMe0

Link Speed

Use this feature to select the link speed for the PCIe port. The options are Auto, Gen 1 (2.5 GT/s), Gen 2 (5 GT/s), and Gen 3 (8 GT/s).

PCI-E Port Link Status

PCI-E Port Link Max

PCI-E Port Link Speed

PCI-E Port Max Payload Size

Select Auto for the system BIOS to automatically set the maximum payload value for a PCI-E device to enhance system performance. The options are 128B, 256B, and Auto.
P1_NVMe1

Link Speed
Use this feature to select the link speed for the PCIe port. The options are Auto, Gen 1 (2.5 GT/s), Gen 2 (5 GT/s), and Gen 3 (8 GT/s).

PCI-E Port Link Status
PCI-E Port Link Max
PCI-E Port Link Speed
PCI-E Port Max Payload Size
Select Auto for the system BIOS to automatically set the maximum payload value for a PCI-E device to enhance system performance. The options are 128B, 256B, and Auto.

AOC-URN2-i2XS NVME1
(This menu and options appear only if your Ultra riser card includes NVMe ports. The AOC model varies with your server model)

Link Speed
This feature allows the user to select PCI-E support for the device installed in the system. The options are Auto, Gen 1 (2.5 GT/s), Gen 2 (5 GT/s), and Gen 3 (8 GT/s).

PCI-E Port Link Status
PCI-E Port Link Max
PCI-E Port Link Speed
PCI-E Port Max Payload Size
Select Auto for the system BIOS to automatically set the maximum payload value for a PCI-E device to enhance system performance. The options are 128B, 256B, and Auto.

AOC-URN2-i2XS NVME2
(This menu and options appear only if your Ultra riser card includes NVMe ports. The AOC model varies with your server model)

Link Speed
This feature allows the user to select PCI-E support for the device installed in the system. The options are Auto, Gen 1 (2.5 GT/s), Gen 2 (5 GT/s), and Gen 3 (8 GT/s).

PCI-E Port Link Status
PCI-E Port Link Max

PCI-E Port Link Speed

PCI-E Port Max Payload Size
Select Auto for the system BIOS to automatically set the maximum payload value for a PCI-E device to enhance system performance. The options are 128B, 256B, and Auto.

▶AOC-URN2-i2XS SLOT1
(This menu and options appear only if your Ultra riser card includes NVMe ports. The AOC model varies with your server model)

Link Speed
This feature allows the user to select PCI-E support for the device installed in the system. The options are Auto, Gen 1 (2.5 GT/s), Gen 2 (5 GT/s), and Gen 3 (8 GT/s).

PCI-E Port Link Status

PCI-E Port Link Max

PCI-E Port Link Speed

PCI-E Port Max Payload Size
Select Auto for the system BIOS to automatically set the maximum payload value for a PCI-E device to enhance system performance. The options are 128B, 256B, and Auto.

▶CPU2 Configuration

IOU0 (IIO PCIe Br1)
This feature configures the PCI-E port Bifurcation setting for a PCI-E port specified by the user. The options are x4x4x4x4, x4x4x8, x8x4x4, x8x8, x16, and Auto.

IOU1 (IIO PCIe Br2)
This feature configures the PCI-E port Bifurcation setting for a PCI-E port specified by the user. The options are x4x4x4x4, x4x4x8, x8x4x4, x8x8, x16, and Auto.

IOU2 (IIO PCIe Br3)
This feature configures the PCI-E port Bifurcation setting for a PCI-E port specified by the user. The options are x4x4x4x4, x4x4x8, x8x4x4, x8x8, x16, and Auto.
RSC-R1UW-E8R SLOT1

Link Speed
This feature allows the user to select PCI-E support for the device installed in the system. The options are **Auto**, Gen 1 (2.5 GT/s), Gen 2 (5 GT/s), and Gen 3 (8 GT/s).

PCI-E Port Link Status

PCI-E Port Link Max

PCI-E Port Link Speed

PCI-E Port Max Payload Size
Select Auto for the system BIOS to automatically set the maximum payload value for a PCI-E device to enhance system performance. The options are 128B, 256B, and **Auto**.

P2_NVMe0

Link Speed
This feature allows the user to select PCI-E support for the device installed in the system. The options are **Auto**, Gen 1 (2.5 GT/s), Gen 2 (5 GT/s), and Gen 3 (8 GT/s).

PCI-E Port Link Status

PCI-E Port Link Max

PCI-E Port Link Speed

PCI-E Port Max Payload Size
Select Auto for the system BIOS to automatically set the maximum payload value for a PCI-E device to enhance system performance. The options are 128B, 256B, and **Auto**.

P2_NVMe1

Link Speed
This feature allows the user to select PCI-E support for the device installed in the system. The options are **Auto**, Gen 1 (2.5 GT/s), Gen 2 (5 GT/s), and Gen 3 (8 GT/s).

PCI-E Port Link Status

PCI-E Port Link Max

PCI-E Port Link Speed
PCI-E Port Max Payload Size -
Select Auto for the system BIOS to automatically set the maximum payload value for a PCI-E device to enhance system performance. The options are 128B, 256B, and Auto.

▶ RSC-R1UW-2E16 SLOT1

Link Speed
This feature allows the user to select PCI-E support for the device installed in the system. The options are Auto, Gen 1 (2.5 GT/s), Gen 2 (5 GT/s), and Gen 3 (8 GT/s).

PCI-E Port Link Status
PCI-E Port Link Max
PCI-E Port Link Speed
PCI-E Port Max Payload Size
Select Auto for the system BIOS to automatically set the maximum payload value for a PCI-E device to enhance system performance. The options are 128B, 256B, and Auto.

▶ RSC-R1UW-2E16 SLOT2

Link Speed
This feature allows the user to select PCI-E support for the device installed in the system. The options are Auto, Gen 1 (2.5 GT/s), Gen 2 (5 GT/s), and Gen 3 (8 GT/s).

PCI-E Port Link Status
PCI-E Port Link Max
PCI-E Port Link Speed
PCI-E Port Max Payload Size
Select Auto for the system BIOS to automatically set the maximum payload value for a PCI-E device to enhance system performance. The options are 128B, 256B, and Auto.

▶ IOAT (Intel® IO Acceleration) Configuration

Disable TPH
Select Yes to deactivate TLP Processing Hint support. The options are No and Yes.
Prioritize TPH
Use this feature to enable the prioritize TPH support. The options are Enable and Disable.

Relaxed Ordering
Select Enable to enable Relaxed Ordering support which will allow certain transactions to violate the strict-ordering rules of PCI bus for a transaction to be completed prior to other transactions that have already been enqueued. The options are Disable and Enable.

► Intel® VT for Directed I/O (VT-d)

Intel® VT for Directed I/O (VT-d)
Select Enable to use Intel® Virtualization Technology support for Direct I/O VT-d support by reporting the I/O device assignments to the VMM (Virtual Machine Monitor) through the DMAR ACPI Tables. This feature offers fully-protected I/O resource sharing across Intel® platforms, providing greater reliability, security and availability in networking and data-sharing. The options are Enable and Disable.

ACS Control
The options Enable programs the ACS only to chipset PCEe Root ports bridges. Disable programs ACS to all PCIe bridges.

Interrupt Remapping
Select Enable for Interrupt Remapping support to enhance system performance. The options are Enable and Disable.

PassThrough DMA
Select Enable to use the Non-Isoch VT_D engine pass through DMA support. The options are Enable and Disable.

ATS
Select Enable to use the Non-Isoch VT_D engine ATS support. The options are Enable and Disable.

Posted Interrupt
Use this feature to enable VT_D posted interrupt. The options are Enable and Disable.

Coherency Support (Non-Isoch)
Select Enable for the Non-Isoch VT-d engine to pass through DMA (Direct Memory Access) to enhance system performance. The options are Enable and Disable.
Intel® VMD technology

This section describes the configuration settings for the Intel® Volume Management Device (VMD) Technology.

Note: After you’ve enabled VMD on a PCI-E slot of your choice, this PCI-E slot will be dedicated for VMD use only, and it will no longer support any PCI-E device. To re-activate this slot for PCI-E use, please disable VMD.

Intel® VMD for Volume Management Device on CPU1

Intel® VMD for Volume Management Device for PStack1
Select Enable to use the Intel Volume Management Device Technology for this stack. The options are **Disable** and **Enable**.

*If this feature is set to Enable, the following features are available:

- **P1_NVMe0 VMD**
 Select Enable to use the Intel Volume Management Device Technology for this device. The options are **Disable** and **Enable**.

- **P1_NVMe1 VMD**
 Select Enable to use the Intel Volume Management Device Technology for this device. The options are **Disable** and **Enable**.

- **Hot Plug Capable**
 Use this feature to enable the hot plug support for PCIe root ports 1A–1D. The options are **Disable** and **Enable**.

Intel® VMD for Volume Management Device for PStack1
Select Enable to use the Intel Volume Management Device Technology for this stack. The options are **Disable** and **Enable**.

*If this feature is set to Enable, the following features are available: *(Note: This menu and options appear only if your Ultra Riser card includes NVMe ports.)*

- **AOC-URN2-i2XS* NVME1 VMD**
 (*The AOC model varies with your server model.*)
 Select Enable to use the Intel Volume Management Device Technology for this device. The options are **Disable** and **Enable**.

- **AOC-URN2-i2XS* NVME2 VMD**
 (*The AOC model varies with your server model.*)
 Select Enable to use the Intel Volume Management Device Technology for this device. The options are **Disable** and **Enable**.
Hot Plug Capable

Use this feature to enable the hot plug support for PCIe root ports 2A–2D. The options are Disable and **Enable**.

Intel® VMD for Volume Management Device for PStack2

Select Enable to use the Intel Volume Management Device Technology for this stack. The options are Disable and **Enable**.

*If this feature is set to **Enable**, the following features are available: (Note: This menu and options appear only if your Ultra Riser card includes NVMe ports.)*

AOC-URN2-i2XS* SLOT1 VMD

(*The AOC model varies with your server model.)*

Select Enable to use the Intel Volume Management Device Technology for this device. The options are Disable and **Enable**.

Hot Plug Capable

Use this feature to enable the hot plug support for PCIe root ports 3A–3D. The options are Disable and **Enable**.

Intel® VMD for Volume Management Device on CPU2

Intel® VMD for Volume Management Device for PStack1

Select Enable to use the Intel Volume Management Device Technology for this stack. The options are Disable and **Enable**.

*If this feature is set to **Enable**, the following features are available:*

RSC-R1UW-E8R SLOT1 VMD

Select Enable to use the Intel Volume Management Device Technology for this root port. The options are Disable and **Enable**.

P2_NVMe0 VMD

Select Enable to use the Intel Volume Management Device Technology for this device. The options are Disable and **Enable**.

P2_NVMe1 VMD

Select Enable to use the Intel Volume Management Device Technology for this device. The options are Disable and **Enable**.

Hot Plug Capable

Use this feature to enable the hot plug support for PCIe root ports 1A–1D. The options are Disable and **Enable**.

Intel® VMD for Volume Management Device for PStack1

Select Enable to use the Intel Volume Management Device Technology for this stack. The options are Disable and **Enable**.
*If this feature is set to Enable, the following features are available:

RSC-R1UW-2E16 SLOT1 VMD
Select Enable to use the Intel Volume Management Device Technology for this root port. The options are Disable and Enable.

Hot Plug Capable
Use this feature to enable the hot plug support for PCIe root ports 2A–2D. The options are Disable and Enable.

Intel® VMD for Volume Management Device for PStack2
Select Enable to use the Intel Volume Management Device Technology for this stack. The options are Disable and Enable.

*If this feature is set to Enable, the following features are available:

RSC-R1UW-2E16 SLOT2 VMD
Select Enable to use the Intel Volume Management Device Technology for this root port. The options are Disable and Enable.

Hot Plug Capable
Use this feature to enable the hot plug support for PCIe root ports 3A–3D. The options are Disable and Enable.

IIO-PCIE Express Global Options

PCI-E Completion Timeout Disable
Use this feature for PCI-E Completion Timeout support for electric tuning. The options are Yes, No, and Per-Port.

South Bridge

The following South Bridge information will be displayed:

- USB Module Version
- USB Devices

Legacy USB Support
Select Enabled to support onboard legacy USB devices. Select Auto to disable legacy support if there are no legacy USB devices present. Select Disable to have all USB devices available for EFI applications only. The options are Enabled, Disabled, and Auto.

XHCI Hand-off
This is a work-around solution for operating systems that do not support XHCI (Extensible Host Controller Interface) hand-off. The XHCI ownership change should be claimed by the XHCI driver. The options are Enabled and Disabled.
Port 60/64 Emulation
Select Enabled for I/O port 60h/64h emulation support, which will provide complete legacy USB keyboard support for the operating systems that do not support legacy USB devices. The options are Disabled and Enabled.

► Server ME Configuration
This feature displays the following system ME configuration settings.
- Operational Firmware Version
- Backup Firmware Version
- Recovery Firmware Version
- ME Firmware Status #1
- ME Firmware Status #2
 - Current State
 - Error Code

► PCH SATA Configuration
SATA Controller
This feature enables or disables the onboard SATA controller supported by the Intel® PCH chip. The options are Disable and Enable.

Configure SATA as
Select AHCI to configure a SATA drive specified by the user as an AHCI drive. Select RAID to configure a SATA drive specified by the user as a RAID drive. The options are AHCI and RAID.

SATA HDD Unlock
Select Enable to unlock the HDD password. The options are Disable and Enable.

Aggressive Link Power Management
When this feature is set to Enable, the SATA AHCI controller manages the power usage of the SATA link. The controller will put the link to a low power state when the I/O is inactive for an extended period of time, and the power state will return to normal when the I/O becomes active. The options are Disable and Enable.

*If the feature, Configure SATA as, is set to AHCI, the following features are available:
SATA Port 0~ Port 7
This feature displays the information detected on the installed SATA drive on the particular SATA port.

- Model number of drive and capacity
- Software Preserve Support

Hot Plug (SATA Port 0~ Port 7)
Select Enabled to enable a SATA port specified by the user. The options are Disable and Enable.

Spin Up Device (SATA Port 0~ Port 7)
On an edge detect from 0 to 1, set this feature to allow the PCH to initialize the device. The options are Disable and Enable.

SATA Device Type (SATA Port 0~ Port 7)
Use this feature to specify if the SATA port specified by the user should be connected to a Solid State drive or a Hard Disk Drive. The options are Hard Disk Drive and Solid State Drive.

*If the feature, Configure SATA as, is set to RAID, the following features are available:

SATA RSTe Boot Info
Select Enable to provide the full int13h support for SATA controller attached devices. The options are Disable and Enable.

Aggressive Link Power Management
When this feature is set to Enable, the SATA AHCI controller manages the power usage of the SATA link. The controller will put the link to a low power state when the I/O is inactive for an extended period of time, and the power state will return to normal when the I/O becomes active. The options are Disable and Enable.

SATA RAID Option ROM/UEFI Driver
Select EFI to load the EFI driver for system boot. Select Legacy to load a legacy driver for system boot. The options are Disable, EFI, and Legacy.

SATA Port 0~ Port 7
This feature displays the information detected on the installed SATA drive on the particular SATA port.

- Model number of drive and capacity
- Software Preserve Support
Hot Plug (SATA Port 0~ Port 7)
Select Enabled to enable a SATA port specified by the user. The options are **Disable** and **Enable**.

Spin Up Device (SATA Port 0~ Port 7)
On an edge detect from 0 to 1, set this feature to allow the PCH to initialize the device. The options are **Disable** and **Enable**.

SATA Device Type (SATA Port 0~ Port 7)
Use this feature to specify if the SATA port specified by the user should be connected to a Solid State drive or a Hard Disk Drive. The options are **Hard Disk Drive** and **Solid State Drive**.

▶ **PCH sSATA Configuration**

sSATA Controller
This feature enables or disables the onboard SATA controller supported by the Intel® PCH chip. The options are **Enable** and **Disable**.

Configure sSATA as
Select AHCI to configure a SATA drive specified by the user as an AHCI drive. Select RAID to configure a SATA drive specified by the user as a RAID drive. The options are **AHCI** and **RAID**.

SATA HDD Unlock
Select Enable to unlock the HDD password. The options are **Disable** and **Enable**.

Aggressive Link Power Management
When this feature is set to Enable, the SATA AHCI controller manages the power usage of the SATA link. The controller will put the link to a low power state when the I/O is inactive for an extended period of time, and the power state will return to normal when the I/O becomes active. The options are **Disable** and **Enable**.

If the feature, Configure sSATA as, is set to AHCI, the following features are available:

sSATA Port 0~ Port 5
This feature displays the information detected on the installed SATA drive on the particular SATA port.
- Model number of drive and capacity
- Software Preserve Support
Hot Plug (sSATA Port 0~ Port 5)
Select Enabled to enable a SATA port specified by the user. The options are **Disable** and Enable.

Spin Up Device (sSATA Port 0~ Port 5)
On an edge detect from 0 to 1, set this feature to allow the PCH to initialize the device. The options are **Disable** and Enable.

sSATA Device Type (sSATA Port 0~ Port 5)
Use this feature to specify if the SATA port specified by the user should be connected to a Solid State drive or a Hard Disk Drive. The options are **Hard Disk Drive** and **Solid State Drive**.

*If the feature, Configure SATA as, is set to RAID, the following features are available:

sSATA RSTe Boot Info
Select Enable to provide the full int13h support for SATA controller attached devices. The options are **Disable** and **Enable**.

sSATA RAID Option ROM/UEFI Driver
Select EFI to load the EFI driver for system boot. Select Legacy to load a legacy driver for system boot. The options are **Disable**, **EFI**, and **Legacy**.

sSATA Port 0~ Port 5
This feature displays the information detected on the installed SATA drive on the particular SATA port.
- Model number of drive and capacity
- Software Preserve Support

Hot Plug (sSATA Port 0~ Port 5)
Select Enabled to enable a SATA port specified by the user. The options are **Disable** and Enable.

Spin Up Device (sSATA Port 0~ Port 5)
On an edge detect from 0 to 1, set this feature to allow the PCH to initialize the device. The options are **Disable** and Enable.

sSATA Device Type (sSATA Port 0~ Port 5)
Use this feature to specify if the SATA port specified by the user should be connected to a Solid State drive or a Hard Disk Drive. The options are **Hard Disk Drive** and **Solid State Drive**.
Chapter 6: UEFI BIOS

PCIe/PCI/PnP Configuration

The following information will be displayed:

- PCI Bus Driver Version

PCI Devices Common Settings:

Above 4G Decoding (Available if the system supports 64-bit PCI decoding)
Select Enabled to decode a PCI device that supports 64-bit in the space above 4G Address. The options are Disabled and Enabled.

SR-IOV Support
Use this feature to enable or disable Single Root IO Virtualization support. The options are Disabled and Enabled.

MMIO High Base
Use this feature to select the base memory size according to memory-address mapping for the IO hub. The options are 56T, 40T, 24T, 16T, 4T, and 1T.

MMIO High Granularity Size
Use this feature to select the high memory size according to memory-address mapping for the IO hub. The options are 1G, 4G, 16G, 64G, 256G, and 1024G.

PCI PERR/SERR Support
Select Enabled to activate PCI Error and System Error report handling. The options are Disabled and Enabled.

Maximum Read Request
Select Auto to allow the system BIOS to automatically set the maximum read request size for a PCI-E device to enhance system performance. The options are Auto, 128 Bytes, 256 Bytes, 512 Bytes, 1024 Bytes, 2048 Bytes, and 4096 Bytes.

MMCFG Base
Use this feature to select the default value for the PCI MMIO (Memory-Mapped IO) base address. The options are 1G, 1.5G, 1.75G, 2G, 2.25G, and 3G.

NVMe Firmware Source
Use this feature to select the NVMe firmware to support booting. The options are Vendor Defined Firmware and AMI Native Support. The default option, Vendor Defined Firmware, is pre-installed on the drive and may resolve errata or enable innovative functions for the drive. The other option, AMI Native Support, is offered by the BIOS with a generic method.

VGA Priority
Use this feature to select the graphics device to be used as the primary video display for system boot. The options are Onboard and Offboard.
AOC-URN2-i2XS* SLOT1 PCI-E X8 OPROM
(*The AOC model varies with your server model.)
Select Disabled to deactivate the selected slot, Legacy to activate the slot in legacy mode, and EFI to activate the slot in EFI mode. The options are Disabled, Legacy, and EFI.

RSC-R1UW-E8R SLOT1 PCI-E x8 OPROM
RSC-R1UW-2E16 SLOT1 PCI-E X16 OPROM
RSC-R1UW-2E16 SLOT2 PCI-E X16 OPROM
Select Disabled to deactivate the selected slot, Legacy to activate the slot in legacy mode, and EFI to activate the slot in EFI mode. The options are Disabled, Legacy, and EFI.

Onboard LAN Option ROM Type
Select an option to enable Option ROM support to boot the computer using a device specified by the user. The options are Legacy and EFI.

Onboard LAN1 Option ROM
Onboard LAN2 Option ROM
Use the above two features to select the type of device installed in a LAN port specified by the user for system boot. The default setting for Onboard LAN1 Option ROM is PXE, and the default setting for Onboard LAN2 Option ROM is Disabled.

Onboard NVMe1 Option ROM
Onboard NVMe2 Option ROM
Onboard NVMe3 Option ROM
Onboard NVMe4 Option ROM
Use the above four features to select the type of the device installed on an NVMe port specified by the user for system boot. The options are Disabled, Legacy, and EFI.

Onboard Video Option ROM
Select Legacy to boot the system using a legacy video device installed on the motherboard. The options are Disabled, Legacy, and EFI.

Network Stack Configuration

Network Stack
Select Enabled to enable UEFI (Unified Extensible Firmware Interface) for network stack support. The options are Disabled and Enabled.

*If the feature "Network Stack" is set to Enabled, the following features will become available for user's configuration:

Ipv4 PXE Support
Select Enabled to enable Ipv4 PXE boot support. The options are Disabled and Enabled.
Ipv4 HTTP Support
Select Enabled to enable Ipv4 HTTP boot support. The options are Disabled and Enabled.

Ipv6 PXE Support
Select Enabled to enable Ipv6 PXE boot support. The options are Disabled and Enabled.

Ipv6 HTTP Support
Select Enabled to enable Ipv6 HTTP boot support. The options are Disabled and Enabled.

PXE boot wait time
Use this option to specify the wait time to press the ESC key to abort the PXE boot. Press "+" or "-" on your keyboard to change the value. The default setting is 0.

Media detect count
Use this option to specify the number of times media will be checked. Press "+" or "-" on your keyboard to change the value. The default setting is 1.

Super IO Configuration

Super IO Configuration
The following Super IO information will be displayed:
• Super IO Chip AST2500

Serial Port 1 Configuration

Serial Port 1 Configuration
This submenu allows the user the configure settings of Serial Port 1.

Serial Port 1
Select Enabled to enable the selected onboard serial port. The options are Disabled and Enabled.

Device Settings
This feature displays the status of a serial part specified by the user.

Change Settings
This feature specifies the base I/O port address and the Interrupt Request address of a serial port specified by the user. Select Auto to allow the BIOS to automatically assign the base I/O and IRQ address. The options are Auto, (IO=3F8h; IRQ=4;), (IO=3F8h; IRQ=3, 4, 5, 6, 7, 9, 10, 11, 12;), (IO=2F8h; IRQ=3, 4, 5, 6, 7, 9, 10, 11, 12;), (IO=3E8h; IRQ=3, 4, 5, 6, 7, 9, 10, 11, 12;), and (IO=2E8h; IRQ=3, 4, 5, 6, 7, 9, 10, 11, 12;).
Serial Port 2 Configuration

Serial Port 2 Configuration
This submenu allows the user to configure settings of Serial Port 2.

Serial Port 2
Select Enabled to enable the selected onboard serial port. The options are Disabled and Enabled.

Device Settings
This feature displays the status of a serial part specified by the user.

Change Settings
This feature specifies the base I/O port address and the Interrupt Request address of a serial port specified by the user. Select Auto to allow the BIOS to automatically assign the base I/O and IRQ address. The options are Auto, (IO=2F8h; IRQ=3;), (IO=3F8h; IRQ=3, 4, 5, 6, 7, 9, 10, 11, 12;), (IO=2F8h; IRQ=3, 4, 5, 6, 7, 9, 10, 11, 12;), (IO=2E8h; IRQ=3, 4, 5, 6, 7, 9, 10, 11, 12;), and (IO=2E8h; IRQ=3, 4, 5, 6, 7, 9, 10, 11, 12;).

Serial Port 2 Attribute (Available for Serial Port 2 only)
Select SOL to use COM Port 2 as a Serial Over LAN (SOL) port for console redirection. The options are SOL and COM.

Serial Port Console Redirection

COM1
Console Redirection
Select Enabled to enable console redirection support for a serial port specified by the user. The options are Disabled and Enabled.

*If the feature above is set to Enabled, the following features will become available for user's configuration:

Console Redirection Settings
This feature allows the user to specify how the host computer will exchange data with the client computer, which is the remote computer used by the user.

COM1
Console Redirection Settings
Terminal Type
This feature allows the user to select the target terminal emulation type for Console Redirection. Select VT100 to use the ASCII Character set. Select VT100+ to add color
and function key support. Select ANSI to use the Extended ASCII Character Set. Select VT-UTF8 to use UTF8 encoding to map Unicode characters into one or more bytes. The options are VT100, VT100+, VT-UTF8, and ANSI.

Bits Per second
Use this feature to set the transmission speed for a serial port used in Console Redirection. Make sure that the same speed is used in the host computer and the client computer. A lower transmission speed may be required for long and busy lines. The options are 9600, 19200, 38400, 57600, and **115200** (bits per second).

Data Bits
Use this feature to set the data transmission size for Console Redirection. The options are 7 and 8.

Parity
A parity bit can be sent along with regular data bits to detect data transmission errors. Select Even if the parity bit is set to 0, and the number of 1's in data bits is even. Select Odd if the parity bit is set to 0, and the number of 1's in data bits is odd. Select None if you do not want to send a parity bit with your data bits in transmission. Select Mark to add a mark as a parity bit to be sent along with the data bits. Select Space to add a Space as a parity bit to be sent with your data bits. The options are None, Even, Odd, Mark, and Space.

Stop Bits
A stop bit indicates the end of a serial data packet. Select 1 Stop Bit for standard serial data communication. Select 2 Stop Bits if slower devices are used. The options are 1 and 2.

Flow Control
Use this feature to set the flow control for Console Redirection to prevent data loss caused by buffer overflow. Send a "Stop" signal to stop sending data when the receiving buffer is full. Send a "Start" signal to start sending data when the receiving buffer is empty. The options are None and Hardware RTS/CTS.

VT-UTF8 Combo Key Support
Select Enabled to enable VT-UTF8 Combination Key support for ANSI/VT100 terminals. The options are Disabled and Enabled.

Recorder Mode
Select Enabled to capture the data displayed on a terminal and send it as text messages to a remote server. The options are Disabled and Enabled.

Resolution 100x31
Select Enabled for extended-terminal resolution support. The options are Disabled and Enabled.
Legacy OS Redirection Resolution
Use this feature to select the number of rows and columns used in Console Redirection for legacy OS support. The options are **80x24** and **80x25**.

Putty KeyPad
This feature selects the settings for the function keys and the key pad used for Putty, which is a terminal emulator designed for the Windows OS. The options are **VT100**, **LINUX**, **XTERM**, **SC0**, **ESCN**, and **VT400**.

Redirection After BIOS POST
Use this feature to enable or disable legacy console redirection after BIOS POST. When this feature is set to BootLoader, legacy console redirection is disabled before booting the OS. When this feature is set to Always Enable, legacy console redirection remains enabled when booting the OS. The options are **Always Enable** and **BootLoader**.

SOL

Console Redirection
Select Enabled to enable console redirection support for a serial port specified by the user. The options are **Disabled** and **Enabled**.

*If the feature above is set to Enabled, the following features will become available for user's configuration:

▶ Console Redirection Settings

This feature allows the user to specify how the host computer will exchange data with the client computer, which is the remote computer used by the user.

SOL

Console Redirection Settings

Terminal Type
This feature allows the user to select the target terminal emulation type for Console Redirection. Select VT100 to use the ASCII Character set. Select VT100+ to add color and function key support. Select ANSI to use the Extended ASCII Character Set. Select VT-UTF8 to use UTF8 encoding to map Unicode characters into one or more bytes. The options are **VT100**, **VT100+**, **VT-UTF8**, and **ANSI**.

Bits Per second
Use this feature to set the transmission speed for a serial port used in Console Redirection. Make sure that the same speed is used in the host computer and the client computer. A lower transmission speed may be required for long and busy lines. The options are 9600, 19200, 38400, 57600, and **115200** (bits per second).
Data Bits
Use this feature to set the data transmission size for Console Redirection. The options are 7 and 8.

Parity
A parity bit can be sent along with regular data bits to detect data transmission errors. Select Even if the parity bit is set to 0, and the number of 1's in data bits is even. Select Odd if the parity bit is set to 0, and the number of 1's in data bits is odd. Select None if you do not want to send a parity bit with your data bits in transmission. Select Mark to add a mark as a parity bit to be sent along with the data bits. Select Space to add a Space as a parity bit to be sent with your data bits. The options are None, Even, Odd, Mark, and Space.

Stop Bits
A stop bit indicates the end of a serial data packet. Select 1 Stop Bit for standard serial data communication. Select 2 Stop Bits if slower devices are used. The options are 1 and 2.

Flow Control
Use this feature to set the flow control for Console Redirection to prevent data loss caused by buffer overflow. Send a "Stop" signal to stop sending data when the receiving buffer is full. Send a "Start" signal to start sending data when the receiving buffer is empty. The options are None and Hardware RTS/CTS.

VT-UTF8 Combo Key Support
Select Enabled to enable VT-UTF8 Combination Key support for ANSI/VT100 terminals. The options are Disabled and Enabled.

Recorder Mode
Select Enabled to capture the data displayed on a terminal and send it as text messages to a remote server. The options are Disabled and Enabled.

Resolution 100x31
Select Enabled for extended-terminal resolution support. The options are Disabled and Enabled.

Legacy OS Redirection Resolution
Use this feature to select the number of rows and columns used in Console Redirection for legacy OS support. The options are 80x24 and 80x25.

Putty KeyPad
This feature selects the settings for the function keys and the key pad used for Putty, which is a terminal emulator designed for the Windows OS. The options are VT100, LINUX, XTERMR6, SC0, ESCN, and VT400.
Redirection After BIOS POST
Use this feature to enable or disable legacy console redirection after BIOS POST. When this feature is set to BootLoader, legacy console redirection is disabled before booting the OS. When this feature is set to Always Enable, legacy console redirection remains enabled when booting the OS. The options are Always Enable and BootLoader.

Legacy Console Redirection

Legacy Serial Redirection Port
Use the feature to select the COM port to display redirection of Legacy OS and Legacy OPROM messages. The options are COM1 and SOL.

Serial Port for Out-of-Band Management/Windows Emergency Management Services (EMS)
The submenu allows the user to configure Console Redirection settings to support Out-of-Band Serial Port management.

Console Redirection
Select Enabled to use a COM port selected by the user for EMS Console Redirection. The options are Disabled and Enabled.

*If the feature above is set to Enabled, the following features will become available for user's configuration:

Console Redirection Settings
This feature allows the user to specify how the host computer will exchange data with the client computer, which is the remote computer used by the user.

Out-of-Band Management Port
The feature selects a serial port in a client server to be used by the Windows Emergency Management Services (EMS) to communicate with a remote host server. The options are COM1 and SOL.

Terminal Type
Use this feature to select the target terminal emulation type for Console Redirection. Select VT100 to use the ASCII character set. Select VT100+ to add color and function key support. Select ANSI to use the extended ASCII character set. Select VT-UTF8 to use UTF8 encoding to map Unicode characters into one or more bytes. The options are VT100, VT100+, VT-UTF8, and ANSI.

Bits Per second
This feature sets the transmission speed for a serial port used in Console Redirection. Make sure that the same speed is used in both host computer and the client computer. A
lower transmission speed may be required for long and busy lines. The options are 9600, 19200, 57600, and **115200** (bits per second).

Flow Control

Use this feature to set the flow control for Console Redirection to prevent data loss caused by buffer overflow. Send a "Stop" signal to stop data-sending when the receiving buffer is full. Send a "Start" signal to start data-sending when the receiving buffer is empty. The options are **None**, Hardware RTS/CTS, and Software Xon/Xoff.

The settings below are displayed:

- **Data Bits, Parity, Stop Bits**

▶ **ACPI Settings**

NUMA (Available when the OS supports this feature)

Select Enabled to enable Non-Uniform Memory Access support to enhance system performance. The options are Disabled and **Enabled**.

WHEA Support

Select Enabled to support the Windows Hardware Error Architecture (WHEA) platform and provide a common infrastructure for the system to handle hardware errors within the Windows OS environment to reduce system crashes and to enhance system recovery and health monitoring. The options are Disabled and **Enabled**.

High Precision Event Timer

Select Enabled to activate the High Precision Event Timer (HPET) that produces periodic interrupts at a much higher frequency than a Real-time Clock (RTC) does in synchronizing multimedia streams, providing smooth playback and reducing the dependency on other timestamp calculation devices, such as an x86 RDTSC Instruction embedded in the CPU. The High Performance Event Timer is used to replace the 8254 Programmable Interval Timer. The options are Disabled and **Enabled**.

▶ **Trusted Computing (Available when a TPM device is installed and detected by the BIOS)**

Security Device Support

If a Trusted Platform Module (TPM) device is connected to the TPM header (JTPM1) on the motherboard and this feature is set to Enable, onboard security devices will be available for the TPM support to enhance data integrity and network security. Please reboot the system for a change on this setting to take effect. The options are Disable and **Enable**.

*If the feature above is set to Enable, the following features will become available for user's configuration:

The following Platform Configuration Register information will be displayed:
• Active PCR banks
• Available PCR banks

SHA-1 PCR Bank
Use this feature to disable or enable the SHA-1 Platform Configuration Register (PCR) bank for the installed TPM device. The options are Disabled and Enabled.

SHA256 PCR Bank
Use this feature to disable or enable the SHA256 Platform Configuration Register (PCR) bank for the installed TPM device. The options are Disabled and Enabled.

Pending operation
Use this feature to schedule a TPM-related operation to be performed by a security device for system data integrity. Your system will reboot to carry out a pending TPM operation. The options are None and TPM Clear.

Platform Hierarchy
Use this feature to disable or enable platform hierarchy for platform protection. The options are Disabled and Enabled.

Storage Hierarchy
Use this feature to disable or enable storage hierarchy for cryptographic protection. The options are Disabled and Enabled.

Endorsement Hierarchy
Use this feature to disable or enable endorsement hierarchy for privacy control. The options are Disabled and Enabled.

PH Randomization
Use this feature to disable or enable Platform Hierarchy Randomization. The options are Disabled and Enabled.

TXT Support
Intel TXT (Trusted Execution Technology) helps protect against software-based attacks and ensures protection, confidentiality, and integrity of data stored or created on the system. Use this feature to enable or disable TXT Support. The options are Disabled and Enabled.
HTTP Boot Configuration

Use this feature to configure HTTP Boot settings for your system.

HTTP Boot One Time

If this feature is set to Enabled, the system will automatically boot into the HttpBoot setting that has been previously configured when it is powered up the first time. The options are Disabled and Enabled.

Input the Description

This feature allows the user to input the description of the boot.

Boot URI

This feature allows the user to boot the system from a network connection.

TLS Authenticate Configuration

When this submenu is selected, the following features will be displayed:

Server CA Configuration

This feature allows the user to configure the client certificate that is to be used by the server.

Enroll Certification

This feature allows the user to enroll the certificate in the system.

Enroll Cert (Certification) Using File

This feature allows the user to enroll the security certificate in the system by using a file.

Cert (Certification) GUID (Global Unique Identifier)

This feature displays the GUID for this system.

Commit Changes and Exit

Select this feature to keep the changes you have made and exit from the system.

Discard Changes and Exit

Select this feature to discard the changes you have made and exit from the system.
► Delete Certification

If this feature is set to Enable, the certificate enrolled in the system will be deleted. The options are Enable and Disable.

► iSCSI Configuration

iSCSI Initiator Name
This feature allows the user to enter the unique name of the iSCSI Initiator in IQN format. Once the name of the iSCSI Initiator is entered into the system, configure the proper settings for the following features.

► Add an Attempt

► Delete Attempts

► Change Attempt order

► Intel® Virtual RAID on CPU

This submenu displays the information of the Intel VMD controllers as detected by the BIOS.

► Intel® Optane(TM) DC Persistent Memory Configuration
(Available when a DCPMM device is plugged in)

This submenu configures DCPMM device parameters and displays driver version.

Note: All DCPMM items and strings displayed on the BIOS screen are provided by Intel and may vary with the driver version.

Version: 1.0.0.3380

Select an action below.

Detected DIMMs: This feature displays the number of DIMMs as detected by the system. All DIMMs are healthy.
DIMMs

This feature configures and displays the information of a selected DCPMM.

Select a specific DIMM to view more information.

DIMMs on socket 0x0000: *(an example socket ID; several may be available)*

DIMM ID 0x0001 *(an example DIMM ID; several may be available)*

Press <Enter> and the following information regarding this DIMM is displayed.

View settings or select an action below.

(The values below are examples; yours may vary)

<table>
<thead>
<tr>
<th>Feature</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIMM UID</td>
<td>8089-A2-1837-0000115D</td>
</tr>
<tr>
<td>DIMM handle</td>
<td>0x0001</td>
</tr>
<tr>
<td>DIMM physical ID</td>
<td>0x0019</td>
</tr>
<tr>
<td>Manageability state</td>
<td>[Manageable]</td>
</tr>
<tr>
<td>Health state</td>
<td>[Healthy]</td>
</tr>
<tr>
<td>Health state reason</td>
<td>None</td>
</tr>
<tr>
<td>Capacity</td>
<td>252.4 GiB</td>
</tr>
<tr>
<td>Firmware version</td>
<td>01.00.00.5127</td>
</tr>
<tr>
<td>Firmware API Version</td>
<td>01.11</td>
</tr>
<tr>
<td>Lock state</td>
<td>[Disabled]</td>
</tr>
<tr>
<td>Staged firmware version</td>
<td>N/A</td>
</tr>
<tr>
<td>Firmware update status</td>
<td>Update loaded successfully</td>
</tr>
<tr>
<td>Manufacturer</td>
<td>Intel</td>
</tr>
</tbody>
</table>

Show more details +

Enable this feature to display additional information about this DIMM. The options are **Disabled** and **Enabled**.

If the feature, Show more details +, is set to Enabled, the following will be displayed:

<table>
<thead>
<tr>
<th>Feature</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serial number</td>
<td>0x0000115D</td>
</tr>
<tr>
<td>Part number</td>
<td>NMA1XBD256GQS</td>
</tr>
<tr>
<td>Socket</td>
<td>0x0</td>
</tr>
<tr>
<td>Memory controller ID</td>
<td>0x0</td>
</tr>
<tr>
<td>Specification</td>
<td>Value</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Vendor ID</td>
<td>0x8089</td>
</tr>
<tr>
<td>Device ID</td>
<td>0x5141</td>
</tr>
<tr>
<td>Subsystem vendor ID</td>
<td>0x8089</td>
</tr>
<tr>
<td>Subsystem device ID</td>
<td>0x97A</td>
</tr>
<tr>
<td>Device locator</td>
<td>P1-DIMMA2</td>
</tr>
<tr>
<td>Subsystem revision ID</td>
<td>0x18</td>
</tr>
<tr>
<td>Interface format code</td>
<td>0x0301 (Non-Energy Backed Byte Addressable)</td>
</tr>
<tr>
<td>Manufacturing info valid</td>
<td>1</td>
</tr>
<tr>
<td>Manufacturing date</td>
<td>18-37</td>
</tr>
<tr>
<td>Manufacturing location</td>
<td>0xA2</td>
</tr>
<tr>
<td>Memory type</td>
<td>Logical Non-Volatile Device</td>
</tr>
<tr>
<td>Memory bank label</td>
<td>P0_Node0_Channel0_Dimm1</td>
</tr>
<tr>
<td>Data width label [b]</td>
<td>64</td>
</tr>
<tr>
<td>Total width [b]</td>
<td>72</td>
</tr>
<tr>
<td>Speed [MHz]</td>
<td>2666</td>
</tr>
<tr>
<td>Channel ID</td>
<td>0x0000</td>
</tr>
<tr>
<td>Channel position</td>
<td>1</td>
</tr>
<tr>
<td>Revision ID</td>
<td>0x0</td>
</tr>
<tr>
<td>Form factor</td>
<td>[DIMM]</td>
</tr>
<tr>
<td>Manufacturer ID</td>
<td>0x8089</td>
</tr>
<tr>
<td>Controller revision ID</td>
<td>B0 (0x0020)</td>
</tr>
<tr>
<td>Is new</td>
<td>0</td>
</tr>
<tr>
<td>Memory capacity</td>
<td>252.0 GiB</td>
</tr>
<tr>
<td>App Direct capacity</td>
<td>0 B</td>
</tr>
<tr>
<td>Unconfigured capacity</td>
<td>0 B</td>
</tr>
<tr>
<td>Inaccessible capacity</td>
<td>0 B</td>
</tr>
<tr>
<td>Reserved capacity</td>
<td>465.2 MiB</td>
</tr>
<tr>
<td>Peak power budget [mW]</td>
<td>20000</td>
</tr>
<tr>
<td>Avg power budget [mW]</td>
<td>15000</td>
</tr>
<tr>
<td>Max average power budget [mW]</td>
<td>10000</td>
</tr>
</tbody>
</table>
Package sparing capable 1
Package sparing enabled 1
Package spares available 1
Configuration status [Valid]
SKU violation 0
ARS status [Completed]
Overwrite DIMM status [Not started]
Last shutdown time Fri Dec 21 17:29:23 UTC 2018
First fast refresh 0
Viral policy enable 0
Viral state 0

Latched Last shutdown status:
 PM ADR Command Received, DDRT Power Fail Command Received, PMIC 12V/ DDRT 1.2V Power Loss (PLI), Controller’s FW State Flush Complete, Write Data Flush Complete, PM Idle Received

Unlatched last shutdown status: Unknown
Security capabilities Encryption, Erase
Modes supported Memory Mode, App Direct
Boot status Success
AIT DRAM enabled [1]
Error injection enabled [0]
Media temperature injection enabled [0]
Software triggers enabled [0]
Software triggers enabled details None
Poison error injection counter 0
Poison error clear counter 0
Media temperature injection counter 0
Software triggers counter 0
Master Passphrase Enabled 0
Monitor health

Sensor Type [Health]
Value <Healthy>

Sensor Type [Controller temperature]
Value <42 °C>
Non-critical threshold 98
Critical lower threshold 99
Critical upper threshold 98
Fatal threshold 102
State [Normal]

Alarm enabled state
Use this setting to establish the non-critical threshold alarm. Choices are 1 and 0.

Sensor Type [Media temperature]
Value <39 °C>
Non-critical threshold 82
Critical lower threshold 83
Critical upper threshold 83
Fatal threshold 85
State [Normal]

Alarm enabled state
Use this setting to establish the non-critical threshold alarm. Choices are 1 and 0.

Sensor Type [Percentage remaining]
Value <100 %>
Non-critical threshold 50
State [Normal]

Alarm enabled state
Use this setting to establish the non-critical threshold alarm. Choices are 1 and 0.

Sensor Type [Latched dirty shutdown count]
Value <6>

Sensor Type [Power on time]
Value <7172661 S>
Sensor Type [Up time]
Value <345287 S>
Sensor Type [Power cycles]
Value <1783>
Sensor Type [FW error count]
Value <8>
Sensor Type [Unlatched dirty shutdown count]
Value <138>

Modify non-critical thresholds

Controller temperature [C] 98
Media temperature [C] 82
Percentage remaining [%] 50

► Apply changes

Press <Enter> to apply changes.

► Update firmware

Specify the firmware image to load on the DIMMs on the next system restart and select Update.

Current firmware version: 01.00.00.5127
Selected firmware version: None
File:
Press <Enter> and type in the file path relative to the root directory of the device containing the new firmware image file, such as "\firmware\newFirmware.bin".

Staged firmware version: N/A

► Update

Press <Enter> to update firmware.

► Configure security

Specify the security settings on ALL the DIMMs.
State: [Disabled]
Shows current state [Disabled, Frozen]

Enable security
Use this feature to enable security by entering a new passphrase. Press <Enter> to type in a new passphrase with at least one character.

Secure erase
Use this feature to erase all persistent data. The options are Yes and No

Freeze lock
Use this feature to prevent further lock state changes until the next reboot.

▶ Configure data policy

Specify the data policy settings on ALL the DIMMs.

First fast refresh state: Disabled or Enabled
Depending on the settings of the following feature, Enable/Disable first fast refresh, [Disabled] or [Enabled] will be displayed.

▶ Enable/Disable first fast refresh
Use this feature to enable/disable the feature above, First fast refresh state.

▶ Regions
Use this submenu to configure and display regions.
Current configuration

▶ Region ID1

Region ID: 0x0001
DIMM ID: 0x1011, 0x1021
ISet ID: 0x00000000000000000
Persistent memory type: App Direct
Capacity: 1004.0 GiB
Free capacity: 1044.0 GiB
Health: Pending
Socket ID: 0x0001
Memory allocation goal configuration

DIMM ID 0x001 (an example DIMM ID; several may be available)

Socket ID: 0x0001
DIMM ID: 0x1001
Memory Mode size: 0 B
App Direct #1 size: 170.0 GiB
App Direct #1 index: 1
App Direct #1 settings x6 - 4KB IMC x 4KB Channel
App Direct #2 size: 0 B
App Direct #2 index: N/A
App Direct #2 settings N/A

A reboot is required for the memory allocation goal to be processed by the BIOS.

Create goal config

Use this submenu to create goal configuration of DIMM regions.
Select the scope of the new region then set the desired sizes.

Create goal config for:
Use this feature to select target to create goal configuration. The options are Platform and Socket.

Reserved [%]:
Enter a value (0-100) to reserve a percentage of the requested DIMM capacity that will not be mapped into the system physical address space.

Memory Mode [%]:
Enter a value (0-100) to set the percentage of the total capacity to use in Memory Mode.

Persistent memory type:
Use this feature to select the type of the persistent memory capacity to create. The options are App Direct and App Direct Not interleaved.

Namespace Label version:
While creating goals, use this feature to display and modify the namespace label version to initialize. The options are 1.2 and 1.1.
Create goal config
Use this to create goal configuration of the DIMM regions.

Delete goal config
Use this to discard the region goal configuration.

Namespaces
Use this submenu to display, create, modify, and delete namespaces.
Select a namespace to view more information.
(*If a namespace has been created, it is displayed here.)

Namespace

0x00000101 Healthy
Use this feature to display details for or modify selected namespace.

View details for or modify selected namespace.
UUID 66B9E696-0E38-47B3-815E-99FFAFC26A23
ID 0x00000101
Name
Press <Enter> to type in a name of namespace.

Region 1
Health [Healthy]
Mode [None]
Block size [4096 B]
Units
Use this feature to change the units of the input namespace capacity. The options are B, MB, MiB, GB, GiB, TB, and TiB.

Capacity 125.0
Label version 1.2

Save
Use this feature to save current namespace.

▶️ Delete
Use this feature to delete current namespace.

▶️ Create namespace

Name
Press <Enter> to type in a name of namespace.

Region ID
This feature displays the region ID on which to create namespace.

Mode
Use this feature to set namespace mode. The options are None and Sector. The option, None, is for raw access only. Set this feature to Sector to guarantee powerfail write automaticity via a block translation table (BTT).

Capacity input
The options are Remaining and Manual. Set this feature to Remaining to use the maximum available capacity. Set this feature to Manual to enter the capacity manually.

Units
Use this feature to change the units of the input namespace capacity. The options are B, MB, MiB, GB, GiB, TB, and TiB.

Capacity
This feature displays the capacity of namespace.

▶️ Create namespace
Press <Enter> to create a namespace with the above configuration.

▶️ Total capacity
The following information is displayed.

Total DCPMM resource allocation across the host server.

Raw capacity: 2.9 TiB
App Direct capacity: 1004.0 GiB
Memory capacity: 0 B
Unconfigured capacity: 0 TiB
Inaccessible capacity: 3.5 GiB
Reserved capacity: 1.9 TiB

Diagnostics

Perform diagnostic tests on DIMMS.

Choose diagnostics type:

Quick diagnostics
Select Enabled to perform quick diagnostics test. The options are Disabled and Enabled.

DIMM ID 0x0001
Select Enabled to enable the diagnostics procedure for this DIMM. The options are Disabled and Enabled.

DIMM ID 0x0101
Select Enabled to enable the diagnostics procedure for this DIMM. The options are Disabled and Enabled.

(Additional DIMMs are listed if detected.)

Config diagnostics
Select Enabled to enable the platform configuration diagnostics test. The options are Disabled and Enabled.

FW diagnostics
Select Enabled to enable the firmware diagnostics test. The options are Disabled and Enabled.

Security diagnostics
Select Enabled to enable the security diagnostics test. The options are Disabled and Enabled.

Execute tests

Press <Enter> to perform the selected diagnostic tests. The following information is displayed.

TestName: Quick
State: Ok
Message:
The quick health check succeeded.
TestName: Config
State: Ok
Message:
The platform configuration check succeeded.

TestName: Security
State: Ok
Message:
The security check succeeded.

TestName: FW
State: Ok
Message:
The firmware consistency and settings check succeeded.

▶ Preferences

Use this submenu to display or modify user preferences.
View and/or modify user preferences.

Default DIMM ID:
Use this feature to modify the default display of DIMM identifiers. The options are Handle and UID.

Capacity units:
This feature is to modify the default units for displaying capacities. Use auto (x1024) or Auto_10 (x1000) to automatically select the best format. The options are Auto, Auto_10, B, MB, MiB, GB, GiB, TB, and TiB.

App Direct settings:
This feature is to view or modify the interleaving settings for creating App Direct capacity. The default setting is 4KB_4KB (Recommended).

App Direct granularity:
This feature is to or modify the minimum App Direct granularity per DIMM. The options are Recommended and 1.

▶ Driver Health

This submenu displays the health status of the drivers and controllers as detected by the system. The following information is displayed.
Intel(R) DCPMM 1.0.0.3380 Driver Healthy
Intel(R) DCPMM Controller Healthy
Intel Persistent Memory DIMM 25 Controller Healthy
Intel Persistent Memory DIMM 33 Controller Healthy
Intel Persistent Memory DIMM 41 Controller Healthy
(Additional controllers are listed if detected.)

Intel(R) DCPMM 1.0.0.3380 HII Driver Healthy
Controller 665c5c98 Child 0 Healthy

Intel(R) 10GbE Driver 7.0.19 x64 Healthy
Controller 63f38f18 Child 0 Healthy
Intel(R) Ethernet Controller 10 Gigabit X540-AT2 Healthy
Controller 63f37398 Child 0 Healthy
Intel(R) Ethernet Controller 10 Gigabit X540-AT2 Healthy

Intel(R) PRO/1000 8.5.21 PCI-E Healthy
6.4 Event Logs

Use this tab page to configure Event Log settings.

➤ Change SMBIOS Event Log Settings

Enabling/Disabling Options

SMBIOS Event Log

Change this item to enable or disable all features of the SMBIOS (System Management BIOS) Event Logging during system boot. The options are Disabled and Enabled.

Erasing Settings

Erase Event Log

If No is selected, data stored in the event log will not be erased. Select Yes, Next Reset, data in the event log will be erased upon next system reboot. Select Yes, Every Reset, data in the event log will be erased upon every system reboot. The options are No, (Yes, Next reset), and (Yes, Every reset).
When Log is Full

Select Erase Immediately for all messages to be automatically erased from the event log when the event log memory is full. The options are **Do Nothing** and **Erase Immediately**.

SMBIOS Event Log Standard Settings

Log System Boot Event

This option toggles the System Boot Event logging to enabled or disabled. The options are **Enabled** and **Disabled**.

MECI

The Multiple Event Count Increment (MECI) counter counts the number of occurrences that a duplicate event must happen before the MECI counter is incremented. This is a numeric value. The default value is **1**.

METW

The Multiple Event Time Window (METW) defines number of minutes must pass between duplicate log events before MECI is incremented. This is in minutes, from 0 to 99. The default value is **60**.

Note: After making changes on a setting, be sure to reboot the system for the changes to take effect.

View SMBIOS Event Log

This section displays the contents of the SMBIOS Event Log.
6.5 IPMI

Use this tab page to configure Intelligent Platform Management Interface (IPMI) settings.

BMC Firmware Revision
This item indicates the IPMI firmware revision used in your system.

IPMI STATUS (Baseboard Management Controller)
This item indicates the status of the IPMI firmware installed in your system.

System Event Log

Enabling/Disabling Options

SEL Components
Select Enabled for all system event logging at bootup. The options are Disabled and **Enabled**.

Erasing Settings

Erase SEL
Select Yes, On next reset to erase all system event logs upon next system reboot. Select Yes, On every reset to erase all system event logs upon each system reboot. Select No to keep all system event logs after each system reboot. The options are **No**, (Yes, On next reset), and (Yes, On every reset).
When SEL is Full
This feature allows the user to decide what the BIOS should do when the system event log is full. Select Erase Immediately to erase all events in the log when the system event log is full. The options are Do Nothing and Erase Immediately.

Note: After making changes on a setting, be sure to reboot the system for the changes to take effect.

BMC Network Configuration

BMC Network Configuration

Configure IPV4 support

IPMI LAN Selection
This item displays the IPMI LAN setting. The default setting is Failover.

IPMI Network Link Status
This item displays the IPMI Network Link status. The default setting is Shared LAN.

Update IPMI LAN Configuration
Select Yes for the BIOS to implement all IP/MAC address changes at the next system boot. The options are No and Yes.

*If the item above is set to Yes, the following items will become available for user's configuration:

Configuration Address Source
This feature allows the user to select the source of the IP address for this computer. If Static is selected, you will need to know the IP address of this computer and enter it to the system manually in the field. If DHCP is selected, the BIOS will search for a DHCP (Dynamic Host Configuration Protocol) server in the network that is attached to and request the next available IP address for this computer. The options are Static and DHCP.

This item displays the current configuration address for this computer.

Station IP Address
This item displays the Station IP address for this computer. This should be in decimal and in dotted quad form (i.e., 192.168.10.253).

Subnet Mask
This item displays the sub-network that this computer belongs to. The value of each three-digit number separated by dots should not exceed 255.

Station MAC Address
This item displays the Station MAC address for this computer. Mac addresses are 6 two-digit hexadecimal numbers.
Gateway IP Address
This item displays the Gateway IP address for this computer. This should be in decimal and in dotted quad form (i.e., 172.31.0.1).

VLAN
Use this item to enable or disable the IPMI VLAN function. The options are Disable and Enable.
*If the item above is set to Enable, the item below "VLAN ID" will become available for user's configuration:

VLAN ID
Use this item to enter the VLAN ID. The default setting is 0.

Configure IPV6 support
Lan channel 1
IPV6 Support
This item displays the IPMI LAN setting. The default setting is Enabled.
*If the item above is set to Enabled, the following items will become available for user's configuration:

Configuration Address Source
This feature allows the user to select the source of the IP address for this computer. If Static is selected, you will need to know the IP address of this computer and enter it to the system manually in the field. If DHCP is selected, the BIOS will search for a DHCP (Dynamic Host Configuration Protocol) server in the network that is attached to and request the next available IP address for this computer. The options are Unspecified, Static and DHCP.
The following information is displayed:
• Current Configuration Address source
• Station IPV6 address
• Prefix Length
• IPV6 Router1 IP Address
• IPV6 address status
• IPV6 DHCP Algorithm
6.6 Security

Use this tab page to configure Security settings.

Administrator Password
Press Enter to set the user password which is required to enter the BIOS setup utility. The length of the password should be from 3 characters to 20 characters long.

User Password
Press Enter to set the user password which is required to enter the BIOS setup utility. The length of the password should be from 3 characters to 20 characters long.

Password Check
Select Setup for the system to check for a password at Setup. Select Always for the system to check for a password at bootup or upon entering the BIOS Setup utility. The options are Setup and Always.

Secure Boot
This section displays the contents of the following secure boot features:
- System Mode
- Secure Boot
- Vendor Keys
Secure Boot
Use this item to enable secure boot. The options are Disabled and Enabled.

Secure Boot Mode
Use this item to select the secure boot mode. The options are Standard and Custom.

CSM Support
Select Enabled to support the EFI Compatibility Support Module (CSM), which provides compatibility support for traditional legacy BIOS for system boot. The options are Disabled and Enabled.

▶ Key Management
This submenu allows the user to configure the following Key Management settings.

Provision Factory Defaults
Select Enabled to install the default Secure-Boot keys set by the manufacturer. The options are Disabled and Enabled.

▶ Enroll all Factory Default Keys
Select Yes to install all default secure keys set by the manufacturer. The options are Yes and No.

▶ Enroll Efi Image
This feature allows the image to run in Secure Boot Mode. Enroll SHA256 Hash Certificate of the image into the Authorized Signature Database.

▶ Save all Secure Boot variables
This feature allows the user to decide if all secure boot variables should be saved.

Secure Boot variable: Size/Key#/Key Source

▶ Platform Key (PK)
This feature allows the user to configure the settings of the platform keys.

Set New
Use this feature to load the new platform keys (PK) from the manufacturer's defaults.
Key Exchange Keys (KEK)

Select Set New to load the KEK from the manufacturer's defaults. Select Append to add the KEK from the manufacturer's defaults list to the existing KEK. The default setting is Set New.

Authorized Signatures

Authorized Signature Database (DB) contains authorized signing certificates and digital signatures. Select Set New to load the DB from the manufacturer's defaults. Select Append to add the database from the manufacturer's defaults to the existing DB. The default setting is Set New.

Forbidden Signatures

Forbidden Signature Database (DBX) contains forbidden certificates and digital signatures. Select Set New to load the DBX from the manufacturer's defaults. Select Append to add the DBX from the manufacturer's defaults to the existing DBX. The default setting is Set New.

Authorized TimeStamps

Select Set New to load the Authorized Timestamp Database (DBT) from the manufacturer's defaults. Select Append to add the DBT from the manufacturer's defaults list to the existing DBT. The default setting is Set New.

OsRecovery Signatures

Select Set New to load the OsRecovery Signatures Database (DBR) from the manufacturer's defaults. Select Append to add the DBR from the manufacturer's defaults list to the existing DBR. The default setting is Set New.
6.7 Boot

Use this tab page to configure Boot Settings.

Boot mode select

Use this item to select the type of device that the system is going to boot from. The options are LEGACY, UEFI, and DUAL. The default setting is DUAL.

LEGACY to EFI support

Use this item to enable the EFI boot support. The options are Disabled and Enabled.

FIXED BOOT ORDER Priorities

This option prioritizes the order of bootable devices that the system to boot from. Press <Enter> on each entry from top to bottom to select devices.

If the item above set to Legacy/UEFI/Dual, the following items will be displayed:

- Legacy/UEFI/Dual Boot Order #1
- Legacy/UEFI/Dual Boot Order #2
- Legacy/UEFI/Dual Boot Order #3
- Legacy/UEFI/Dual Boot Order #4
- Legacy/UEFI/Dual Boot Order #5
- Legacy/UEFI/Dual Boot Order #6
• Legacy/UEFI/Dual Boot Order #7
• Legacy/UEFI/Dual Boot Order #8
• UEFI/Dual Boot Order #9
• Dual Boot Order #10
• Dual Boot Order #11
• Dual Boot Order #12
• Dual Boot Order #13
• Dual Boot Order #14
• Dual Boot Order #15
• Dual Boot Order #16
• Dual Boot Order #17

▶ Delete Boot Option

Use this feature to remove a pre-defined boot device from which the system will boot during startup. The options are Select one to Delete and UEFI: Built-in EFI Shell.

▶ UEFI Application Boot Priorities

This feature allows the user to specify which UEFI devices are boot devices.

Boot Option #1
The options are UEFI: Built-in EFI Shell and Disabled.

▶ Network Drive BBS Priorities

This feature allows the user to specify which available network drives are boot devices.

Boot Option #1
The options are IBA XE Slot 1800 v2358 and Disabled.
6.8 Save & Exit

Use this tab page to configure Save & Exit settings.

Save Options

Discard Changes and Exit
Select this option to quit the BIOS Setup without making any permanent changes to the system configuration, and reboot the computer. Select Discard Changes and Exit from the Exit menu and press <Enter>.

Save Changes and Reset
After completing the system configuration changes, select this option to save the changes you have made. This will reset (reboot) the system.

Save Changes
When you have completed the system configuration changes, select this option to save all changes made. This will not reset (reboot) the system.

Discard Changes
Select this option and press <Enter> to discard all the changes and return to the AMI BIOS utility Program.
Listed on this section are other boot options for the system (i.e., Built-in EFI shell). Select an option and press <Enter>. Your system will boot to the selected boot option.

Default Options

Restore Defaults
To set this feature, select Restore Optimized Defaults from the Save & Exit menu and press <Enter>. These are factory settings designed for maximum system stability, but not for maximum performance.

Save As User Defaults
To set this feature, select Save as User Defaults from the Exit menu and press <Enter>. This enables the user to save any changes to the BIOS setup for future use.

Restore User Defaults
To set this feature, select Restore User Defaults from the Exit menu and press <Enter>. Use this feature to retrieve user-defined settings that were saved previously.

Boot Override
Listed on this section are other boot options for the system (i.e., Built-in EFI shell). Select an option and press <Enter>. Your system will boot to the selected boot option.
Appendix A

BIOS Error Codes

A.1 BIOS Error Beep (POST) Codes

During the POST (Power-On Self-Test) routines, which are performed each time the system is powered on, errors may occur.

Non-fatal errors are those which, in most cases, allow the system to continue the boot-up process. The error messages normally appear on the screen.

Fatal errors are those which will not allow the system to continue the boot-up procedure. If a fatal error occurs, you should consult with your system manufacturer for possible repairs.

These fatal errors are usually communicated through a series of audible beeps. The table below lists some common errors and their corresponding beep codes encountered by users.

<table>
<thead>
<tr>
<th>Beep Code</th>
<th>Error Message</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 short</td>
<td>Refresh</td>
<td>Circuits have been reset (Ready to power up)</td>
</tr>
<tr>
<td>5 short, 1 long</td>
<td>Memory error</td>
<td>No memory detected in system</td>
</tr>
<tr>
<td>5 long, 2 short</td>
<td>Display memory read/write error</td>
<td>Video adapter missing or with faulty memory</td>
</tr>
<tr>
<td>1 long continuous</td>
<td>System OH</td>
<td>System overheat condition</td>
</tr>
</tbody>
</table>

A.2 Additional BIOS POST Codes

The AMI BIOS supplies additional checkpoint codes, which are documented online at http://www.supermicro.com/support/manuals/ ("AMI BIOS POST Codes User's Guide").

When BIOS performs the Power On Self Test, it writes checkpoint codes to I/O port 0080h. If the computer cannot complete the boot process, a diagnostic card can be attached to the computer to read I/O port 0080h (Supermicro p/n AOC-LPC80-20).

For information on AMI updates, please refer to http://www.ami.com/products/.
Appendix B

Standardized Warning Statements for AC Systems

About Standardized Warning Statements

The following statements are industry standard warnings, provided to warn the user of situations which have the potential for bodily injury. Should you have questions or experience difficulty, contact Supermicro's Technical Support department for assistance. Only certified technicians should attempt to install or configure components.

Read this appendix in its entirety before installing or configuring components in the Supermicro chassis.

These warnings may also be found on our website at http://www.supermicro.com/about/policies/safety_information.cfm.

Warning Definition

Warning! This warning symbol means danger. You are in a situation that could cause bodily injury. Before you work on any equipment, be aware of the hazards involved with electrical circuitry and be familiar with standard practices for preventing accidents.

警告の定義
この警告サインは危険を意味します。人身事故につながる可能性がありますので、いずれの機器でも動作させる前に、電気回路に含まれる危険性に注意して、標準的な事故防止策に精通して下さい。

此警告符号代表危险。
您正处在一个可能导致身体伤害的情况下。在您工作于任何设备之前，必须充分意识到触电的危险，并熟练掌握防止事故发生的标准工作程序。请根据每项警告结尾的声明号码找到此设备的安全性警告说明的翻译文本。

此警告符号代表危险。
您正处于可能身体可能会受损伤的工作环境中。在您使用设备开始工作之前，必须充分意识到触电的危险，并且要熟悉预防事故发生的标准工作程序。请依照每一注意事项后的号码找到相关的翻译说明内容。
Warnung

WICHTIGE SICHERHEITSHINWEISE

BEWAHREN SIE DIESE HINWEISE GUT AUF.

INSTRUCCIONES IMPORTANTES DE SEGURIDAD

Este símbolo de aviso indica peligro. Existe riesgo para su integridad física. Antes de manipular cualquier equipo, considere los riesgos de la corriente eléctrica y familiarícese con los procedimientos estándar de prevención de accidentes. Al final de cada advertencia encontrará el número que le ayudará a encontrar el texto traducido en el apartado de traducciones que acompaña a este dispositivo.

GUARDE ESTAS INSTRUCCIONES.

IMPORTANTES INFORMATIONS DE SÉCURITÉ

CONSERVEZ CES INFORMATIONS.
Warning! Read the installation instructions before connecting the system to the power source.

설치 지침서
시스템을 전원에 연결하기 전에, 설치 지침서를 확인하십시오.

警告
将此系统连接电源前，请阅读安装说明。

警告
将系统与电源连接前，请先阅读安装说明。
Warnung
Vor dem Anschließen des Systems an die Stromquelle die Installationsanweisungen lesen.

¡Advertencia!
Lea las instrucciones de instalación antes de conectar el sistema a la red de alimentación.

Attention
Avant de brancher le système sur la source d'alimentation, consulter les directives d'installation.

Circuit Breaker

Warning! This product relies on the building’s installation for short-circuit (overcurrent) protection. Ensure that the protective device is rated not greater than: 250 V, 20 A.
Warnung

¡Advertencia!
Este equipo utiliza el sistema de protección contra cortocircuitos (o sobrecorrientes) del edificio. Asegúrese de que el dispositivo de protección no sea superior a: 250 V, 20 A.

Attention
Pour ce qui est de la protection contre les courts-circuits (surtension), ce produit dépend de l'installation électrique du local. Vérifiez que le courant nominal du dispositif de protection n'est pas supérieur à :250 V, 20 A.

경고!
이 제품은 전원의 단락(과전류)방지에 대해서 전적으로 건물의 관련 설비에 의존합니다. 보호장치의 정격이 반드시 250V(볼트), 20A(암페어)를 초과하지 않도록 해야 합니다.

Waarschuwing
Dit product is afhankelijk van de kortsluitbeveiliging (overspanning) van uw elektrische installatie. Controleer of het beveiligde apparaat niet groter gedimensioneerd is dan 250V, 20A.
Appendix B: Standardized Warning Statements

Power Disconnection Warning

Warning! The system must be disconnected from all sources of power and the power cord removed from the power supply module(s) before accessing the chassis interior to install or remove system components.

電源切断の警告
システムコンポーネントの取り付けまたは取り外しのために、シャーシー内部にアクセスするには、システムの電源はすべてのソースから切断され、電源コードは電源モジュールから取り外す必要があります。

警告
在你打开机箱并安装或移除内部器件前，必须将系统完全断电，并移除电源线。

警告
在您打開機殼安裝或移除內部元件前，必須將系統完全斷電，並移除電源線。

Warnung
Das System muss von allen Quellen der Energie und vom Netzanschlusskabel getrennt sein, das von den Spg.Versorgungsteilmodulen entfernt wird, bevor es auf den Chassisinnenraum zurückgreift, um Systemsbestandteile anzubringen oder zu entfernen.

¡Advertencia!
El sistema debe ser disconnected de todas las fuentes de energía y del cable eléctrico quitado de los módulos de fuente de alimentación antes de tener acceso el interior del chasis para instalar o para quitar componentes de sistema.

Attention
Le système doit être débranché de toutes les sources de puissance ainsi que de son cordon d'alimentation secteur avant d'accéder à l'intérieur du chassis pour installer ou enlever des composants de système.

אזהרה מפני ניתוק חשמלי
אזהרה!
יש לנקט את המеры מול מקורות החשמל ויש להסיר את כבל החשמלי מה<data>מכסה</data> לפני נטישה לחלקים ומייבא של המenerima תחום החימום אחריה רכבים.
Equipment Installation

Warning! Only trained and qualified personnel should be allowed to install, replace, or service this equipment.

경고!
시스템에 부품들을 장착하거나 제거하기 위해서는 세시 내부에 접근하기 전에 반드시 전원 공급장치로부터 연결되어있는 모든 전원과 전기코드를 분리해주어야 합니다.

Waarschuwing
Voordat u toegang neemt tot het binnenwerk van de behuizing voor het installeren of verwijderen van systeem onderdelen, dient u alle spanningsbronnen en alle stroomkabels aangesloten op de voeding(en) van de behuizing te verwijderen

Equipment Installation

Warning! Only trained and qualified personnel should be allowed to install, replace, or service this equipment.

Warning
Das Installieren, Ersetzen oder Bedienen dieser Ausrüstung sollte nur geschultem, qualifiziertem Personal gestattet werden.

¡Advertencia!
Solamente el personal calificado debe instalar, reemplazar o utilizar este equipo.
Appendix B: Standardized Warning Statements

Attention
Il est vivement recommandé de confier l'installation, le remplacement et la maintenance de ces équipements à des personnels qualifiés et expérimentés.

경고!
훈련을 받고 공인된 기술자만이 이 장비의 설치, 교체 또는 서비스를 수행할 수 있습니다.

Waarschuwing
Deze apparatuur mag alleen worden geïnstalleerd, vervangen of hersteld door geschoold en gekwalificeerd personeel.

Restricted Area

Warning! This unit is intended for installation in restricted access areas. A restricted access area can be accessed only through the use of a special tool, lock and key, or other means of security. (This warning does not apply to workstations).

警告
此部件应安装在限制进出的场所，限制进出的场所指只能通过使用特殊工具、锁和钥匙或其它安全手段进出的场所。

警告
此装置仅限安装于进出管制区域，进出管制区域系指仅能以特殊工具、锁头及鑰匙或其它安全方式才能进入的区域。
Warnung
Diese Einheit ist zur Installation in Bereichen mit beschränktem Zutritt vorgesehen. Der Zutritt zu derartigen Bereichen ist nur mit einem Spezialwerkzeug, Schloss und Schlüssel oder einer sonstigen Sicherheitsvorkehrung möglich.

¡Advertencia!
Esta unidad ha sido diseñada para instalación en áreas de acceso restringido. Sólo puede obtenerse acceso a una de estas áreas mediante la utilización de una herramienta especial, cerradura con llave u otro medio de seguridad.

Attention
Cet appareil doit être installée dans des zones d'accès réservés. L'accès à une zone d'accès réservé n'est possible qu'en utilisant un outil spécial, un mécanisme de verrouillage et une clé, ou tout autre moyen de sécurité.

경고!
이 장치는 접근이 제한된 구역에 설치하도록 되어있습니다. 특수도구, 잠금 장치 및 키, 또는 기타 보안 수단을 통해서만 접근이 제한된 구역에 들어갈 수 있습니다.

Waarschuwing
Dit apparaat is bedoeld voor installatie in gebieden met een beperkte toegang. Toegang tot dergelijke gebieden kunnen alleen verkregen worden door gebruik te maken van speciaal gereedschap, slot en sleutel of andere veiligheidsmaatregelen.
Battery Handling

Warning! There is the danger of explosion if the battery is replaced incorrectly. Replace the battery only with the same or equivalent type recommended by the manufacturer. Dispose of used batteries according to the manufacturer’s instructions.

電池の取り扱い
電池交換が正しく行われなかった場合、破裂の危険性があります。交換する電池はメーカーが推奨する型、または同等のものを使用下さい。使用済電池は製造元の指示に従って処分して下さい。

警告
电池更换不当会有爆炸危险。请只使用同类电池或制造商推荐的功能相当的电池更换原有电池。请按制造商的说明处理废旧电池。

警告
電池更換不當會有爆炸危險。請使用製造商建議之相同或功能相當的電池更換原有電池。請按照製造商的說明指示處理廢棄舊電池。

Warnung

Attention
Danger d'explosion si la pile n'est pas remplacée correctement. Ne la remplacer que par une pile de type semblable ou équivalent, recommandée par le fabricant. Jeter les piles usagées conformément aux instructions du fabricant.

¡Advertencia!
Existe peligro de explosión si la batería se reemplaza de manera incorrecta. Reemplazar la batería exclusivamente con el mismo tipo o el equivalente recomendado por el fabricante. Desechar las baterías gastadas según las instrucciones del fabricante.

Aaron!
키임이 싸운 파티에 카톡에 보디 호환된 호환에 밑에 올린. 이 탈환!
Redundant Power Supplies

Warning! This unit might have more than one power supply connection. All connections must be removed to de-energize the unit.

冗長電源装置
このユニットは複数の電源装置が接続されている場合があります。
ユニットの電源を切るためには、すべての接続を取り外さなければなりません。

警告
此部件连接的电源可能不止一个，必须将所有电源断开才能停止给该部件供电。

Warnung
Dieses Gerät kann mehr als eine Stromzufuhr haben. Um sicherzustellen, dass der Einheit kein Strom zugeführt wird, müssen alle Verbindungen entfernt werden.
Appendix B: Standardized Warning Statements

¡Advertencia!
Puede que esta unidad tenga más de una conexión para fuentes de alimentación. Para cortar por completo el suministro de energía, deben desconectarse todas las conexiones.

Attention
Cette unité peut avoir plus d'une connexion d'alimentation. Pour supprimer toute tension et tout courant électrique de l'unité, toutes les connexions d'alimentation doivent être débranchées.

경고!
이 장치에는 한 개 이상의 전원 공급 단자가 연결되어 있을 수 있습니다. 이 장치에 전원을 차단하기 위해서는 모든 연결 단자를 제거해야만 합니다.

Waarschuwing
Deze eenheid kan meer dan één stroomtoevoeraansluiting bevatten. Alle aansluitingen dienen verwijderd te worden om het apparaat stroomloos te maken.
Backplane Voltage

Warning! Hazardous voltage or energy is present on the backplane when the system is operating. Use caution when servicing.

バックプレーンの電圧
システムの稼働中は危険な電圧または電力が、バックプレーン上にかかっています。
修理する際には注意ください。

警告
当系统正在进行时，背板上有很危险的电压或能量，进行维修时务必小心。

警告
當系統正在進行時，背板上有危險的電壓或能量，進行維修時務必小心。

Warnung
Wenn das System in Betrieb ist, treten auf der Rückwandplatine gefährliche Spannungen oder Energien auf. Vorsicht bei der Wartung.

¡Advertencia!
Cuando el sistema está en funcionamiento, el voltaje del plano trasero es peligroso. Tenga cuidado cuando lo revise.

Attention
Lorsque le système est en fonctionnement, des tensions électriques circulent sur le fond de panier. Prendre des précautions lors de la maintenance.
Appendix B: Standardized Warning Statements

Comply with Local and National Electrical Codes

Warning! Installation of the equipment must comply with local and national electrical codes.

경고!
시스템이 동작 중일 때 후면판 (Backplane)에는 위험한 전압이나 에너지가 발생 합니다. 서비스 작업 시 주의하십시오.

Waarschuwing
Een gevaarlijke spanning of energie is aanwezig op de backplane wanneer het systeem in gebruik is. Voorzichtigheid is geboden tijdens het onderhoud.

Comply with Local and National Electrical Codes

Warning! Installation of the equipment must comply with local and national electrical codes.

¡Advertencia!
La instalacion del equipo debe cumplir con las normas de electricidad locales y nacionales.

Attention
L'équipement doit être installé conformément aux normes électriques nationales et locales.
Product Disposal

Warning! Ultimate disposal of this product should be handled according to all national laws and regulations.

製品の廃棄
この製品を廃棄処分する場合、国の関係する全ての法律・条項に従い処理する必要があります。

警告
本产品的废弃处理应根据所有国家的法律和规章进行。

警告
本产品的废棄處理應根據所有國家的法律和規章進行。

Warnung
Die Entsorgung dieses Produkts sollte gemäß allen Bestimmungen und Gesetzen des Landes erfolgen.

¡Advertencia!
Al deshacerse por completo de este producto debe seguir todas las leyes y reglamentos nacionales.
Hot Swap Fan Warning

Warning! Hazardous moving parts. Keep away from moving fan blades. The fans might still be turning when you remove the fan assembly from the chassis. Keep fingers, screwdrivers, and other objects away from the openings in the fan assembly's housing.
Warnung

¡Advertencia!
Riesgo de piezas móviles. Mantener alejado de las aspas del ventilador. Los ventiladores podran dar vuelta cuando usted quite ell montaje del ventilador del chasis. Mantenga los dedos, los destornilladores y todos los objetos lejos de las aberturas del ventilador

Attention
Pieces mobiles dangereuses. Se tenir a l’ecart des lames du ventilateur Il est possible que les ventilateurs soient toujours en rotation lorsque vous retirerez le bloc ventilateur du châssis. Prenez garde à ce que doigts, tournevis et autres objets soient éloignés du logement du bloc ventilateur.

경고!
움직이는 위험한 부품. 회전하는 송풍 날개에 접근하지 마세요. 세시로부터 팬 조립품을 제거할 때 팬은 여전히 회전하고 있을 수 있습니다. 팬 조립품 외관의 열려있는 부분들로부터 손가락 및 스크류드라이버, 다른 물체들이 가까이 하지 않도록 배치해 주십시오.

Waarschuwing
Gevaarlijk bewegende onderdelen. Houd voldoende afstand tot de bewegende ventilatorbladen. Het is mogelijk dat de ventilator nog draait tijdens het verwijderen van het ventilatorsamenstel uit het chassis. Houd uw vingers, schroevendraaiers en eventuele andere voorwerpen uit de buurt van de openingen in de ventilatorbehuizing.
Power Cable and AC Adapter

Warning! When installing the product, use the provided or designated connection cables, power cables and AC adaptors. Using any other cables and adaptors could cause a malfunction or a fire. Electrical Appliance and Material Safety Law prohibits the use of UL or CSA-certified cables (that have UL/CSA shown on the cord) for any other electrical devices than products designated by Supermicro only.

電源コードとACアダプター
製品を設置する場合、提供または指定および購入された接続ケーブル、電源コードとACアダプターを該当する地域の条例や安全基準に適合するコードサイズやプラグと共に使用下さい。他のケーブルやアダプターを使用すると故障や火災の原因になることがあります。
電気用品安全法は、ULまたはCSA認定のケーブル(UL/CSAマークがコードに表記)をSupermicroが指定する製品以外に使用することを禁止しています。

警告
安装此产品时,请使用本身提供的或指定的或采购的连接线,电源线和电源适配器,包含遵照当地法规和安全要求的合规的电源线尺寸和插头,使用其它线材或适配器可能会引起故障或火灾。
除了Supermicro所指定的产品,电气用品和材料安全法律规定禁止使用未经UL或CSA认证的线材。(线材上会显示UL/CSA符号)。

警告
安装此產品時,請使用本身提供的或指定的或採購的連接線,電源線和電源適配器,包含遵照當地法規和安全要求的合規的電源線尺寸和插頭,使用其它線材或適配器可能會引起故障或火災。
除了Supermicro所指定的產品,電氣用品和材料安全法律規定禁止使用未經UL或CSA認證的線材。(線材上會顯示UL/CSA符號)。

Warnung
Nutzen Sie beim Installieren des Produkts ausschließlich die von uns zur Verfügung gestellten Verbindungskabeln, Stromkabeln und/oder Adapter, die Ihre örtlichen Sicherheitsstandards einhalten. Der Gebrauch von anderen Kabeln und Adapter können Fehlfunktionen oder Feuer verursachen. Die Richtlinien untersagen das Nutzen von UL oder CAS zertifizierten Kabeln (mit UL/CSA gekennzeichnet), an Geräten oder Produkten die nicht mit Supermicro gekennzeichnet sind.
¡Advertencia!
Cuando instale el producto, utilice la conexión provista o designada o procure cables, Cables de alimentación y adaptadores de CA que cumplan con los códigos locales y los requisitos de seguridad, incluyendo el tamaño adecuado del cable y el enchufe. El uso de otros cables y adaptadores podría causar un mal funcionamiento o un incendio. La Ley de Seguridad de Aparatos Eléctricos y de Materiales prohíbe el uso de cables certificados por UL o CSA (que tienen el certificado UL / CSA en el código) para cualquier otro dispositivo eléctrico que los productos designados únicamente por Supermicro.

Attention
Lors de l'installation du produit, utilisez les cables de connection fournis ou désigné ou achetez des cables, cables de puissance et adaptateurs respectant les normes locales et les conditions de securite y compris les tailles de cables et les prises electriques appropries. L'utilisation d'autres cables et adaptateurs peut provoquer un dysfonctionnement ou un incendie. Appareils électroménagers et la Loi sur la Sécurité Matériel interdit l'utilisation de cables certifies- UL ou CSA (qui ont UL ou CSA indiqué sur le code) pour tous les autres appareils electriques sauf les produits désignés par Supermicro seulement.

יימאתו מילימשה מילבכ

דרשה AC

רורית ומאהתה או ונככר רשה AC מימאתה מיוקס, ממילכב שמתשהל שי, גורמה זו מינייקתם ראשית
לכל שמעיש . סקתהיה לבכיה לש הנוגד לידן, היתומית ושתייתו בישר ידרשו המאתתו ראשית, המכותה
למשחה ירישכם סופיתו י хочית ממתה. ילמשח רבכ וא הלCtl מירלולגל, ררחא חומס מאמתי וא לכב
לש ודמ"אleton ייפור קריאא (UL-CSA) -ב וישיכמו מילבכ שמתשהל רוסית יימש, חיתוכם יוקס
(UL/CSA-ב) הדולב "י" ממאהת רשהו רצומ קר אלא, רוח ילמשח רצומ כל רבעה Supermicro.

טוסכניסה מק ואר עגילה וא אבר clearfixות מק והתובעה מק ממחששב מק, י"מקורט ב" דע
לכל יימ בת יבתב הכלילה ת人も תאלכלמיה תיונאוב תיסחי וא דרתם יא ראמיית תאלוםו תיושבתרטב
ונבירו וא לטע ייבא ישיבי דק דרי מרבפק יא מ wysya דליתסינא ביבא ייבא לסרוגה לרותינא
לבק רמ קדמיהי תוסכניסה תוסכניסה תוסכניסה תוסכניסה תוסכניסה תוסכניסה תוס$/) רצוי UL וא א
לבק רמ קדמיהי תוסכניסה תוסכניסה תוס接入ה תוס接入ה תוס接入ה תוס接入ה תוס接入ה תוס接入ה תוס接入 UL/CSA
(UL/CSA) תוס接入ה תוס接入ה תוס接入ה תוס接入ה תוס接入ה תוס接入ה תוס接入ה תוס接入ה תוס接入
Supermicro.
전원 케이블 및 AC 어댑터
경고! 제품을 설치할 때 현지 코드 및 적절한 굵기의 코드와 플러그를 포함한 안전 요구 사항을 준수하여 제공되거나 지정된 연결 혹은 구매 케이블, 전원 케이블 및 AC 어댑터를 사용하십시오.
다른 케이블이나 어댑터를 사용하면 오작동이나 화재가 발생할 수 있습니다. 전기 용품 안전법은 UL 또는 CSA 인증 케이블 (코드에 UL/CZA가 표시된 케이블)을 Supermicro가 지정한 제품 이외의 전기 장치에 사용하는 것을 금지합니다.

Stroomkabel en AC-Adapter
Appendix C

System Specifications

Processors
Dual Intel Xeon 82xx/62xx/52xx/42xx or 81xx/61xx/51xx/41xx/31xx processors in a P (LGA3647) socket; UPI up to 10.4GT/s; support CPU TDP 70-205W with IVR

Note: Refer to the motherboard specifications pages on our website for updates to supported processors.

Chipset
Intel C621

BIOS
AMI 32Mb SPI Flash ROM

Memory
Twenty-four slots for up to 6 TB of 3DS Load Reduced DIMM (3DS LRDIMM), 3DS Registered DIMM (3DS RDIMM), or up to 3TB of Load Reduced DIMM (LRDIMM) with speeds of up to 2933 MHz; support for Non-Volatile DIMM (NVDIMM) and Intel Optane DC Persistent Memory (DCPMM); DIMM size up to 256 GB at 1.2 V

Storage Drives
Ten hot-swap 2.5" bays for SATA; eight support SAS with an optional add-on card, two are hybrid ports that can support NVMe (additional cables required); Two SuperDOM (Disk on Module) headers

PCI Expansion Slots
Two PCIe x16 full height, full-length
One PCIe x8 low profile
One internal PCIe x8 low profile (Ultra riser)

Input/Output
Network: Two to four LAN ports, varies by model
IPMI: Dedicated LAN port
USB: Five USB 3.0 ports—2 rear, 2 front, 1 Type A
Video: One VGA port
Serial: One serial header

Motherboard
X11DPU; Length 17.0", width 16.8" (431.8 mm x 426.7 mm)

Chassis
SCI19UAC2-R751-T Rev.C; 1U Rackmount, (WxHxD) 17.2 x 1.7 x 27.8 in. (437 x 43 x 706 mm)

System Cooling
Eight 4-cm counter-rotating fans, two CPU heatsinks, two air shrouds to direct air flow

Power Supply
Model: PWS-751P-1R, 750 W redundant modules, 80Plus Platinum level
AC Input
- 100-127 Vac, 50-60 Hz
- 200-240 Vac, 50-60 Hz
+12V
- Max: 62.5 A, Min: 0 A (100 Vac–127 Vac)
- Max: 62.5 A, Min: 0 A (200 Vac–240 Vac)
+12 V standby: Max: 2.1 A, Min: 0 A
Operating Environment

| Operating Temperature: 10º to 35º C (50º to 95º F) |
| Non-operating Temperature: -40º to 70º C (-40º to 158º F) |
| Operating Relative Humidity: 8% to 90% (non-condensing) |
| Non-operating Relative Humidity: 5% to 95% (non-condensing) |

Regulatory Compliance

| Electromagnetic Emissions: FCC Class A, EN 55032 Class A, EN 61000-3-2/3-3, CISPR 32 Class A |
| Electromagnetic Immunity: EN 55024/CISPR 24, (EN 61000-4-2, EN 61000-4-3, EN 61000-4-4, EN 61000-4-5, EN 61000-4-6, EN 61000-4-8, EN 61000-4-11) |
| Other: VCCI-CISPR 32 and AS/NZS CISPR 32 |
| Safety: CSA/EN/IEC/UL 60950-1 Compliant, UL or CSA Listed (USA and Canada), CE Marking (Europe) |

Perchlorate Warning

California Best Management Practices Regulations for Perchlorate Materials: This Perchlorate warning applies only to products containing CR (Manganese Dioxide) Lithium coin cells. “Perchlorate Material-special handling may apply. See www.dtsc.ca.gov/hazardouswaste/perchlorate"
Appendix D

UEFI BIOS Recovery

Warning: Do not upgrade the BIOS unless your system has a BIOS-related issue. Flashing the wrong BIOS can cause irreparable damage to the system. In no event shall Supermicro be liable for direct, indirect, special, incidental, or consequential damages arising from a BIOS update. If you do update the BIOS, do not shut down or reset the system while the BIOS is updating to avoid possible boot failure.

D.1 Overview

The Unified Extensible Firmware Interface (UEFI) provides a software-based interface between the operating system and the platform firmware in the pre-boot environment. The UEFI specification supports an architecture-independent mechanism that will allow the UEFI OS loader stored in an add-on card to boot the system. The UEFI offers clean, hands-off management to a computer during system boot.

D.2 Recovering the UEFI BIOS Image

A UEFI BIOS flash chip consists of a recovery BIOS block and a main BIOS block (a main BIOS image). The recovery block contains critical BIOS codes, including memory detection and recovery codes for the user to flash a healthy BIOS image if the original main BIOS image is corrupted. When the system power is turned on, the recovery block codes execute first. Once this process is complete, the main BIOS code will continue with system initialization and the remaining POST (Power-On Self-Test) routines.

Note 1: Follow the BIOS recovery instructions below for BIOS recovery when the main BIOS block crashes.

Note 2: When the BIOS recovery block crashes, you will need to follow the procedures to make a Returned Merchandise Authorization (RMA) request. (For a RMA request, please see section 3.5 for more information). Also, you may use the Supermicro Update Manager (SUM) Out-of-Band (OOB) (https://www.supermicro.com.tw/products/nfo/SMS_SUM.cfm) to reflash the BIOS.

D.3 Recovering the Main BIOS Block with a USB Device

This feature allows the user to recover the main BIOS image using a USB-attached device without additional utilities used. A USB flash device such as a USB Flash Drive, or a USB CD/DVD ROM/RW device can be used for this purpose. However, a USB Hard Disk drive cannot be used for BIOS recovery at this time.
The file system supported by the recovery block is FAT (including FAT12, FAT16, and FAT32) which is installed on a bootable or non-bootable USB-attached device. However, the BIOS might need several minutes to locate the SUPER.ROM file if the media size becomes too large due to the huge volumes of folders and files stored in the device.

To perform UEFI BIOS recovery using a USB-attached device, follow the instructions below.

1. Using a different machine, copy the "Super.ROM" binary image file into the Root "\" directory of a USB device or a writable CD/DVD.

 Note 1: If you cannot locate the "Super.ROM" file in your drive disk, visit our website at www.supermicro.com to download the BIOS package. Extract the BIOS binary image into a USB flash device and rename it "Super.ROM" for the BIOS recovery use.

 Note 2: Before recovering the main BIOS image, confirm that the "Super.ROM" binary image file you download is the same version or a close version meant for your motherboard.

2. Insert the USB device that contains the new BIOS image ("Super.ROM") into your USB drive and reset the system when the following screen appears.

 ![SUPER.ROM Image]
3. After locating the healthy BIOS binary image, the system will enter the BIOS Recovery menu as shown below.

![BIOS Recovery Menu]

Note: At this point, you may decide if you want to start the BIOS recovery. If you decide to proceed with BIOS recovery, follow the procedures below.

4. When the screen as shown above displays, use the arrow keys to select the item "Proceed with flash update" and press the <Enter> key. You will see the BIOS recovery progress as shown in the screen below.

Note: *Do not interrupt the BIOS flashing process until it has completed.*
5. After the BIOS recovery process is complete, press any key to reboot the system.

6. Using a different system, extract the BIOS package into a USB flash drive.

7. Press continuously during system boot to enter the BIOS Setup utility. From the top of the tool bar, select Boot to enter the submenu. From the submenu list, select Boot Option #1 as shown below. Then, set Boot Option #1 to [UEFI AP:UEFI: Built-in EFI Shell]. Press <F4> to save the settings and exit the BIOS Setup utility.
8. When the UEFI Shell prompt appears, type fs# to change the device directory path. Go to the directory that contains the BIOS package you extracted earlier from Step 6. Enter flash.nsh BIOSname.### at the prompt to start the BIOS update process.

 ![UEFI Shell](image)

 Note: Do not interrupt this process until the BIOS flashing is complete.

9. The screen above indicates that the BIOS update process is complete. When you see the screen above, unplug the AC power cable from the power supply, clear CMOS, and plug the AC power cable in the power supply again to power on the system.

 ![Update Complete](image)

10. Press continuously to enter the BIOS Setup utility.

11. Press <F3> to load the default settings.

12. After loading the default settings, press <F4> to save the settings and exit the BIOS Setup utility.
Appendix E

Crash Dump Using IPMI

In the event of a processor internal error (IERR) that crashes your system, you may want to provide information to support staff. For this purpose you can download a crash dump of status information using IPMI. The IPMI manual is available at https://www.supermicro.com/solutions/IPMI.cfm.

Check IPMI Error Log

1. Access the IPMI web interface.

2. Click the Server Health tab, then Event Log to verify an IERR error has occurred.

![Figure E-1. IPMI Event Log](image)

In the event of an IERR, the BMC executes a crash dump. You must download the crash dump and save it.
Downloading the Crash Dump File

1. In the IPMI interface, click the Miscellanous tab, then the Trouble Shooting option.

2. Click the Dump button and wait five minutes for the file to be created. (No confirmation message will appear.)

3. Click the Download button and a Save As dialog appears.

4. Save the zipped dump file, noting the name and location.

Figure E-2. IPMI Crash Dump Download

Note: The System auto reset check box dictates behavior after an IERR. If checked, the system will restart automatically, and the dump file will be erased. If not, the system remains in a failed state. Do not check this box until after the dump file has been sent to Support.
Appendix F

CPU-Based RAID for NVMe

Intel® Virtual RAID on CPU (Intel VROC) is an enterprise RAID solution for NVMe SSDs directly attached to Intel Xeon Scalable processors. Intel Volume Management Device (VMD) is an integrated controller inside the CPU PCI-E root complex.

- A single processor supports up to 12 NVMe SSDs and up to 6 RAID arrays.
- A dual processor system supports up to 24 NVMe SSDs and 12 RAID arrays.

Strip sizes are 4K, 8K, 16K, 32K, 64K, 128K.

Requirements and Restrictions

- Intel VROC is only available when the system is configured for UEFI boot mode.
- To enable the `mdadm` command and support for RSTe, install the patch from
 - Linux: https://downloadcenter.intel.com/download/28158/Intel-Virtual-RAID-on-CPU-Intel-VROC-and-Intel-Rapid-Storage-Technology-enterprise-Intel-RSTe-Driver-for-Linux
- To enable Intel VROC, a hardware key must be inserted on the motherboard, and the appropriate processor’s Virtual Management Devices must be enabled in the BIOS setup.
- It is possible to enable Intel VROC without a hardware key installed, but only RAID0 will be enabled.
- Intel VROC is not compatible with secure boot. This feature must be disabled.
- When creating bootable OS RAID1 devices, you must have both devices on the same CPU, and a VMD on that CPU.
- Spanning drives when creating RAID devices is not recommended due to performance issues, even though it is supported.

Supported SSDs and Operating Systems

To see the latest support information: https://www.intel.com/content/www/us/en/support/articles/000030310/memory-and-storage/ssd-software.html
F.1 Hardware Key

The Intel VROC hardware key is a license key that detects the Intel VROC SKU and activates the function accordingly. The key must be plugged into the Supermicro motherboard (connector JRK1). The key options are:

<table>
<thead>
<tr>
<th>VROC Package</th>
<th>Description</th>
<th>Part Number</th>
<th>Intel MM Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>RAID 0, 1, 10 Supports 3rd party SSDs</td>
<td>AOC-VROCSTNMOD</td>
<td>951605</td>
</tr>
<tr>
<td>Premium</td>
<td>RAID 0, 1, 5, 10 Supports 3rd party SSDs</td>
<td>AOC-VROCPREMOD</td>
<td>951606</td>
</tr>
<tr>
<td>Intel SSD only</td>
<td>RAID 0, 1, 5, 10 Supports Intel SSDs only</td>
<td>AOC-VROCINTMOD</td>
<td>956822</td>
</tr>
</tbody>
</table>

Additional Information

Additional information is available on the product page for the Supermicro add-on card and the linked manuals.

www.supermicro.com/products/accessories/addon/AOC-VROCxxxMOD.cfm

Figure F-1. Intel® VROC RAID Key and Motherboard Connector JRK1
F.2 Enabling NVMe RAID

RAID for NVMe SSDs must be enabled through the UEFI BIOS.

1. Install the patch as described in the Restrictions and Requirements section on a previous page.

2. Reboot the server.

3. Press [DEL] key to enter BIOS.

4. Switch to Advanced > Chipset Configuration > North Bridge > IIO Configuration > Intel® VMD Technology > CPU1 & CPU2.

5. Enable the VMD according to the following rules.

- For U.2 NVMe, enable all the sub-items under each PStack, based on your model:

<table>
<thead>
<tr>
<th>Model</th>
<th>CPU1</th>
<th>CPU2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1029U-T</td>
<td>VMD Config for PStack0</td>
<td>not needed</td>
</tr>
<tr>
<td>6019U-TN4</td>
<td>VMD Config for PStack0</td>
<td>VMD Config for PStack0</td>
</tr>
<tr>
<td>2029U-T</td>
<td>VMD Config for PStack0</td>
<td>VMD Config for PStack0</td>
</tr>
<tr>
<td>2029U-E1C</td>
<td>VMD Config for PStack0</td>
<td>VMD Config for PStack0</td>
</tr>
<tr>
<td>2029UZ-T</td>
<td>VMD Config for PStack0</td>
<td>VMD Config for PStack0</td>
</tr>
<tr>
<td>6029U-T</td>
<td>VMD Config for PStack0</td>
<td>VMD Config for PStack0</td>
</tr>
<tr>
<td>6029U-E1C</td>
<td>VMD Config for PStack0</td>
<td>VMD Config for PStack0</td>
</tr>
<tr>
<td>6029UZ-T</td>
<td>VMD Config for PStack0</td>
<td>VMD Config for PStack0</td>
</tr>
<tr>
<td>1029U-TN10</td>
<td>VMD Config for PStack1</td>
<td>VMD Config for PStack1</td>
</tr>
<tr>
<td></td>
<td>VMD Config for PStack2</td>
<td>VMD Config for PStack2</td>
</tr>
<tr>
<td>2029U-TN24</td>
<td>VMD Config for PStack1</td>
<td>VMD Config for PStack2</td>
</tr>
<tr>
<td>1029UZ-TN20</td>
<td>VMD Config for PStack0</td>
<td>VMD Config for PStack0</td>
</tr>
<tr>
<td></td>
<td>VMD Config for PStack1</td>
<td>VMD Config for PStack1</td>
</tr>
<tr>
<td></td>
<td>VMD Config for PStack2</td>
<td>VMD Config for PStack2</td>
</tr>
<tr>
<td>2029UZ-TN20</td>
<td>VMD Config for PStack0</td>
<td>VMD Config for PStack0</td>
</tr>
<tr>
<td></td>
<td>VMD Config for PStack1</td>
<td>VMD Config for PStack1</td>
</tr>
<tr>
<td></td>
<td>VMD Config for PStack2</td>
<td>VMD Config for PStack2</td>
</tr>
<tr>
<td>1029U-E1C</td>
<td>U.2 NVMe not supported</td>
<td></td>
</tr>
<tr>
<td>6019U-T</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- For M.2 NVMe or NVMe AIC, enable the VMD according to which AOC card/slot it used. Examples for some U.2 configurations follow.
• For 1029U-TN10RT populated with ten U.2 NVMe drives:

• For 2029U-TR or 2029U-E1CR populated with four U.2 NVMe drives:

• For 2029U-TN24R4T populated with 24 U.2 NVMe drives:

Figure F-2. BIOS VMD Setting Examples for Ultra Servers
6. Press [F4] to save the configuration and reboot the system.

7. Press [DEL] to enter BIOS.

8. Switch to **Advanced > Intel(R) Virtual RAID on CPU > All Intel VMD Controllers > Create RAID Volume.**

9. Set **Name.**

10. Set **RAID Level.**

11. If cross-controller RAID is required, select **Enable RAID spanned over VMD Controller** as shown in Figure F-4.

12. Select specific disks for RAID with an [X].
 - RAID0: Select at least two [2 - 24] disks
 - RAID1: Select only two disks
 - RAID5: Select at least three [3 - 24] disks
 - RAID10: Select only four disks

13. Select **Strip Size** (Default 64KB).

14. Select **Create Volume.**

15. If another RAID is needed, start again at step 6.

F.3 Status Indications

An LED indicator on the drive carrier shows the RAID status of the drive.

<table>
<thead>
<tr>
<th>Status</th>
<th>State (red)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal function</td>
<td>Off</td>
</tr>
<tr>
<td>Locating</td>
<td>4 Hz blink</td>
</tr>
<tr>
<td>Fault</td>
<td>Solid on</td>
</tr>
<tr>
<td>Rebuilding</td>
<td>1 Hz Blink</td>
</tr>
</tbody>
</table>

IBPI SFF 8489 Defined Status LED States

F.4 Hot Swap Drives

Intel VMD enables hot-plug and hot-unplug for NVMe SSDs, whether from Intel or other manufacturers. Under vSphere ESXi, several steps are necessary to avoid potential stability issues. See the information at link [1] below.

Hot-unplug

1. Prevent devices from being re-detected during rescan:

   ```
esxcli storage core claiming autoclaim --enabled=false
   ```


4. Physically remove the device.

Hot-plug

- Physically install the device.

ESXi will automatically discover NVMe SSDs, but a manual scan may be required in some cases.

Related Information Links

