

SUPERSERVER® 2029BZ-HNR

USER'S MANUAL

Revision 1.0c

The information in this User's Manual has been carefully reviewed and is believed to be accurate. The vendor assumes no responsibility for any inaccuracies that may be contained in this document, and makes no commitment to update or to keep current the information in this manual, or to notify any person or organization of the updates. Please Note: For the most up-to-date version of this manual, please see our website at www.supermicro.com.

Super Micro Computer, Inc. ("Supermicro") reserves the right to make changes to the product described in this manual at any time and without notice. This product, including software and documentation, is the property of Supermicro and/or its licensors, and is supplied only under a license. Any use or reproduction of this product is not allowed, except as expressly permitted by the terms of said license.

IN NO EVENT WILL Super Micro Computer, Inc. BE LIABLE FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, SPECULATIVE OR CONSEQUENTIAL DAMAGES ARISING FROM THE USE OR INABILITY TO USE THIS PRODUCT OR DOCUMENTATION, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. IN PARTICULAR, SUPER MICRO COMPUTER, INC. SHALL NOT HAVE LIABILITY FOR ANY HARDWARE, SOFTWARE, OR DATA STORED OR USED WITH THE PRODUCT, INCLUDING THE COSTS OF REPAIRING, REPLACING, INTEGRATING, INSTALLING OR RECOVERING SUCH HARDWARE, SOFTWARE, OR DATA.

Any disputes arising between manufacturer and customer shall be governed by the laws of Santa Clara County in the State of California, USA. The State of California, County of Santa Clara shall be the exclusive venue for the resolution of any such disputes. Supermicro's total liability for all claims will not exceed the price paid for the hardware product.

FCC Statement: This equipment has been tested and found to comply with the limits for a Class A or Class B digital device pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in industrial environment for Class A device or in residential environment for Class B device. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the manufacturer's instruction manual, may cause harmful interference with radio communications. Operation of this equipment in a residential area is likely to cause harmful interference, in which case you will be required to correct the interference at your own expense.

California Best Management Practices Regulations for Perchlorate Materials: This Perchlorate warning applies only to products containing CR (Manganese Dioxide) Lithium coin cells. "Perchlorate Material-special handling may apply. See www.dtsc.ca.gov/hazardouswaste/perchlorate".

WARNING: This product can expose you to chemicals including lead, known to the State of California to cause cancer and birth defects or other reproductive harm. For more information, go to www.P65Warnings.ca.gov.

The products sold by Supermicro are not intended for and will not be used in life support systems, medical equipment, nuclear facilities or systems, aircraft, aircraft devices, aircraft/emergency communication devices or other critical systems whose failure to perform be reasonably expected to result in significant injury or loss of life or catastrophic property damage. Accordingly, Supermicro disclaims any and all liability, and should buyer use or sell such products for use in such ultra-hazardous applications, it does so entirely at its own risk. Furthermore, buyer agrees to fully indemnify, defend and hold Supermicro harmless for and against any and all claims, demands, actions, litigation, and proceedings of any kind arising out of or related to such ultra-hazardous use or sale.

Manual Revision 1.0c

Release Date: November 05, 2021

mk

Unless you request and receive written permission from Super Micro Computer, Inc., you may not copy any part of this document. Information in this document is subject to change without notice. Other products and companies referred to herein are trademarks or registered trademarks of their respective companies or mark holders.

Copyright © 2021 by Super Micro Computer, Inc.
All rights reserved.

Printed in the United States of America

Preface

About this Manual

This manual is written for professional system integrators and PC technicians. It provides information for the installation and use of the server. Installation and maintenance should be performed by experienced technicians only.

Please refer to the 2029BZ-HNR server specifications page on our website for updates on supported memory, processors and operating systems (<http://www.supermicro.com>).

Notes

For your system to work properly, please follow the links below to download all necessary drivers/utilities and the user's manual for your server.

- Supermicro product manuals: <http://www.supermicro.com/support/manuals/>
- Product drivers and utilities: <https://www.supermicro.com/wdl>
- Product safety info: http://www.supermicro.com/about/policies/safety_information.cfm

If you have any questions, please contact our support team at:
support@supermicro.com

This manual may be periodically updated without notice. Please check the Supermicro website for possible updates to the manual revision level.

Secure Data Deletion

A secure data deletion tool designed to fully erase all data from storage devices can be found on our website: https://www.supermicro.com/about/policies/disclaimer.cfm?url=/wftp/utility/Lot9_Secure_Data_Deletion.Utility/

Warnings

Special attention should be given to the following symbols used in this manual.

Warning! Indicates important information given to prevent equipment/property damage or personal injury.

Warning! Indicates high voltage may be encountered when performing a procedure.

Contents

Chapter 1 Introduction

1.1 Overview.....	8
1.2 Unpacking the System	8
1.3 System Features	9
1.4 Server Chassis Features.....	10
Control Panel	10
Front Features.....	11
Rear Features	12
Input/Output Rear Panel.....	13
Node Trays.....	13
1.5 Motherboard Layout	14
Quick Reference	15
System Block Diagram.....	16
1.6 Where to Get Replacement Components	17
1.7 Returning Merchandise for Service.....	17

Chapter 2 Server Installation

2.1 Overview.....	18
2.2 Preparing for Setup	18
Choosing a Setup Location.....	18
Rack Precautions	18
Server Precautions.....	19
Rack Mounting Considerations	19
Ambient Operating Temperature.....	19
Airflow	19
Mechanical Loading.....	19
Circuit Overloading	20
Reliable Ground.....	20
2.3 Rack Mounting Instructions.....	21
Overview of the Rack Rails.....	21
Adjusting the Rail Length	21
Installing the Rails on a Rack	22
Chassis Installation	23

Chapter 3 Maintenance and Component Installation

3.1 Removing Power	24
3.2 Accessing the System.....	25
Removing a Computing Node Drawer.....	25
Removing the Chassis Cover	26
3.3 Motherboard Components.....	27
Processor and Heatsink Installation.....	27
The Processor	27
The Processor Carrier Assembly.....	27
Overview of the Processor Heatsink Module	28
Creating the Processor Carrier Assembly	29
Assembling the Processor Heatsink Module.....	30
Preparing the CPU Socket for Installation.....	31
Installing the Processor Heatsink Module	32
Memory	33
Memory Support	33
Memory Population Guidelines.....	34
Memory Population Sequence	34
Installing Memory.....	37
Motherboard Battery	38
3.4 Chassis Components	39
Storage Drives	39
Drive Carriers.....	39
Drive Configuration	40
Installing Drives	41
M.2 Solid State Drives (with optional riser card).....	43
Removing the M.2 Carrier Card	45
Installing Expansion Cards.....	46
SIOM Card	47
System Fans	48
Installing the Air Shrouds	50
Checking the Server Air Flow.....	51
Overheating	51
Power Supply	52

Chapter 4 Motherboard Connections

4.1 Power Connections	53
4.2 Headers and Connectors	54
Control Panel	56
4.3 Ports	58
Input/Output Rear Panel	58
4.4 Jumpers	59
Explanation of Jumpers	59
4.5 LED Indicators	60
4.6 PCIe 3.0 Slots	60
4.7 SATA Ports	61

Chapter 5 Software

5.1 OS Installation	62
Installing the Windows OS for a RAID System	62
Installing Windows to a Non-RAID System	62
5.2 Driver Installation	63
5.3 SuperDoctor® 5	64
5.4 IPMI	65

Chapter 6 BIOS

6.1 Introduction	66
Starting BIOS Setup Utility	66
6.2 Main Setup	66
6.3 Advanced Setup Configurations	68
6.4 Event Logs	94
6.5 IPMI	96
6.6 Security	99
6.7 Boot	102
6.8 Save & Exit	104

Appendix A BIOS Error Codes***Appendix B Standardized Warning Statements for AC Systems******Appendix C System Specifications******Appendix D UEFI BIOS Recovery******Appendix E IPMI Crash Dump***

Contacting Supermicro

Headquarters

Address: Super Micro Computer, Inc.
980 Rock Ave.
San Jose, CA 95131 U.S.A.
Tel: +1 (408) 503-8000
Fax: +1 (408) 503-8008
Email: marketing@supermicro.com (General Information)
support@supermicro.com (Technical Support)
Website: www.supermicro.com

Europe

Address: Super Micro Computer B.V.
Het Sterrenbeeld 28, 5215 ML
's-Hertogenbosch, The Netherlands
Tel: +31 (0) 73-6400390
Fax: +31 (0) 73-6416525
Email: sales@supermicro.nl (General Information)
support@supermicro.nl (Technical Support)
rma@supermicro.nl (Customer Support)
Website: www.supermicro.nl

Asia-Pacific

Address: Super Micro Computer, Inc.
3F, No. 150, Jian 1st Rd.
Zhonghe Dist., New Taipei City 235
Taiwan (R.O.C)
Tel: +886-(2) 8226-3990
Fax: +886-(2) 8226-3992
Email: support@supermicro.com.tw
Website: www.supermicro.com.tw

Chapter 1

Introduction

1.1 Overview

This chapter provides a brief outline of the functions and features of the 2029BZ-HNR server. It is based on the X11DPT-BH motherboard and the CSE-217BHQ+-R2K60FP chassis.

In addition to the motherboard and chassis, several important parts that are included with the system are listed below.

Main Parts List		
Description	Part Number	Quantity
Power supply modules	PWS-2K60A-1R	2
Backplane	BPN-NVME3-217BHQ	1
Daughter card	BPN-ADP-6NVME3-1UB	4
Fans	FAN-0193L4	16
Air Shrouds	MCP-310-21720-0B	4
Heatsinks	SNK-P0067PSMB SNK-P0071VS	4 4
Riser cards	RSC-R1UTP-E16R RSC-P-6	4 4
Rack mount rails	MCP-290-00144-0N	1 set

1.2 Unpacking the System

Inspect the box the system was shipped in and note if it was damaged in any way. If any equipment appears damaged, please file a damage claim with the carrier who delivered it.

Decide on a suitable location for the rack unit that will hold the server. It should be situated in a clean, dust-free area that is well ventilated. Avoid areas where heat, electrical noise and electromagnetic fields are generated. It will also require a grounded AC power outlet nearby. Be sure to read the precautions and considerations noted in Appendix B.

1.3 System Features

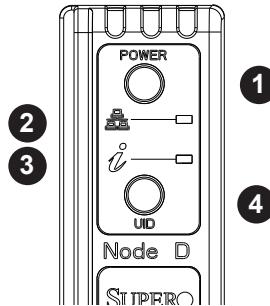
The following table is an overview of the main features of the 2029BZ-HNR server.

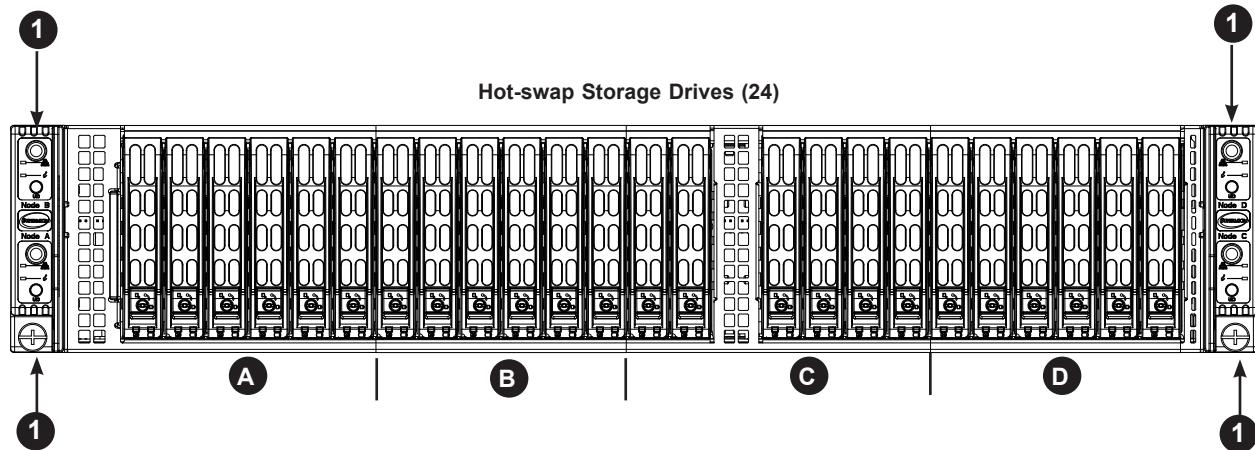
System Features	
Motherboard	
X11DPT-BH (per node)	
Chassis	
CSE-217BHQ+-R2K60FP	
CPU (per node)	
Dual Intel Xeon 82xx/62xx/52xx/42xx/32xx or 81xx/61xx/51xx/41xx/31xx processors (in Socket P (LGA 3647)) (Intel Xeon Processor Scalable Family). For the latest CPU/memory updates, refer to our website at https://www.supermicro.com/products/motherboard/Xeon/C620/X11DPT-BH.cfm	
Memory (per node)	
Up to 6 TB of memory with DDR4 up to 2933 MT/s ECC Load Reduced DIMMs (LRDIMM) and Registered DIMMs (RDIMM) in 24 DIMM slots; up to 256 GB; Support for Non-Volatile DIMM (NV-DIMM) and Intel Optane DC Persistent Memory (DCPMM; up to four slots)	
Chipset	
Intel C621 chipset	
Expansion Slots (per node)	
Two low-profile, PCI-E x16 slots	
Storage Drives	
Twenty-four hot-swap 2.5" NVMe bays, each node controls six drives (Optional) M.2: Up to two NVMe or SATA (2240/2260/2280) via optional AOC-SMG3-2H8M2-B per node	
Power	
2600 W redundant 80Plus Titanium level modules	
Cooling (per node)	
Four 4-cm heavy duty fans, two CPU heatsinks, two air shrouds to direct air flow	
Input/Output (per node)	
USB 3.0: Two ports on the rear I/O panel (USB 0/1) Video: One VGA port DOM: One SuperDOM port	
Networking (per node)	
One SIOM slot (SIOM cards support Ethernet/IB/OPA with speeds ranging from 1G to 100G) One dedicated LAN port for BMC	
Form Factor	
2U rackmount; (WxHxD) 17.6 x 3.5 x 28.8 in. (447 x 88 x 730 mm)	

1.4 Server Chassis Features

Control Panel

There are four control panels on the front outside edges of the chassis. Each control panel houses power buttons and status monitoring lights for one node.




Figure 1-1. Control Panel

Control Panel Features		
Item	Feature	Description
1	Power button	The main power switch applies or removes primary power from the power supply to the node but maintains standby power.
2	NIC LED	Indicates network activity on the LAN when flashing.
3	Information LED	Alerts operator to several states, as noted in the table below
4	UID button	The unit identification (UID) button turns on or off the blue light function of the Information LED and a blue LED on the rear of the chassis. These are used to locate the server in large racks and server banks.

Information LED	
Status	Description
Continuously on and red	An overheating condition has occurred. (This may be caused by cable congestion.)
Blinking red (1Hz)	Fan failure, check for an inoperative fan.
Blinking red (0.25Hz)	Power failure, check for a non-operational power supply.
Solid blue	UID has been activated locally to locate the server in a rack environment.
Blinking blue	UID has been activated using the BMC to locate the server in a rack environment.

Front Features

The chassis front offers access to the storage drives and a control panel for each node.

Figure 1-2. Chassis Front View

Front Chassis Features		
Item	Feature	Description
1	Control Panels	Controls a node as labeled
A	Drive bays	Six drives controlled by node A
B	Drive bays	Six drives controlled by node B
C	Drive bays	Six drives controlled by node C
D	Drive bays	Six drives controlled by node D

Rear Features

The illustration below shows the features included on the rear of the chassis.

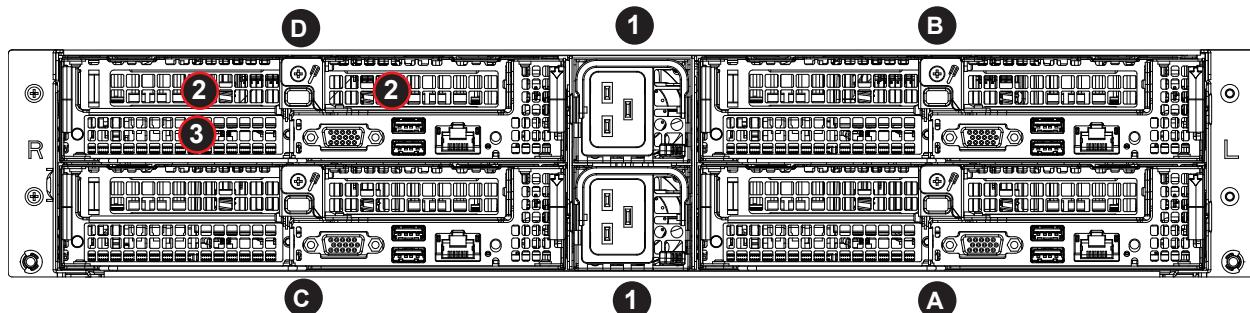
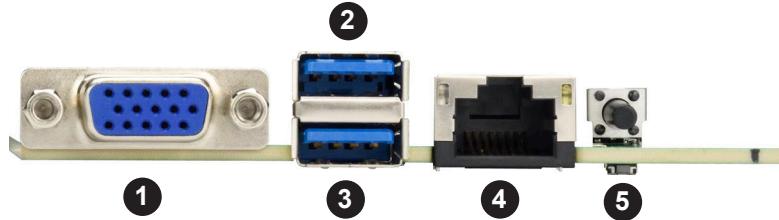


Figure 1-3. Chassis Rear View


Rear Chassis Features		
Item	Feature	Description
A, B, C, D	Node A, B, C, D	Independent computing nodes
1	Power Supplies	Redundant power modules
2	PCI Slots	Two PCI-E 3.0 x16 slots in each node
3	SIOM port	Network ports in each node; refer to table below for available SIOM cards
Unlabeled	I/O ports	Described on next page and Chapter 4

SIOM Networking Add-on Card Options		
Speed	Ports	Add-on Card Part Number
GbE	Two RJ45	AOC-MGP-i2M
	Four RJ45	AOC-MGP-i4M
10 G SFP+	Two SFP+	AOC-MTGN-i2SM
	Four SFP+	AOC-MTG-i4SM
10GBase-T	Two RJ45	AOC-MTG-i2TM
25GbE	Two SFP28 & two RJ45	AOC-MH25G-m2S2TM
IB FDR	Two QSFP & two RJ45	AOC-MHIBF-m2Q2GM
	One QSFP & two RJ45	AOC-MHIBF-m1Q2GM

Updates: https://www.supermicro.com/support/resources/AOC/AOC_Compatibility_SIOM.cfm

Input/Output Rear Panel

Each node provides the following input/output ports.

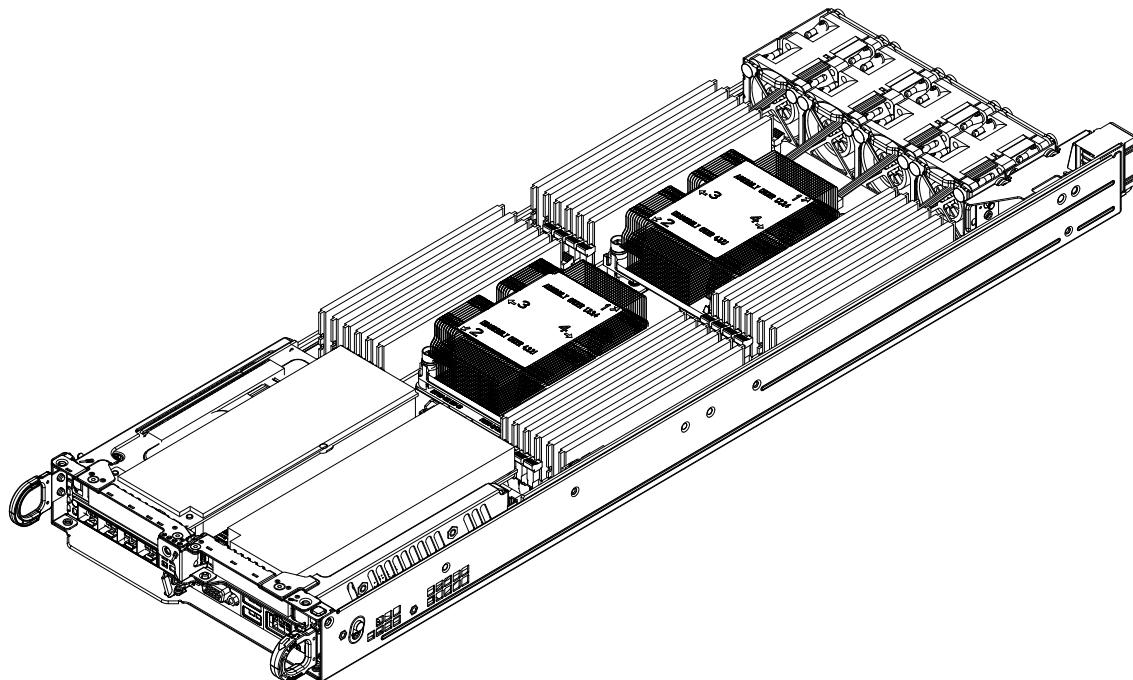


Figure 1-4. I/O Panel

Rear Panel I/O Ports			
No.	Description	No.	Description
1.	VGA port	4.	Dedicated BMC LAN
2.	USB1 (3.0)	5.	Unit Identifier Switch
3.	USB0 (3.0)		

Node Trays

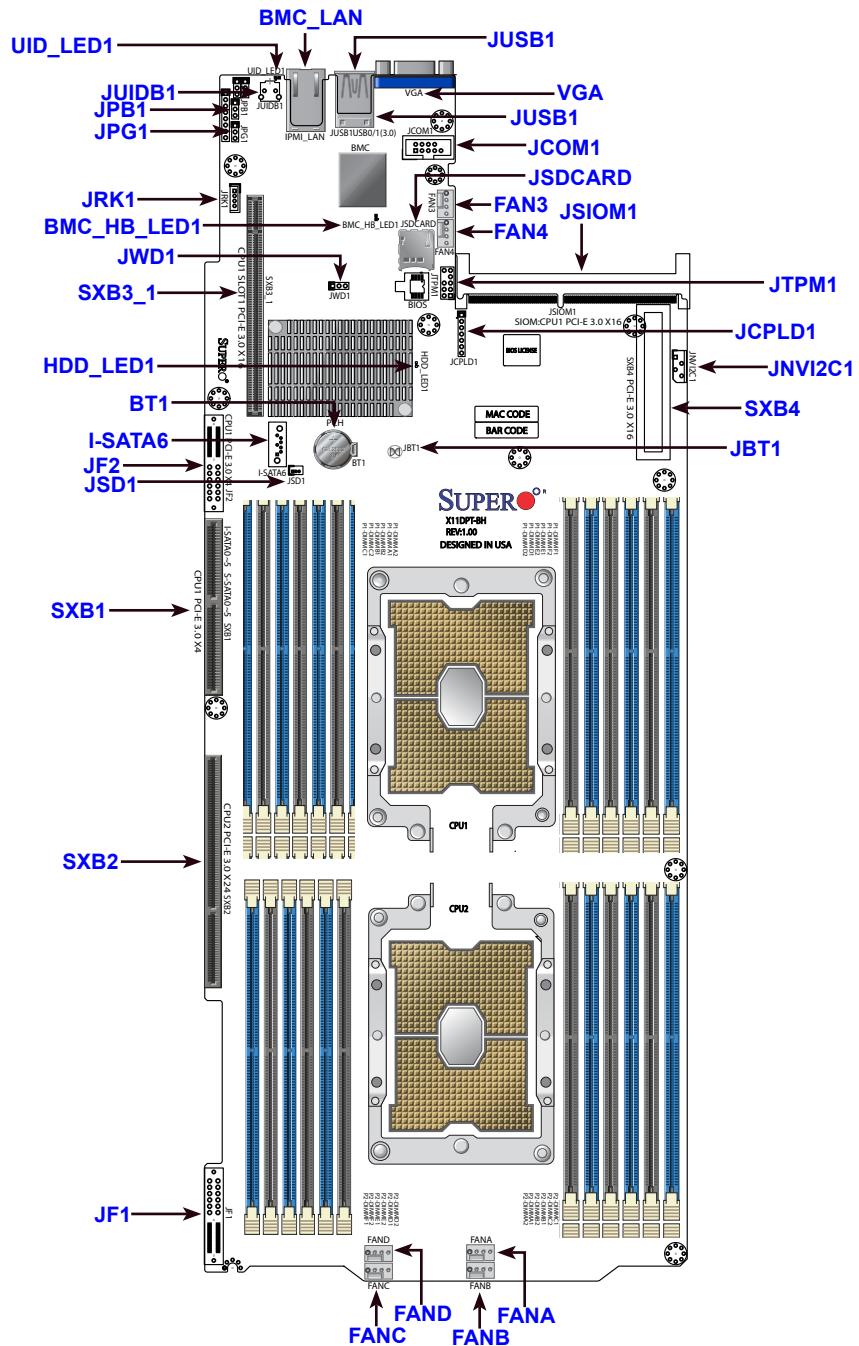

The chassis contains four separate computing node drawers, each with its own motherboard.

Figure 1-5. Node Tray

1.5 Motherboard Layout

Below is a layout of the X11DPT-BH with jumper, connector and LED locations shown. See the table on the following page for descriptions. For detailed descriptions, pinout information and jumper settings, refer to Chapter 4.

Quick Reference

Jumper	Description	Default Setting
JBT1	Clear CMOS	Open (Normal)
JPME1	ME Recovery	Pins 1-2 (Normal)
JWD1	Watch Dog Timer Enable	Pins 1-2 (Normal)
JPG1	VGA Enable/Disable	Pins 1-2 (Enabled)
JPB1	BMC Enable	Pins 1-2 (Enabled)

Connector	Description
Battery (BT1)	Onboard CMOS battery
JCOM1	COM port 1
FANA~FAND	System cooling fan headers
BMC_LAN	Dedicated BMC LAN port
JF1	Front control panel header
JF2	PCI-E 3.0 x4 slot (CPU1)
JNVI2C1	NVMe I ² C header
JRK1	RAID Key for onboard NVMe devices
JSD1	SATA DOM power connector
JSDCARD1	Micro SD card slot (reserved for manufacturer use only)
JTPM1	Trusted Platform Module (TPM)/Port 80 connector
SIOM1	CPU1 PCI-E 3.0 x16 networking slot
SXB1	PCI-E 3.0 (x4 + x4) slot supported by CPU1 and SATA connections (I-SATA0~5 & S-SATA0~5)
SXB2	PCI-E 3.0 x24 (x16 + x8) slot for SMCI storage add-on card (AOC)
SXB3_1	PCI-E 3.0 x16 left hand riser slot supported by CPU1
SXB4	PCI-E 3.0 x16 right hand riser slot supported by CPU2
I-SATA0~5	I-SATA 3.0 connectors supported by the Intel PCH
S-SATA0~5	S-SATA 3.0 connectors supported by the Intel PCH
I-SATA6	SATADOM power
UID-SW	UID switch
USB0/1	Back panel USB 3.0 ports
VGA	Back panel VGA port

LED	Description	State	Status
BMC_HB_LED1	BMC Heartbeat LED	Green: Blinking	BMC Normal
HDD_LED1	HDD Activity LED	Green: Blinking	HDD Normal
UID_LED1	Rear UID LED	Blue: On	Unit Identified

System Block Diagram

Figure 1-7. SYS-2029BZ-HNR System Block Diagram

1.6 Where to Get Replacement Components

If you need replacement parts for your system, to ensure the highest level of professional service and technical support, purchase exclusively from our Supermicro Authorized Distributors/System Integrators/Resellers. A list can be found at: <http://www.supermicro.com>. Click the "Where to Buy" link.

1.7 Returning Merchandise for Service

A receipt or copy of your invoice marked with the date of purchase is required before any warranty service will be rendered. You can obtain service by calling your vendor for a Returned Merchandise Authorization (RMA) number. When returning to the manufacturer, the RMA number should be prominently displayed on the outside of the shipping carton, and mailed prepaid or hand-carried. Shipping and handling charges will be applied for all orders that must be mailed when service is complete.

For faster service, RMA authorizations may be requested online (<http://www.supermicro.com/support/rma/>).

Whenever possible, repack the chassis in the original Supermicro carton, using the original packaging material. If these are no longer available, be sure to pack the chassis securely, using packaging material to surround the chassis so that it does not shift within the carton and become damaged during shipping.

This warranty only covers normal consumer use and does not cover damages incurred in shipping or from failure due to the alteration, misuse, abuse or improper maintenance of products.

During the warranty period, contact your distributor first for any product problems.

Chapter 2

Server Installation

2.1 Overview

This chapter provides advice and instructions for mounting your system in a server rack. If your system is not already fully integrated with processors, system memory etc., refer to Chapter 4 for details on installing those specific components.

Caution: Electrostatic Discharge (ESD) can damage electronic components. To prevent such damage to PCBs (printed circuit boards), it is important to use a grounded wrist strap, handle all PCBs by their edges and keep them in anti-static bags when not in use.

2.2 Preparing for Setup

The box in which the system was shipped should include the rackmount hardware needed to install it into the rack. Please read this section in its entirety before you begin the installation.

Choosing a Setup Location

- The system should be situated in a clean, dust-free area that is well ventilated. Avoid areas where heat, electrical noise and electromagnetic fields are generated.
- Leave enough clearance in front of the rack so that you can open the front door completely (~25 inches) and approximately 30 inches of clearance in the back of the rack to allow sufficient space for airflow and access when servicing.
- This product should be installed only in a Restricted Access Location (dedicated equipment rooms, service closets, etc.).
- This product is not suitable for use with visual display workplace devices according to §2 of the German Ordinance for Work with Visual Display Units.

Rack Precautions

- Ensure that the leveling jacks on the bottom of the rack are extended to the floor so that the full weight of the rack rests on them.

- In single rack installations, stabilizers should be attached to the rack. In multiple rack installations, the racks should be coupled together.
- Always make sure the rack is stable before extending a server or other component from the rack.
- You should extend only one server or component at a time - extending two or more simultaneously may cause the rack to become unstable.

Server Precautions

- Review the electrical and general safety precautions in Appendix B.
- Determine the placement of each component in the rack *before* you install the rails.
- Install the heaviest server components at the bottom of the rack first and then work your way up.
- Use a regulating uninterruptible power supply (UPS) to protect the server from power surges and voltage spikes and to keep your system operating in case of a power failure.
- Allow any drives and power supply modules to cool before touching them.
- When not servicing, always keep the front door of the rack and all covers/panels on the servers closed to maintain proper cooling.

Rack Mounting Considerations

Ambient Operating Temperature

If installed in a closed or multi-unit rack assembly, the ambient operating temperature of the rack environment may be greater than the room's ambient temperature. Therefore, consideration should be given to installing the equipment in an environment compatible with the manufacturer's maximum rated ambient temperature (TMRA).

Airflow

Equipment should be mounted into a rack so that the amount of airflow required for safe operation is not compromised.

Mechanical Loading

Equipment should be mounted into a rack so that a hazardous condition does not arise due to uneven mechanical loading.

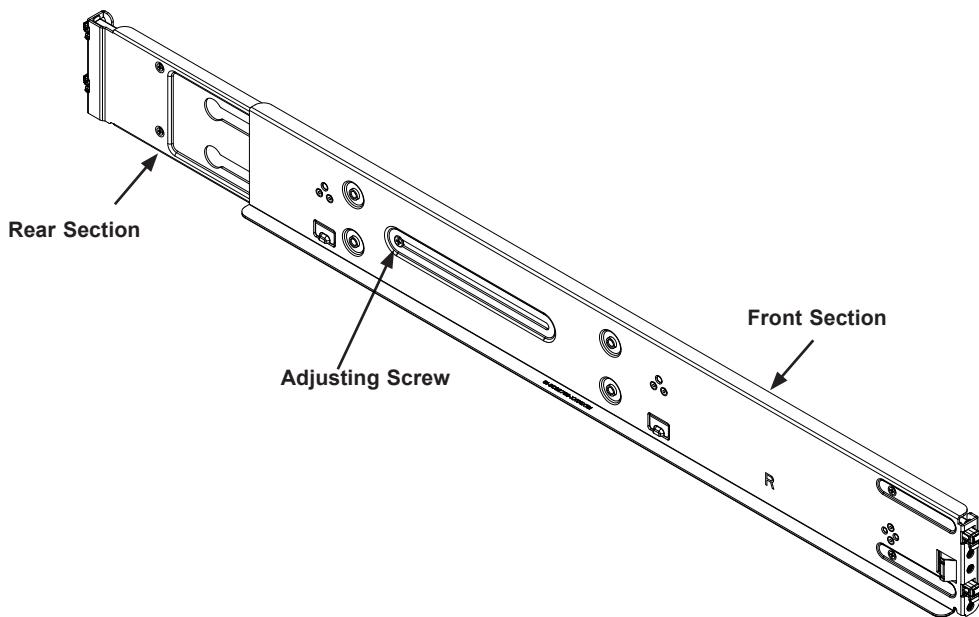
Circuit Overloading

Consideration should be given to the connection of the equipment to the power supply circuitry and the effect that any possible overloading of circuits might have on overcurrent protection and power supply wiring. Appropriate consideration of equipment nameplate ratings should be used when addressing this concern.

Reliable Ground

A reliable ground must be maintained at all times. To ensure this, the rack itself should be grounded. Particular attention should be given to power supply connections other than the direct connections to the branch circuit (i.e. the use of power strips, etc.).

To prevent bodily injury when mounting or servicing this unit in a rack, you must take special precautions to ensure that the system remains stable. The following guidelines are provided to ensure your safety:

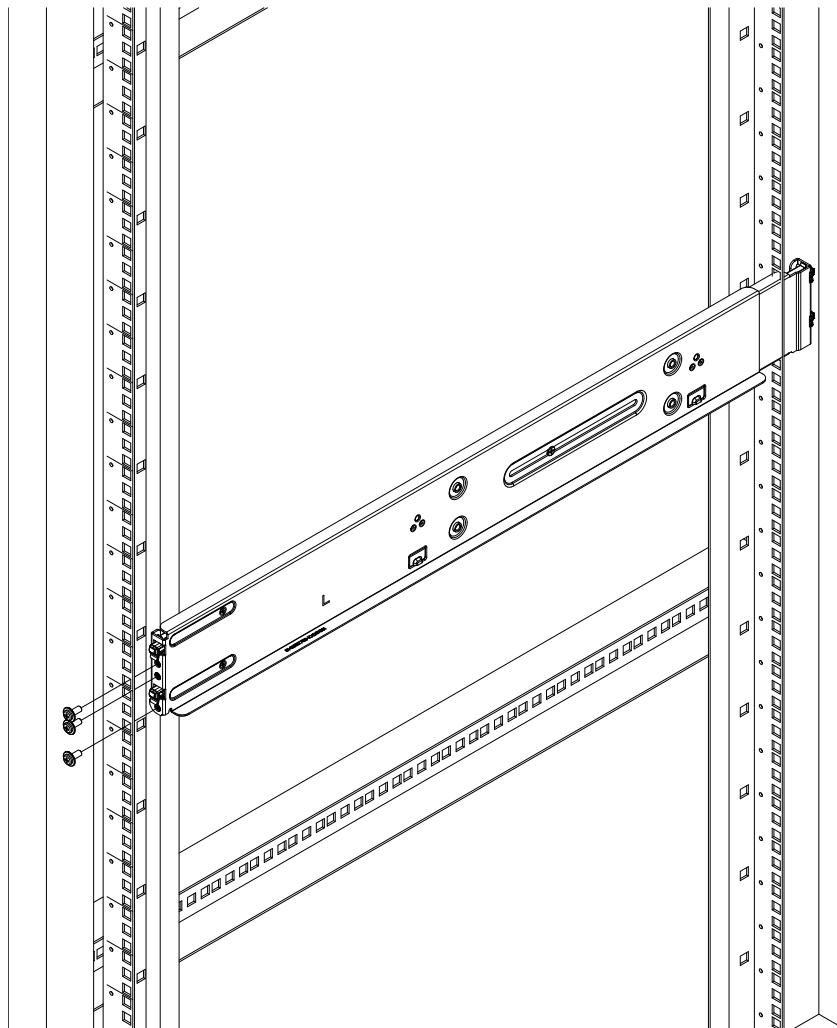

- This unit should be mounted at the bottom of the rack if it is the only unit in the rack.
- When mounting this unit in a partially filled rack, load the rack from the bottom to the top with the heaviest component at the bottom of the rack.
- If the rack is provided with stabilizing devices, install the stabilizers before mounting or servicing the unit in the rack.
- Slide rail mounted equipment is not to be used as a shelf or a work space.

2.3 Rack Mounting Instructions

This section provides information on installing the chassis into a rack unit with the rails provided. There are a variety of rack units on the market, which may mean that the assembly procedure will differ slightly from the instructions provided. You should also refer to the installation instructions that came with the rack unit you are using. **Note:** This rail will fit a rack between 28" and 33.5" deep.

Overview of the Rack Rails

The package includes two rail assemblies. Each is specifically designed for the left or right side of the chassis, and so marked. Each rail consists of two sections: a front section which secures to the front post of the rack and a rear section which adjusts in length and secures to the rear post of the rack.


Figure 2-1. Rackmount Rail
(Right rail assembly shown)

Adjusting the Rail Length

Each rail assembly has a locking screw to adjust the length of the rail to fit the depth of your rack.

Installing the Rails on a Rack

1. Loosen the adjusting screw to allow the rear section to slide into the front section.
2. Push the small hooks on the front section of the rail into the holes on the front post of the rack and then down, until the spring-loaded pegs snap into the rack holes. Secure the rail to the rack with screws.
3. Pull out the rear section of the outer rail, adjusting the length until it fits within the posts of the rack and align the small hooks with the appropriate holes on the rear post of the rack. Be sure the rail is level, then mount the rear section onto the rack. Secure the rail with screws.
4. Tighten the adjusting screw.

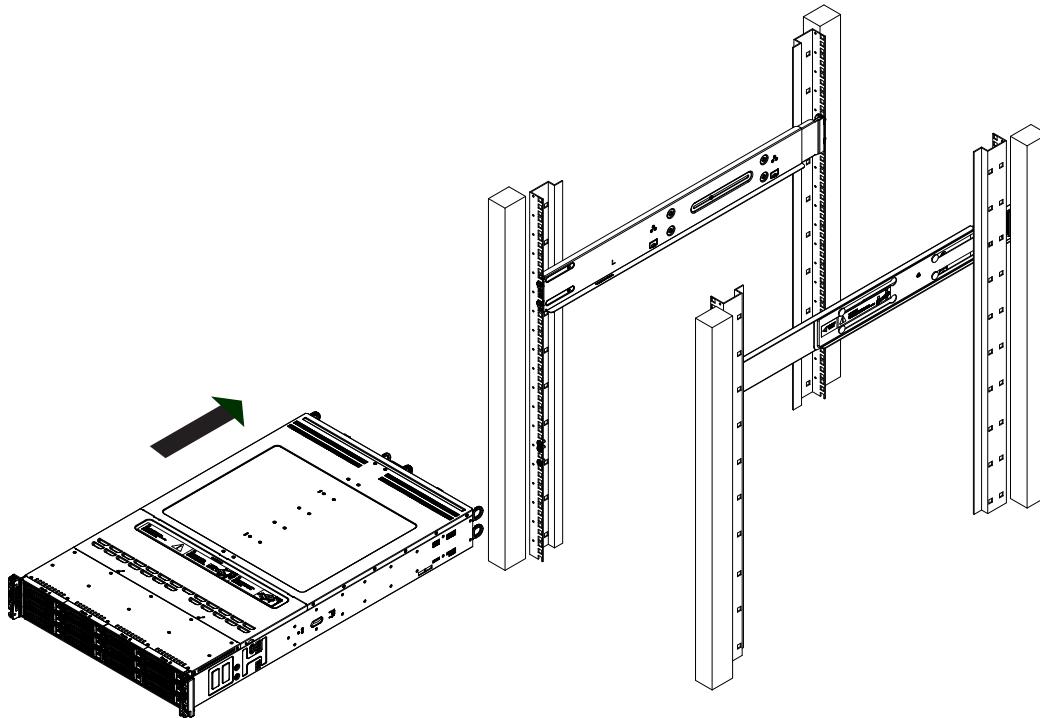


Figure 2-2. Attaching the Rail Front to the Rack
(Left rail shown)

Note: Figures are for illustrative purposes only. Always install servers into racks from the bottom up.

Chassis Installation

Slide the chassis into the rack so that the bottom of the chassis slides onto the bottom lip of the rails.

Figure 2-3. Sliding the Chassis into the Rack

Note: Figures are for illustrative purposes only. Always install servers into racks from the bottom up.

Stability hazard. The rack stabilizing mechanism must be in place, or the rack must be bolted to the floor before you slide the unit out for servicing. Failure to stabilize the rack can cause the rack to tip over.

Chapter 3

Maintenance and Component Installation

This chapter provides instructions on installing and replacing main system components. To prevent compatibility issues, only use components that match the specifications and/or part numbers given.

Installation or replacement of most components require that power first be removed from the system. Please follow the procedures given in each section.

3.1 Removing Power

Before performing some setup or maintenance tasks, use the following procedure to ensure that power has been removed from the system.

Removing Power from a Node

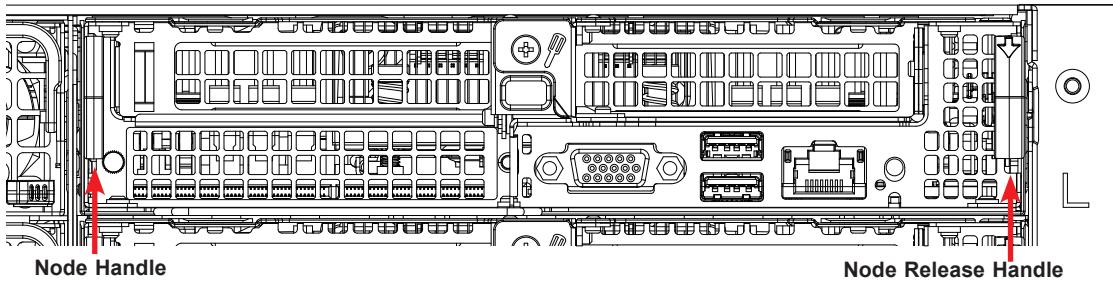
1. Use the operating system to power down the node.
2. Grasp the head of the power cord and gently pull it out of the back of the power supply.

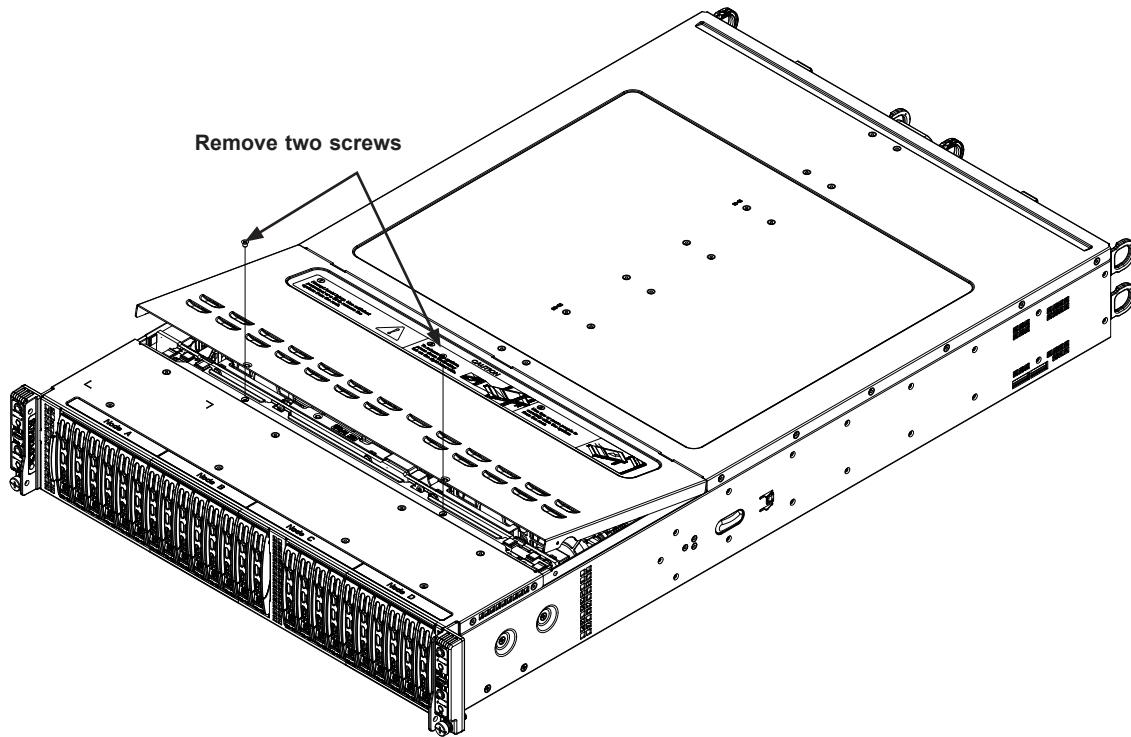
Removing Power from the System

1. Use the operating system to power down all nodes.
2. Grasp the head of each power cord and gently pull it out of the back of the power supply.
3. Disconnect the cords from the power strip or wall outlet.

3.2 Accessing the System

Removing a Computing Node Drawer




Figure 3-1. Removing a Node Tray

Removing a Node

1. Use the operating system to power down the node.
2. Remove any cables attached to the node
3. Pull down the node release handle and use both handles to slide the node out the chassis rear.

Removing the Chassis Cover

You can access some chassis components, such as fans, by removing the cover.

Figure 3-2. Removing the Chassis Cover

Removing the Chassis Cover

The chassis top cover can be lifted off after removing two screws.

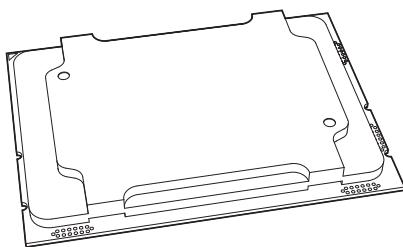
Caution: Except for short periods of time, do not operate the server without the cover in place. It provides proper airflow to prevent overheating.

3.3 Motherboard Components

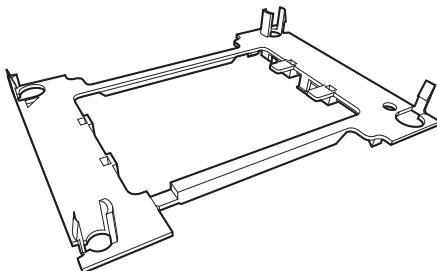
Processor and Heatsink Installation

The processor (CPU) and processor carrier should be assembled together first to form the processor carrier assembly. This will be attached to the heatsink to form the processor heatsink module (PHM) before being installed onto the CPU socket.

Notes:

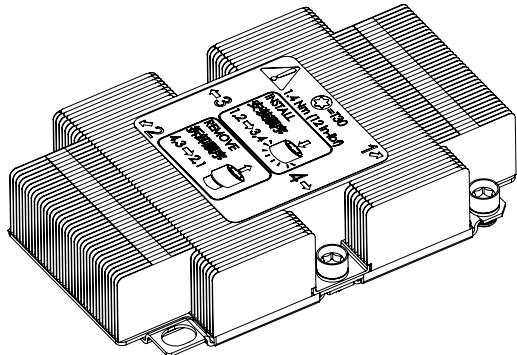

- Use ESD protection.
- Unplug the AC power cord from all power supplies after shutting down the system.
- Check that the plastic protective cover is on the CPU socket and none of the socket pins are bent. If they are, contact your retailer.
- When handling the processor, avoid touching or placing direct pressure on the LGA lands (gold contacts). Improper installation or socket misalignment can cause serious damage to the processor or CPU socket, which may require manufacturer repairs.
- Thermal grease is pre-applied on a new heatsink. No additional thermal grease is needed.
- Refer to the Supermicro website for updates on processor support.
- All graphics in this manual are for illustration only. Your components may look different.

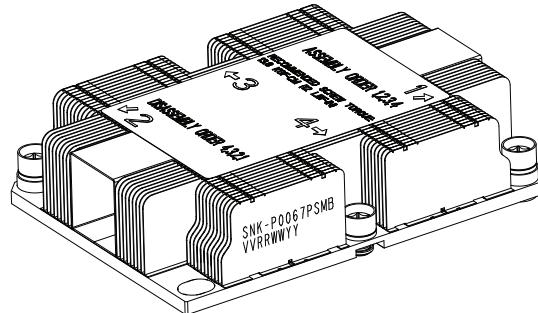
The Processor


The Intel Xeon 82xx/62xx/52xx/42xx/32xx or 81xx/61xx/51xx/41xx/31xx processor series comes in two models: Fabric (F Model) and Non-Fabric (Non-F Model). Only the Non-Fabric model is supported for this system.

The Processor Carrier Assembly

The assembly is the processor and a plastic carrier.


Processor


Processor Carrier

Heatsinks

The 2029BZ-HNR server uses a slightly different heatsink design for each CPU. The SNK-P0067PSMB model is used for CPU2, the CPU closer to the mid-chassis fans.

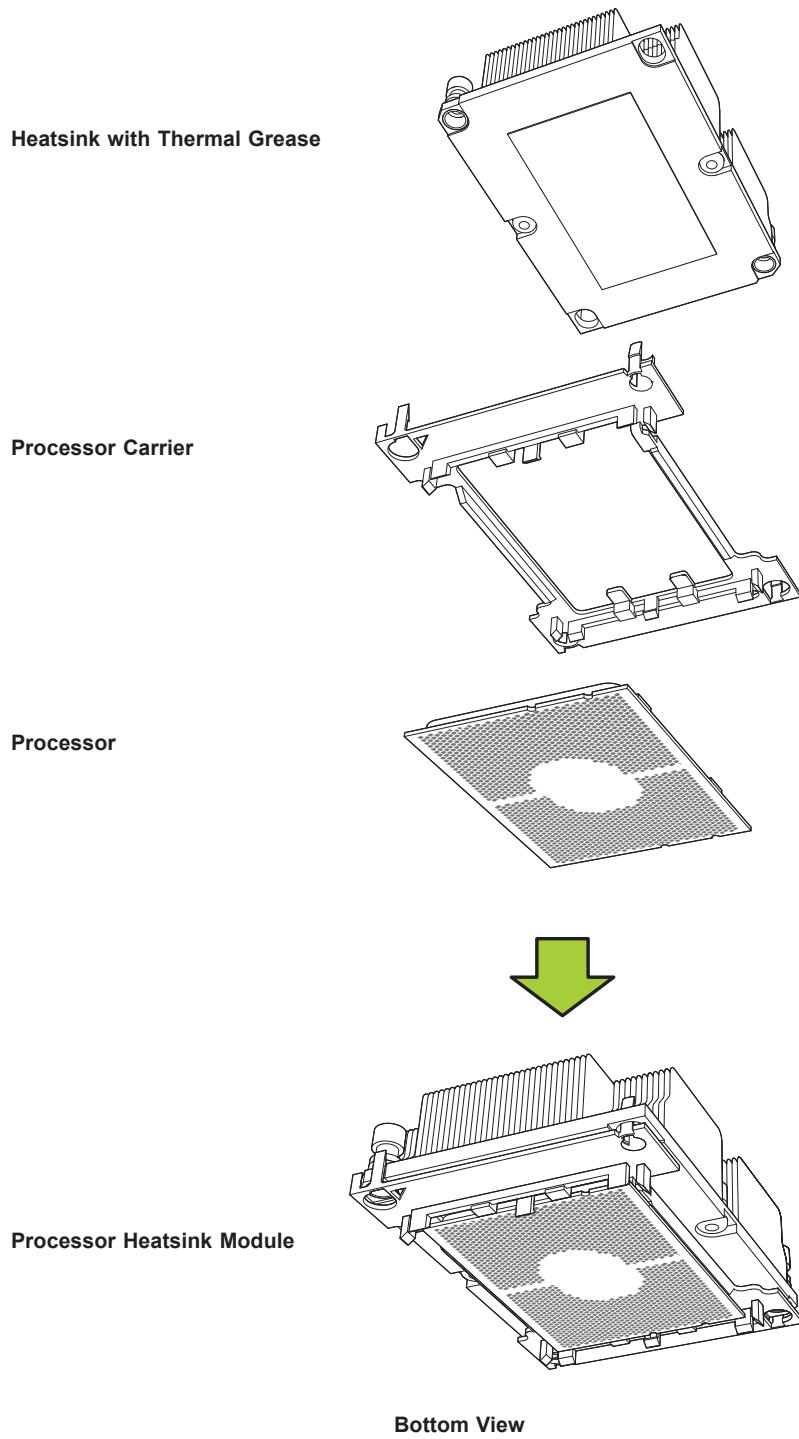
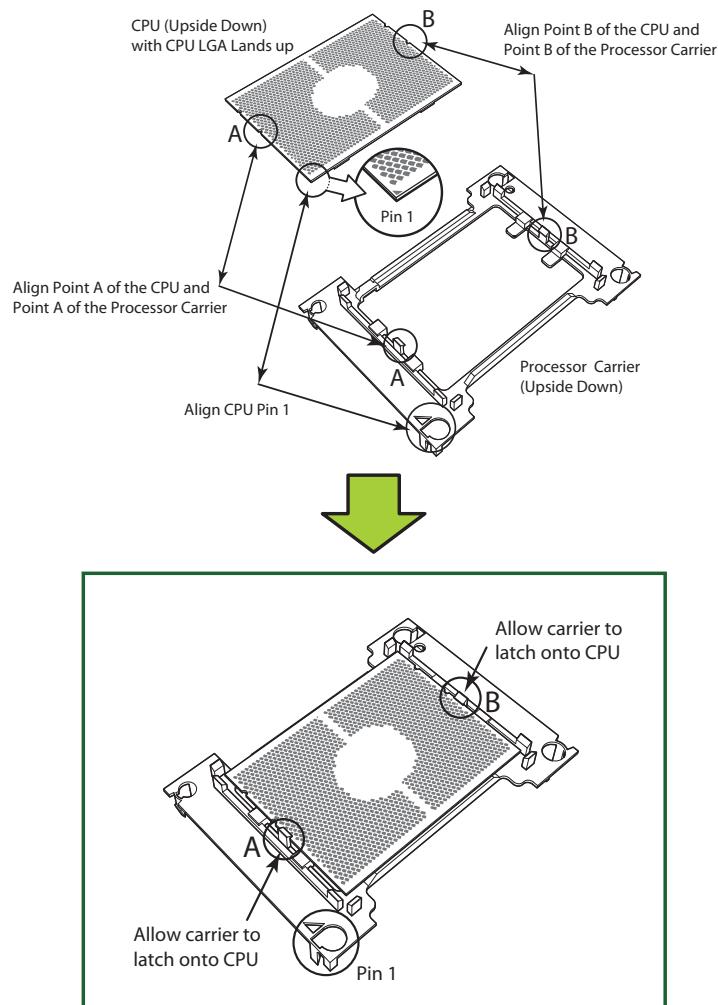

Figure 3-3. Heatsink SNK-P0071-VS
(for CPU1)

Figure 3-4. Heatsink SNK-P0067PSMB
(for CPU2)

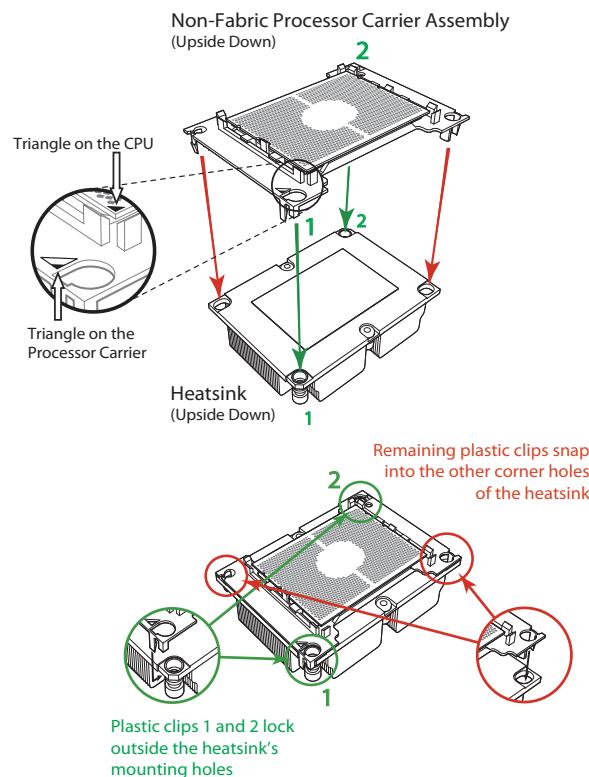
Overview of the Processor Heatsink Module


The Processor Heatsink Module (PHM) contains a heatsink, a processor carrier, and the processor.

Creating the Processor Carrier Assembly

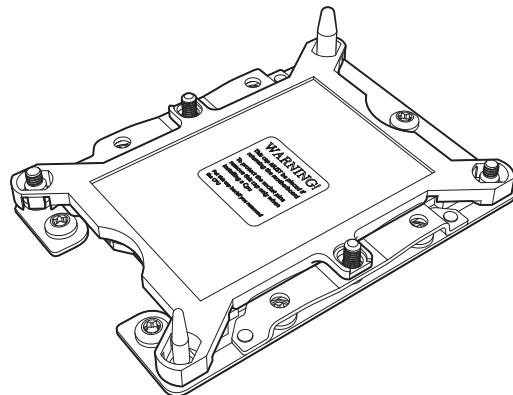
To install a processor into the processor carrier, follow the steps below:

1. Hold the processor with the LGA lands (gold contacts) facing up. Locate the small, gold triangle in the corner of the processor and the corresponding hollowed triangle on the processor carrier. These triangles indicate pin 1. See the images below.
2. Using the triangles as a guide, carefully align and place Point A of the processor into Point A of the carrier. Then gently flex the other side of the carrier for the processor to fit into Point B.
3. Examine all corners to ensure that the processor is firmly attached to the carrier.

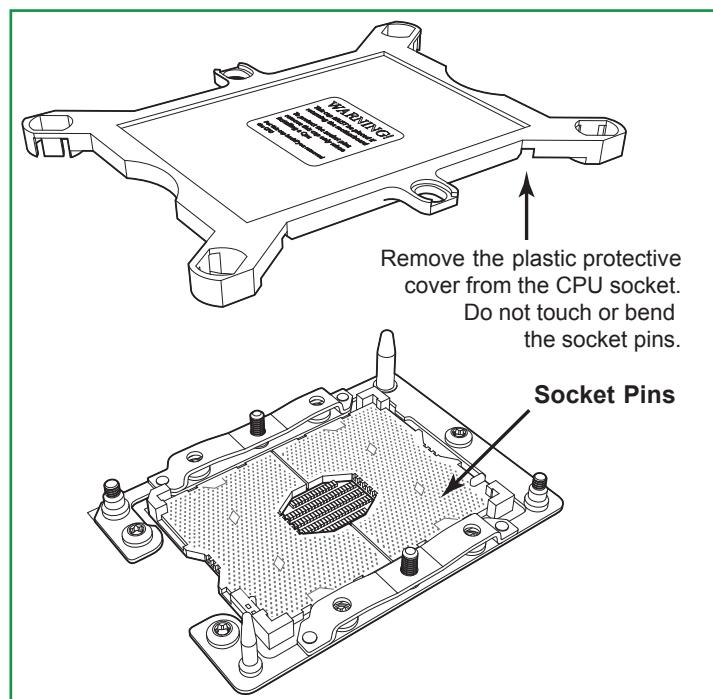


Processor Carrier Assembly

Assembling the Processor Heatsink Module

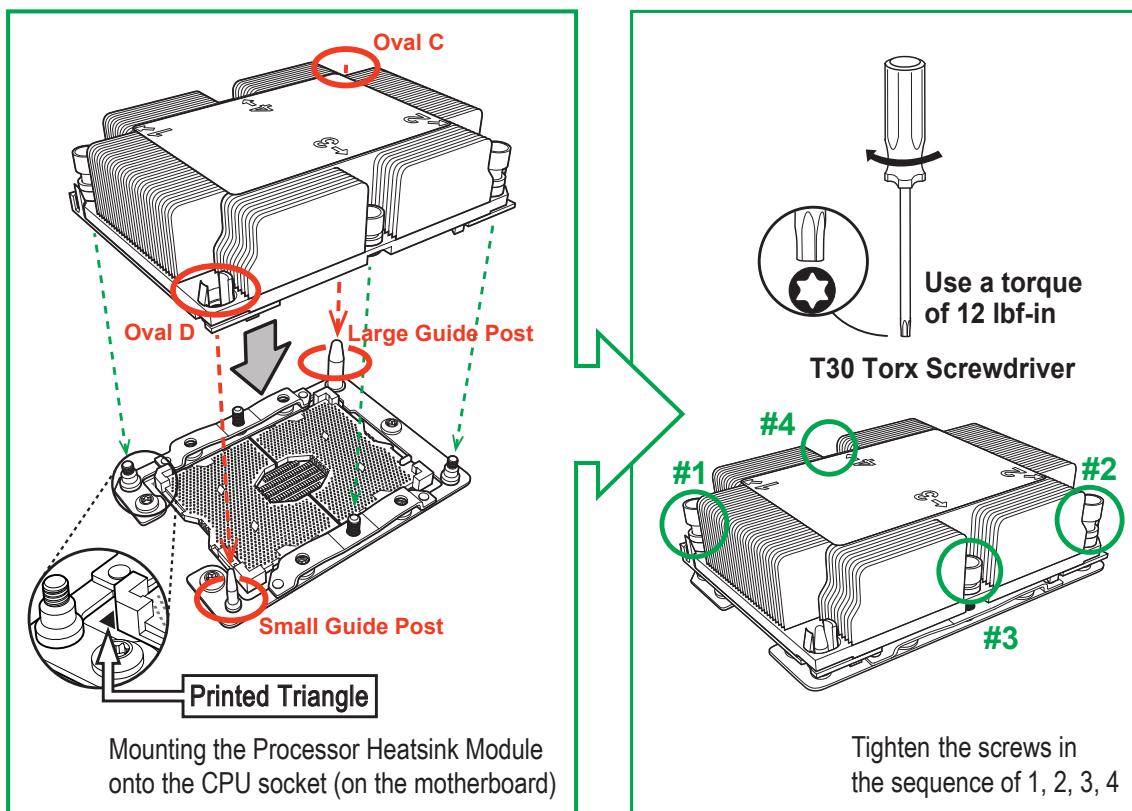

After creating the processor carrier assembly, mount it onto the heatsink to create the processor heatsink module (PHM):

1. Note the label on top of the heatsink, which marks the heatsink mounting holes as 1, 2, 3, and 4. If this is a new heatsink, the thermal grease has been pre-applied on the underside. Otherwise, apply the proper amount of thermal grease.
2. Turn the heatsink over with the thermal grease facing up. Hold the processor carrier assembly so the processor's gold contacts are facing up, then align the triangle on the assembly with hole 1 of the heatsink. Press the processor carrier assembly down. The plastic clips of the assembly will lock outside of holes 1 and 2, while the remaining clips will snap into their corresponding holes.
3. Examine all corners to ensure that the plastic clips on the processor carrier assembly are firmly attached to the heatsink.



Preparing the CPU Socket for Installation

This motherboard comes with a plastic protective cover on the CPU socket. Remove it carefully to install the Processor Heatsink Module (PHM).


CPU Socket with Plastic Protective Cover

Installing the Processor Heatsink Module

After assembling the Processor Heatsink Module (PHM), install it onto the CPU socket:

1. Align hole 1 of the heatsink with the printed triangle on the CPU socket. See the left image below.
2. Make sure all four holes of the heatsink are aligned with the socket before gently placing the heatsink on top.
3. With a T30 Torx-bit screwdriver, gradually tighten screws #1 – #4 to assure even pressure. The order of the screws is shown on the label on top of the heatsink. To avoid damaging the processor or socket, do not use a force greater than 12 lbf-in when tightening the screws.
4. Examine all corners to ensure that the PHM is firmly attached to the socket.

If at any time the PHM must be removed, power off, then loosen the screws in the sequence of #4, #3, #2, and #1.

Memory Installation

Memory Support

The X11DPT-BH supports up to 24 DIMM slots for up to 6 TB of memory with DDR4 ECC Load Reduced DIMMs (LRDIMM) and Registered DIMMs (RDIMM). In addition it supports Non-Volatile DIMMs (NVDIMM) and Intel Optane DC Persistent Memory (DCPMM; up to four slots).

DDR4 Memory Support for 81xx/61xx/51xx/41xx/31xx Processors						
Type	Ranks Per DIMM and Data Width	DIMM Capacity (GB)		Speed (MT/s)		
		DRAM Density		One Slot per Channel	Two Slots per Channel	
		4 Gb	8 Gb	One DIMM per Channel	One DIMM per Channel	Two DIMMs per Channel
RDIMM	SRx4	4 GB	8 GB	2666	2666	2666
	SRx8	8 GB	16 GB			
	DRx8	8 GB	16 GB			
	DRx4	16 GB	32 GB			
RDIMM 3Ds	QRx4	N/A	2H-64GB	2666	2666	2666
	8Rx4	N/A	4H-128GB			
LRDIMM	QRx4	32 GB	64 GB			
LRDIMM 3Ds	QRx4	N/A	2H-64GB			
	8Rx4	N/A	4H-128 GB			

DDR4 Memory Support for 82xx/62xx/52xx/42xx/32xx Processors							
Type	Ranks Per DIMM and Data Width	DIMM Capacity (GB)			Speed (MT/s)		
		DRAM Density			One Slot per Channel	Two Slots per Channel	
		4 Gb*	8 Gb	16 Gb	1.2 Volts	1.2 Volts	1.2 Volts
RDIMM	SRx4	4 GB	8 GB	16 GB	2933**	2933*	2933*
	SRx8	8 GB	16 GB	32 GB			
	DRx8	8 GB	16 GB	32 GB			
	DRx4	16 GB	32 GB	64 GB			
RDIMM 3Ds	QRx4	N/A	2H-64GB	2H-128GB	2933**	2933*	2933*
	8Rx4	N/A	4H-128GB	4H-256GB			
LRDIMM	QRx4	32 GB	64 GB	128 GB			
LRDIMM 3Ds	QRx4	N/A	2H-64GB	2H-64GB			
	8Rx4	N/A	4H-128 GB	4H-256 GB			

*4Gb DRAM density is only supported on speeds up to 2666 MT/s

**Only the 82xx and 62xx series support 2933 MT/s; for other processors, memory speed as supported by the CPU.

Check the Supermicro website for possible updates to memory support.

Memory Population Guidelines

- All DIMMs must be DDR4.
- Balance memory. Using unbalanced memory topology, such as populating two DIMMs in one channel while populating one DIMM in another channel, reduces performance. It is not recommended for Supermicro systems.
- In dual-CPU configurations, memory must be installed in the slots associated with the installed CPUs.

Guidelines Regarding Mixing DIMMs

- Populating slots with a pair of DIMM modules of the same type and size results in interleaved memory, which improves memory performance.
- Use memory modules of the same type and speed, as mixing is not allowed.
- x4 and x8 DIMMs can be mixed in the same channel.
- Mixing of LRDIMMs and RDIMMs is not allowed in the same channel, across different channels, and across different sockets.
- Mixing of non-3DS and 3DS LRDIMM is not allowed in the same channel, across different channels, and across different sockets.

DIMM Construction

- RDIMM (*non-3DS*) Raw Cards: A/B (2Rx4), C (1Rx4), D (1Rx8), E (2Rx8)
- 3DS RDIMM Raw Cards: A/B (4Rx4)
- LRDIMM (*non-3DS*) Raw Cards: D/E (4Rx4)
- 3DS LRDIMM Raw Cards: A/B (8Rx4)

Memory Population Sequence

Blue slots versus black slots: Install the first DIMM in the blue memory slot, which is the first of a memory channel. Then, if using two DIMMs per channel, install the second DIMM in the black slot.

The following memory population sequence table was created based on guidelines provided by Intel to support Supermicro motherboards. The diagram is for illustrative purposes; your motherboard may look different.

Memory Population for the X11 DP Motherboard, 24 DIMM Slots	
CPUs/DIMMs	Memory Population Sequence
1 CPU & 1 DIMM	CPU1: P1-DIMMA1
1 CPU & 2 DIMMs	CPU1: P1-DIMMA1/P1-DIMMD1
1 CPU & 3 DIMMs	CPU1: P1-DIMMC1/P1-DIMMB1/P1-DIMMA1
1 CPU & 4 DIMMs	CPU1: P1-DIMMB1/P1-DIMMA1/P1-DIMMD1/P1-DIMME1
1 CPU & 5 DIMMs*	CPU1: P1-DIMMC1/P1-DIMMB1/P1-DIMMA1/P1-DIMMD1/P1-DIMME1
1 CPU & 6 DIMM	CPU1: P1-DIMMC1/P1-DIMMB1/P1-DIMMA1/P1-DIMMD1/P1-DIMME1/P1-DIMMF1
1 CPU & 7 DIMMs*	CPU1: P1-DIMMB1/P1-DIMMB2/P1-DIMMA1/P1-DIMMA2/P1-DIMMD1/P1-DIMME1/P1-DIMMF1
1 CPU & 8 DIMMs	CPU1: P1-DIMMB1/P1-DIMMB2/P1-DIMMA1/P1-DIMMA2/P1-DIMMD2/P1-DIMMD1/P1-DIMME2/P1-DIMME1
1 CPU & 9 DIMMs*	CPU1: P1-DIMMC1/P1-DIMMC2/P1-DIMMB1/P1-DIMMB2/P1-DIMMA1/P1-DIMMA2/P1-DIMMD1/P1-DIMME1/P1-DIMMF1
1 CPU & 10 DIMMs*	CPU1: P1-DIMMC1/P1-DIMMB1/P1-DIMMB2/P1-DIMMA1/P1-DIMMA2/P1-DIMMD2/P1-DIMMD1/P1-DIMME2/P1-DIMME1/P1-DIMMF1
1 CPU & 11 DIMMs*	CPU1: P1-DIMMC1/P1-DIMMC2/P1-DIMMB1/P1-DIMMB2/P1-DIMMA1/P1-DIMMA2/P1-DIMMD2/P1-DIMMD1/P1-DIMME2/P1-DIMME1/P1-DIMMF1
1 CPU & 12 DIMMs	CPU1: P1-DIMMC1/P1-DIMMC2/P1-DIMMB1/P1-DIMMB2/P1-DIMMA1/P1-DIMMA2/P1-DIMMD2/P1-DIMMD1/P1-DIMME2/P1-DIMME1/P1-DIMMF2/P1-DIMMF1
2 CPUs & 2 DIMMs	CPU1: P1-DIMMA1 CPU2: P2-DIMMA1
2 CPUs & 4 DIMMs	CPU1: P1-DIMMA1/P1-DIMMD1 CPU2: P2-DIMMA1/P2-DIMMD1
2 CPUs & 6 DIMMs	CPU1: P1-DIMMC1/P1-DIMMB1/P1-DIMMA1 CPU2: P2-DIMMC1/P2-DIMMB1/P2-DIMMA1
2 CPUs & 8 DIMMs	CPU1: P1-DIMMB1/P1-DIMMA1/P1-DIMMD1/P1-DIMME1 CPU2: P2-DIMMB1/P2-DIMMA1/P2-DIMMD1/P2-DIMME1
2 CPUs & 10 DIMMs	CPU1: P1-DIMMC1/P1-DIMMB1/P1-DIMMA1/P1-DIMMD1/P1-DIMME1/P1-DIMMF1 CPU2: P2-DIMMB1/P2-DIMMA1/P2-DIMMD1/P2-DIMME1
2 CPUs & 12 DIMMs	CPU1: P1-DIMMC1/P1-DIMMB1/P1-DIMMA1/P1-DIMMD1/P1-DIMME1/P1-DIMMF1 CPU2: P2-DIMMC1/P2-DIMMB1/P2-DIMMA1/P2-DIMMD1/P2-DIMME1/P2-DIMMF1
2 CPUs & 14 DIMMs	CPU1: P1-DIMMB1/P1-DIMMB2/P1-DIMMA1/P1-DIMMA2/P1-DIMMD2/P1-DIMMD1/P1-DIMME2/P1-DIMME1 CPU2: P2-DIMMC1/P2-DIMMB1/P2-DIMMA1/P2-DIMMD1/P2-DIMME1/P2-DIMMF1
2 CPUs & 16 DIMMs	CPU1: P1-DIMMB1/P1-DIMMB2/P1-DIMMA1/P1-DIMMA2/P1-DIMMD2/P1-DIMMD1/P1-DIMME2/P1-DIMME1 CPU2: P2-DIMMB1/P2-DIMMB2/P2-DIMMA1/P2-DIMMA2/P2-DIMMD2/P2-DIMMD1/P2-DIMME2/P2-DIMME1
2 CPUs & 18 DIMMs	CPU1: P1-DIMMC1/P1-DIMMC2/P1-DIMMB1/P1-DIMMB2/P1-DIMMA1/P1-DIMMA2/P1-DIMMD2/P1-DIMMD1/P1-DIMME2/P1-DIMME1/P1-DIMMF1 CPU2: P2-DIMMC1/P2-DIMMB1/P2-DIMMA1/P2-DIMMD1/P2-DIMME1/P2-DIMMF1
2 CPUs & 20 DIMMs	CPU1: P1-DIMMC1/P1-DIMMC2/P1-DIMMB1/P1-DIMMB2/P1-DIMMA1/P1-DIMMA2/P1-DIMMD2/P1-DIMMD1/P1-DIMME2/P1-DIMME1 CPU2: P2-DIMMB1/P2-DIMMB2/P2-DIMMA1/P2-DIMMA2/P2-DIMMD2/P2-DIMMD1/P2-DIMME2/P2-DIMME1
2 CPUs & 22 DIMMs*	CPU1: P1-DIMMC1/P1-DIMMC2/P1-DIMMB1/P1-DIMMB2/P1-DIMMA1/P1-DIMMA2/P1-DIMMD2/P1-DIMMD1/P1-DIMME2/P1-DIMME1/P1-DIMMF1 CPU2: P2-DIMMC1/P2-DIMMC2/P2-DIMMB1/P2-DIMMB2/P2-DIMMA1/P2-DIMMA2/P2-DIMMD2/P2-DIMMD1/P2-DIMME2/P2-DIMME1/P2-DIMMF1
2 CPUs & 24 DIMMs	CPU1: all slots CPU2: all slots

*Unbalanced, not recommended.

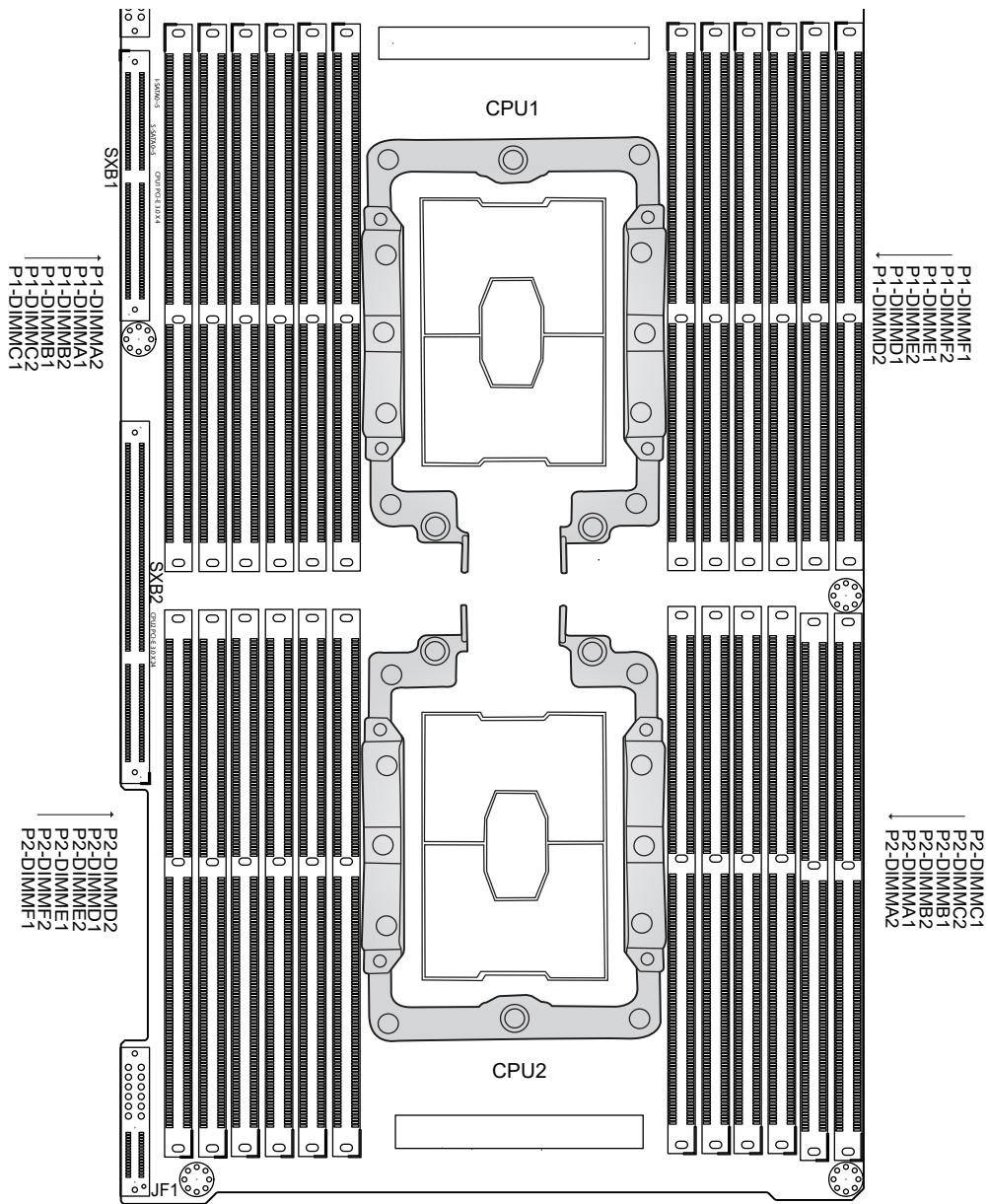


Figure 3-4. DIMM Locations

DCPMM Population Table (24 Slots) based on the 82xx/62xx/52xx/42xx

Symmetric Population for Each CPU														
DCP & DIMMs	Modes	P1/P2-DIMMF1	P1/P2-DIMMF2	P1/P2-DIMME1	P1/P2-DIMME2	P1/P2-DIMMD1	P1/P2-DIMMD2	P1/P2-DIMMA2	P1/P2-DIMMA1	P1/P2-DIMMB2	P1/P2-DIMMB1	P1/P2-DIMMC2	P1/P2-DIMMC1	Channel Config.
4 DCP 12DIMM	AD	M1	-	M1	-	M1	DCP	DCP	M1	-	M1	-	M1	2-1-1
	MM	M2	-	M2	-	M2	DCP	DCP	M2	-	M2	-	M2	2-1-1
	AD + MM	M3	-	M3	-	M3	DCP	DCP	M3	-	M3	-	M3	2-1-1
4 DCP 8 DIMM	AD	DCP	-	M1	-	M1	-	-	M1	-	M1	-	DCP	1-1-1
	MM	DCP	-	M1	-	M1	-	-	M1	-	M1	-	DCP	1-1-1
	AD + MM	DCP	-	M3	-	M3	-	-	M3	-	M3	-	DCP	1-1-1

AD: App Direct, MM: Memory Mode, M1/M2/M3: DRAM (see Legend below)

Asymmetric Population for Each CPU														
DCP & DIMMs	Modes	P1/P2-DIMMF1	P1/P2-DIMMF2	P1/P2-DIMME1	P1/P2-DIMME2	P1/P2-DIMMD1	P1/P2-DIMMD2	P1/P2-DIMMA2	P1/P2-DIMMA1	P1/P2-DIMMB2	P1/P2-DIMMB1	P1/P2-DIMMC2	P1/P2-DIMMC1	Channel Config.
2/1 DCP 12DIMM	AD	M1	-	M1	-	M1	-	DCP	M1	-	M1	-	M1	2/1-1-1
	AD*	M1	-	M1	-	M1	-	DCP	M1	-	M1	-	M1	2/1-1-1

*Second socket has no DCPMM

Legend (for the two tables above)									
DDR4 Type					Capacity				
M1	RDIMM	3DS RDIMM	LRDIMM	3DS LRDIMM	Any Capacity				
M2	RDIMM	-	-	-	Refer to the Validation Matrix below.				
M3	RDIMM	3DS RDIMM	LRDIMM	-					

Note: DDR4 single rank x8 is not available for DCP Memory Mode or App-Direct Mode.

Validation Matrix (DDR4 DIMMs Validated with DCPMM)				
DIMM Type		Ranks Per DIMM & Data Width (Stack)		DIMM Capacity (GB)
				DRAM Density
				4Gb 8Gb
RDIMM		1Rx4		8GB 16GB
		2Rx8		8GB 16GB
LRDIMM		2Rx4		16GB 32GB
		4Rx4		N/A 64GB
LRDIMM 3DS		8Rx4 (4H)		N/A 128GB

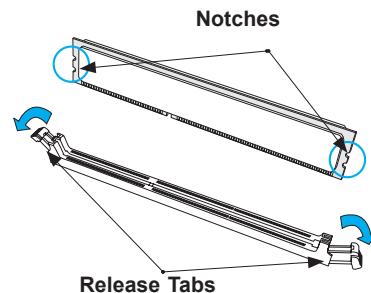
Notes:

- For MM, general NM/FM ratio is between 1:4 and 1:16. Excessive capacity for FM can be used for AD. (NM = Near Memory; FM = Far Memory).
- For each individual population, rearrangements between channels are allowed as long as the resulting population is compliant with the PDG rules for the 82xx/62xx/52xx/42xx platform.
- For each individual population, use the same DDR4 DIMM in all slots.
- For each individual population, sockets are normally symmetric with exceptions for one DCPMM per socket and one DCPMM per node case. Currently, DCPMM modules operate at 2666 MHz.

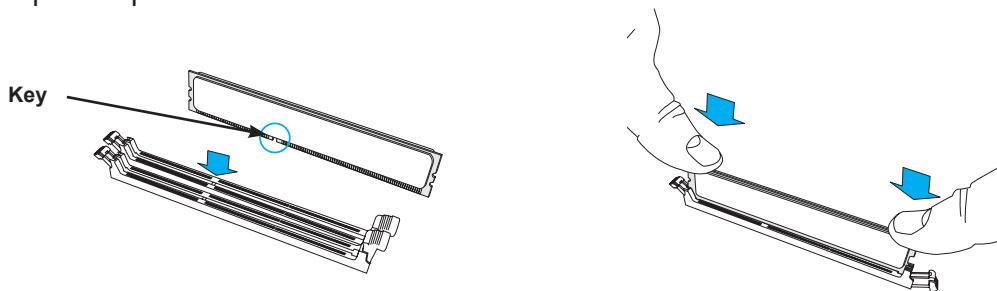
- Do not mix DCPMM and NVDIMM within the same platform.
- This DCPMM population guide targets a balanced DCPMM-to-DRAM-cache ratio in MM and MM + AD modes.
- DCPMM population is restricted to four slots due to thermal limitations.

Installing Memory

ESD Precautions


Electrostatic Discharge (ESD) can damage electronic components including memory modules. To avoid damaging DIMM modules, it is important to handle them carefully. The following measures are generally sufficient.

- Use a grounded wrist strap designed to prevent static discharge.
- Handle the memory module by its edges only.
- Put the memory modules into the antistatic bags when not in use.


Installing Memory

Begin by removing power from the system as described in Section 3.1. Follow the memory population sequence in the table above.

1. Push the release tabs outwards on both ends of the DIMM slot to unlock it.

2. Align the key of the DIMM with the receptive point on the memory slot and with your thumbs on both ends of the module, press it straight down into the slot until the module snaps into place.

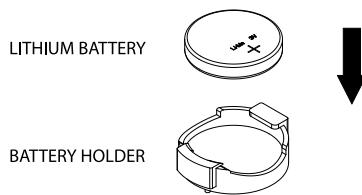
3. Press the release tabs to the locked position to secure the DIMM module into the slot.

Caution: Exercise extreme caution when installing or removing memory modules to prevent damage to the DIMMs or slots.

Removing Memory

To remove a DIMM, unlock the release tabs then pull the DIMM from the memory slot.

Motherboard Battery


The motherboard uses non-volatile memory to retain system information when system power is removed. This memory is powered by a lithium battery residing on the motherboard.

Replacing the Battery

Begin by removing power from the system as described in section 3.1.

1. Push aside the small clamp that covers the edge of the battery. When the battery is released, lift it out of the holder.
2. To insert a new battery, slide one edge under the lip of the holder with the positive (+) side facing up. Then push the other side down until the clamp snaps over it.

Note: Handle used batteries carefully. Do not damage the battery in any way; a damaged battery may release hazardous materials into the environment. Do not discard a used battery in the garbage or a public landfill. Please comply with the regulations set up by your local hazardous waste management agency to dispose of your used battery properly.

Figure 3-3. Installing the Onboard Battery

Warning: There is a danger of explosion if the onboard battery is installed upside down (which reverses its polarities). This battery must be replaced only with the same or an equivalent type recommended by the manufacturer (BR2032).

3.4 Chassis Components

This section provides instructions on installing and replacing system components. To assure compatibility, only use components that match the specifications or part numbers given.

Storage Drives

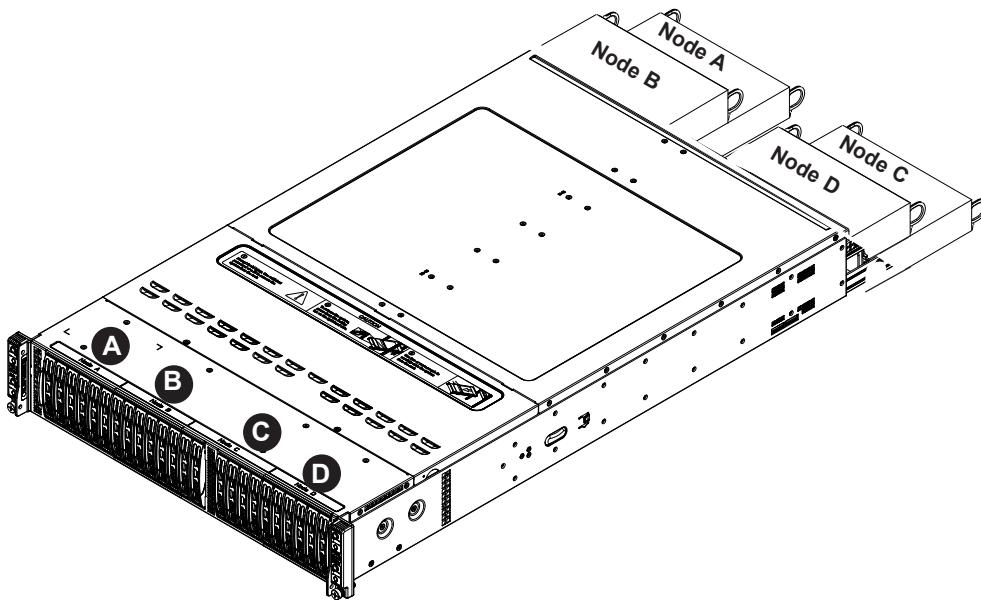
The 217 chassis supports twenty-four hot-swap 2.5" storage drives. Each node controls six NVMe drives.

Note: Enterprise level NVMe drives are recommended for use in Supermicro chassis and servers. For information on recommended NVMe drives, visit the Supermicro website at <https://www.supermicro.com/products/info/BigTwin.cfm>.

Note: For VROC configurations, refer to the VROC appendix in this manual

Drive Carriers

The drives are mounted in drive carriers that simplify their removal from the chassis. These carriers also help promote proper airflow. Even carriers without drives must remain in the chassis for proper airflow.


Each drive carrier has two LED indicators: an activity indicator and a status indicator. In RAID configurations, the status indicator lights to indicate the status of the drive. In non-RAID configurations, the status indicator remains off. See the table below for details.

Drive Carrier LED Indicators			
	Color	Blinking Pattern	Behavior for Device
Activity LED	Blue	Solid On	SAS/NVMe drive installed
	Blue	Blinking	I/O activity
Status LED	Red	Solid On	Failure of drive with RSTe support
	Red	Blinking at 1 Hz	Rebuild drive with RSTe support
	Red	Blinking with two blinks and one stop at 1 Hz	Hot spare for drive with RSTe support (<i>not supported in VMD mode</i>)
	Red	On for five seconds, then off	Power on for drive with RSTe support
	Red	Blinking at 4 Hz	Identify drive with RSTe support
	Green	Solid On	Safe to remove NVMe device (<i>not supported in VMD mode</i>)
	Amber	Blinking at 1 Hz	Attention state—do not remove NVMe device (<i>not supported in VMD mode</i>)

Drive Configuration

The 217 chassis contains four separate computing node drawers, each with its own motherboard. Each node controls a set of six drives. If a node drawer is pulled out of the chassis, the drives associated with that node will power down.

Node B controls drives B1, B2, B3, B4, B5 and B6	Node D controls drives D1, D2, D3, D4, D5 and D6
Node A controls drives A1, A2, A3, A4, A5 and A6	Node C controls drives C1, C2, C3, C4, C5 and C6

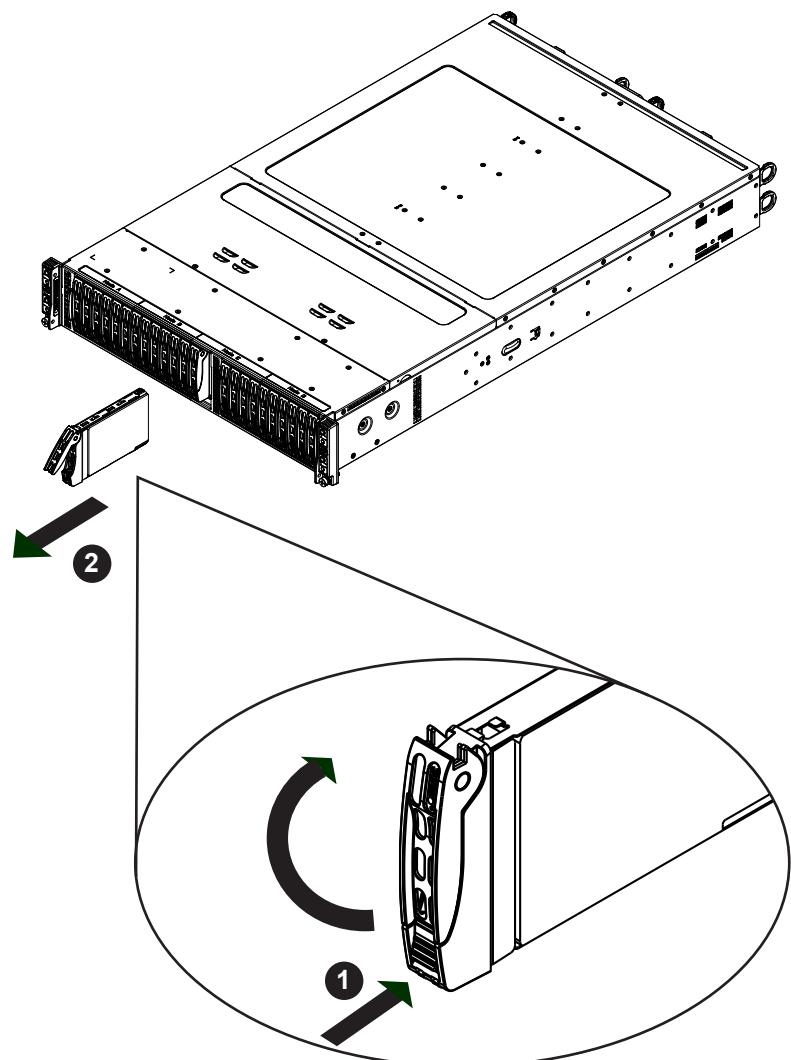
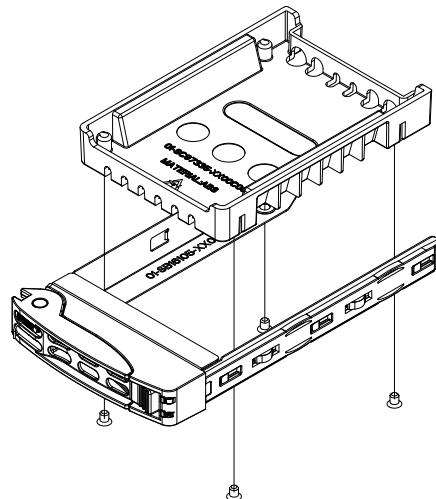
Figure 3-4. Storage Drives and the Corresponding Nodes

Installing Drives

Removing Drive Carriers from the Chassis

1. Press the release button on the drive carrier. This extends the drive carrier handle.
2. Use the handle to pull the carrier out of the chassis (Figure 3-5).
3. Remove the dummy drive from the carrier (Figure 3-6).

Caution: Except for short periods of time (swapping drives), do not operate the server with the drive carriers removed from the bays, regardless of how many drives are installed, for proper airflow.

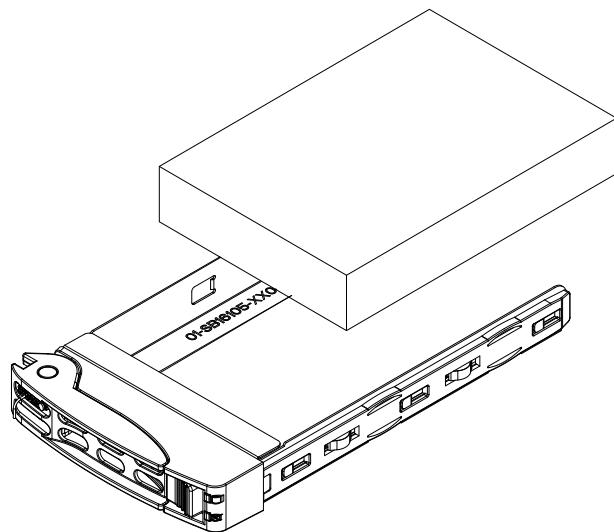
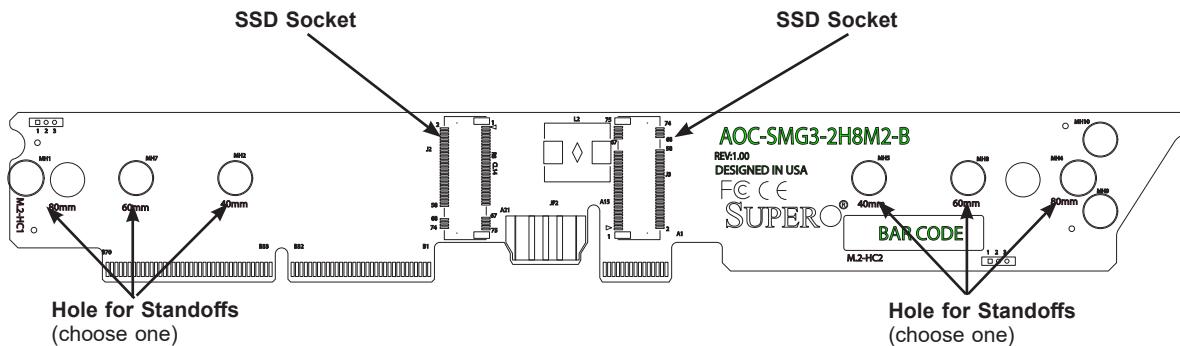

Figure 3-5. Removing a Drive Carrier

Figure 3-6. Removing a Dummy Drive from the Drive Carrier

Installing a Drive

1. Install a new drive into the carrier with the printed circuit board side facing down so that the mounting holes in the drive align with those in the carrier.
2. Secure the hard drive into the carrier with the screws.


Figure 3-7. Installing the Hard Drive

3. Insert the drive and carrier into its bay vertically, keeping the carrier oriented so that the release button is on the bottom. When the carrier reaches the rear of the bay, the release handle starts to retract.
4. Push the upper part of the drive carrier handle until it clicks into the locked position.

Installing M.2 Solid State Drives

Each node can accommodate one or two M.2 solid state drives (SSDs) using an optional carrier card (AOC-SMG3-2H8M2-B).

Note: The system only supports SATA M.2 SSDs with operating temperature specification rated 70C or higher, and NVMe M.2 SSDs with operating specification rated at least 80C or higher.

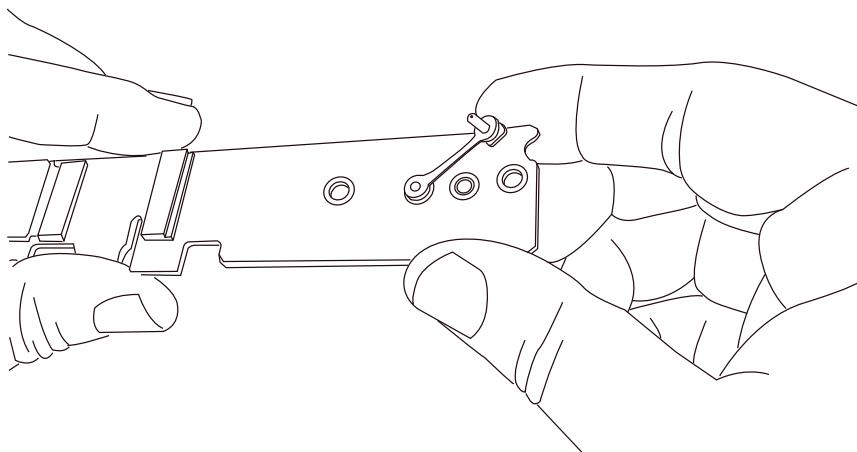


Figure 3-8. M.2 SSD Add-on Card (AOC-SMG3-2H8M2-B)

To Install M.2 SSDs and the Carrier Card

Caution: Use industry-standard anti-static equipment, such as gloves or wrist strap, and follow precautions to avoid damage caused by ESD.

1. For each SSD, install the standoff in the appropriate hole that corresponds with the form factor of the SSD to be installed (42mm, 60mm or 80mm length SSDs are supported). Push the plastic standoff until it snaps into the carrier card.

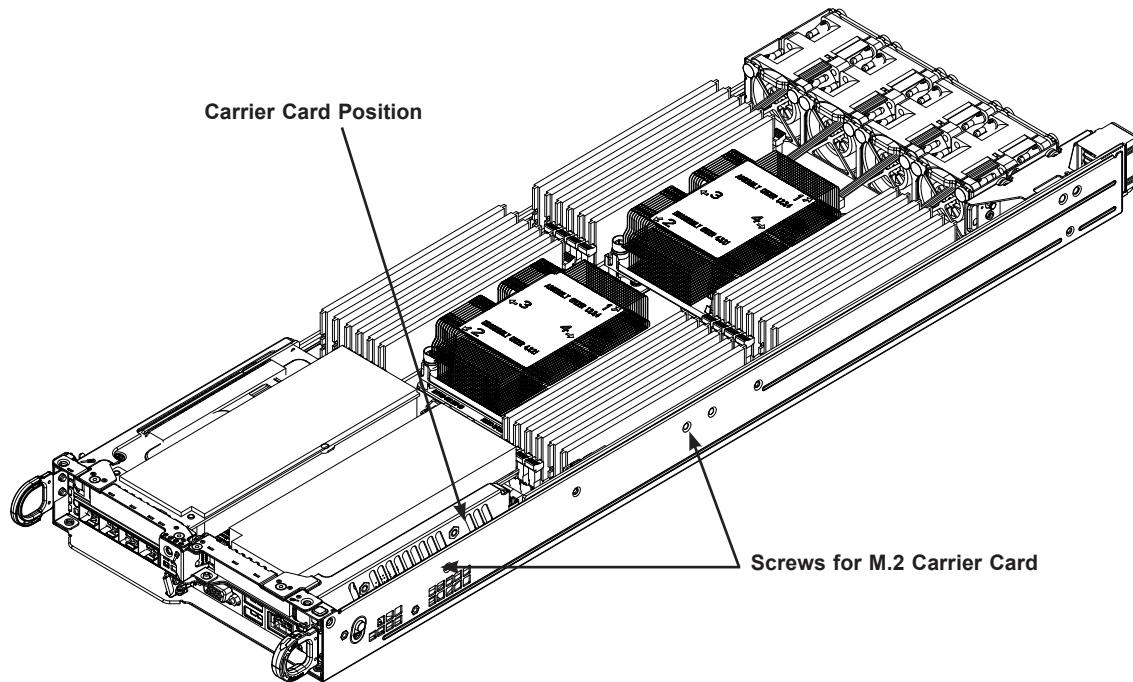
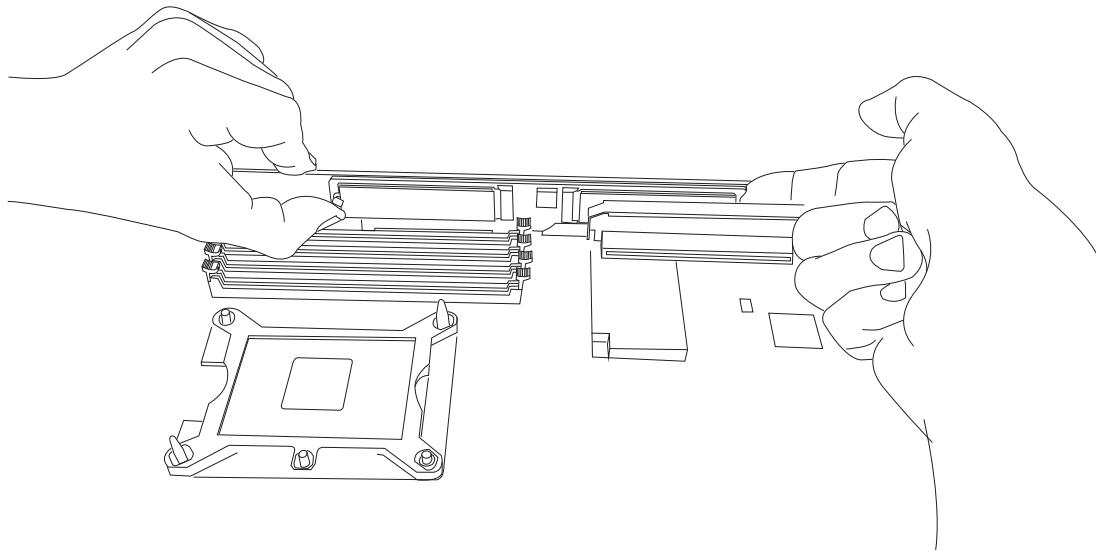


Figure 3-9. Inserting the Standoff
(drawing shows hole for 60 mm SSD)

2. Insert the SSD into the socket on the expansion card. Then push it flat against the carrier card and the plastic standoff.
3. Secure the SSD by firmly inserting the standoff plug.

Figure 3-10. Inserting the Standoff Plug


Figure 3-11. Locating the M.2 Carrier Card Slot and Screws

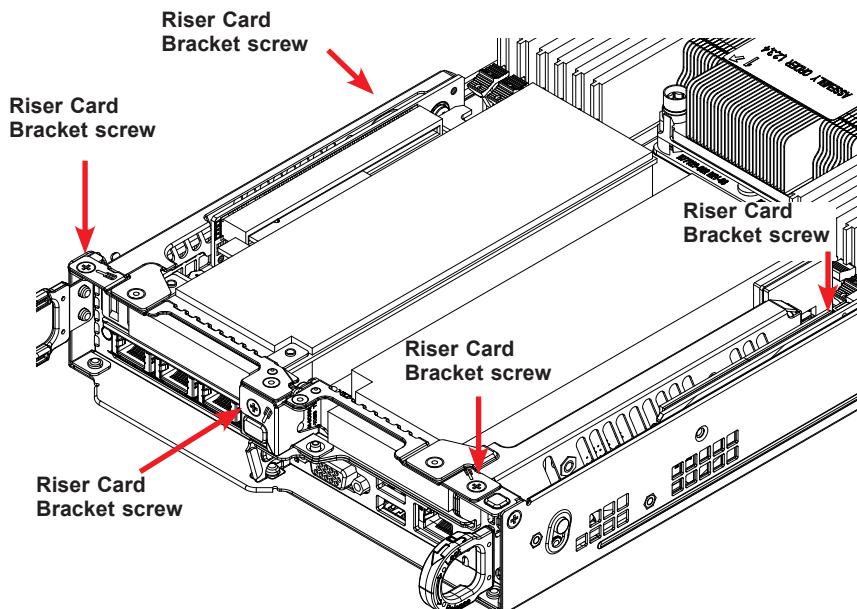
4. Power down the node and remove it from the chassis.
5. On the motherboard, remove any DIMMs obstructing access to the carrier card slot.

6. Push the carrier card into the slot on the motherboard. With the screws provided, secure it to the side of the node chassis.
7. Replace any DIMMs that may have been removed.
8. Replace the node into the chassis, and power up the system.

Removing the M.2 Carrier Card

1. Power down the node as described in Section 3.1 and remove it from the chassis.
2. Remove any DIMMs obstructing access to the M.2 carrier card.
3. Remove the two screws from the left side (viewed from the chassis front) of the node chassis that secure the M.2 carrier card to the node chassis. (Figure 3-11)

Figure 3-12. Removing the Carrier Card


4. Pull the card out of the socket by both notched edges (front and back) of the card. Be careful not to exert any force on any M.2 SSDs already installed on the card.
5. If you want to remove an installed SSD, remove the plug from the standoff and allow the M.2 SSD to lift up at an angle before removing it from the M.2 socket.

Installing Expansion Cards

The system can accommodate two low-profile PCI-E 3.0 x16 cards per node, for a total of eight in the chassis.

Installing an Expansion Card

1. Power down the node and remove it from the chassis.
2. Remove the screws holding the riser card brackets.
 - For the right side (looking from the node rear), remove the three screws on the right.
 - For the left side, remove the three screws on the left.
3. Remove the blank PCI shield from the bracket.
4. Slide the expansion card bracket into the open PCI slot while plugging the expansion card into the riser card.
5. Secure the expansion card bracket into the PCI slot with a screw.
6. Replace the riser card brackets and secure with the screws.

Figure 3-13. Installing the Expansion Card

SIOM Card

The Supermicro Input/Output module (SIOM) card provides options for network connection. It is inserted into a SIOM slot on the motherboard. This installation is usually performed by a system integrator or manufacturer.

Installing the SIOM Card

Before installing the motherboard into the node drawer:

1. Power down the node and remove it from the chassis.
2. Insert the SIOM card into the motherboard as shown.
3. Secure it with a screw. **Note:** Torque range is 0.20-0.28 Nm.
4. Install the covering bracket on the rear of the node drawer.
5. Install the motherboard including the other screw on the SIOM card.

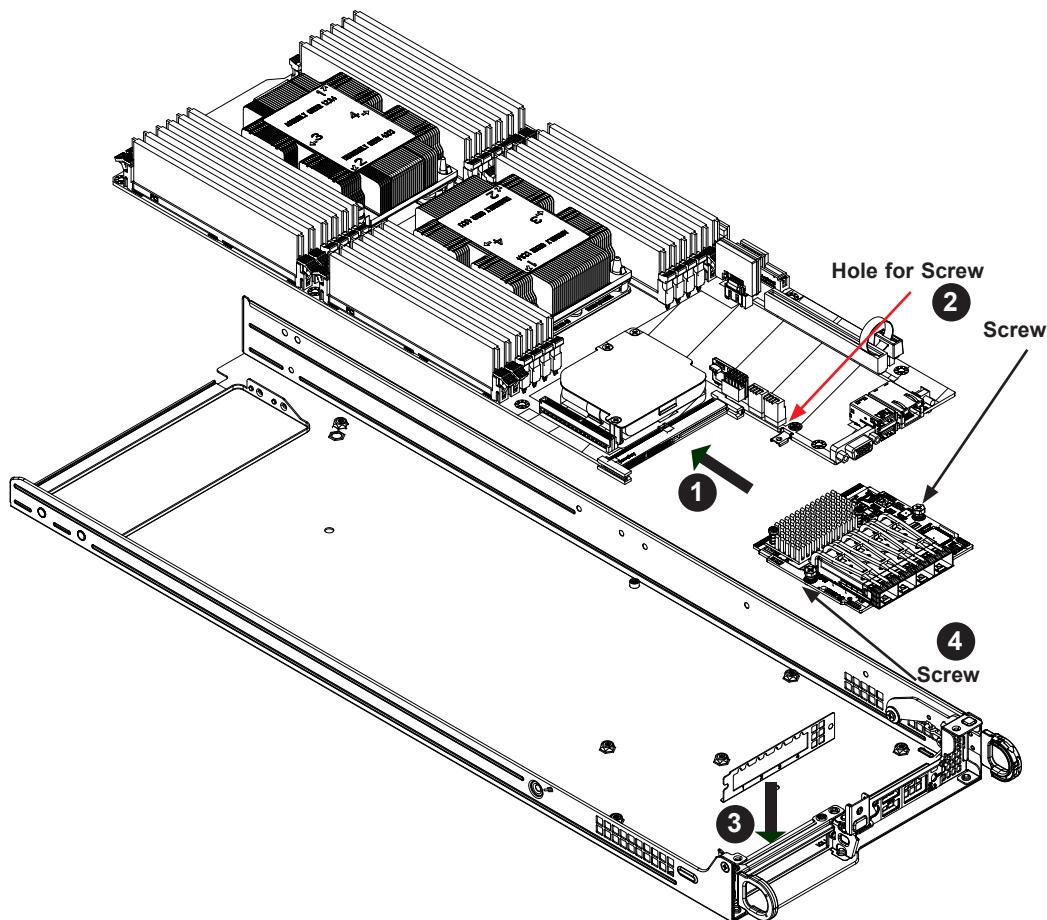
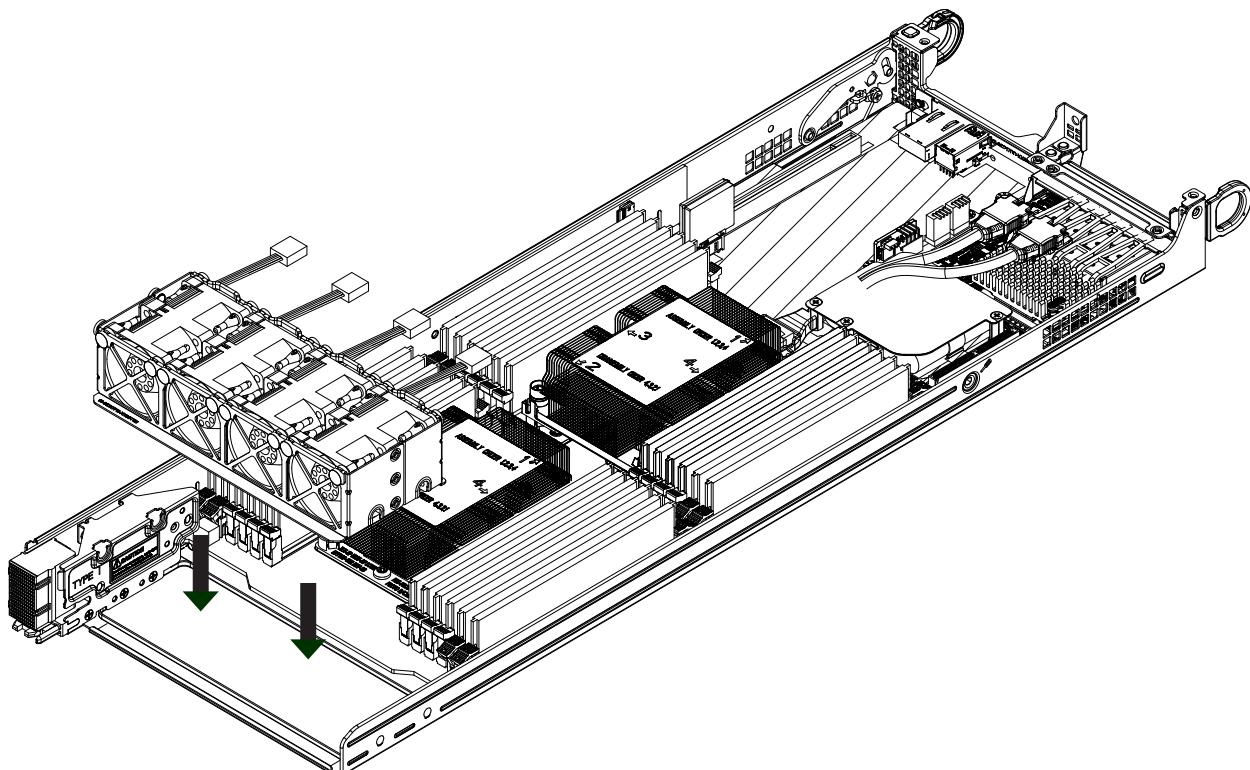



Figure 3-14. SIOM Card Position on Node Drawer Rear

System Fans

Four fans provide cooling. They can be replaced without powering down the entire system.

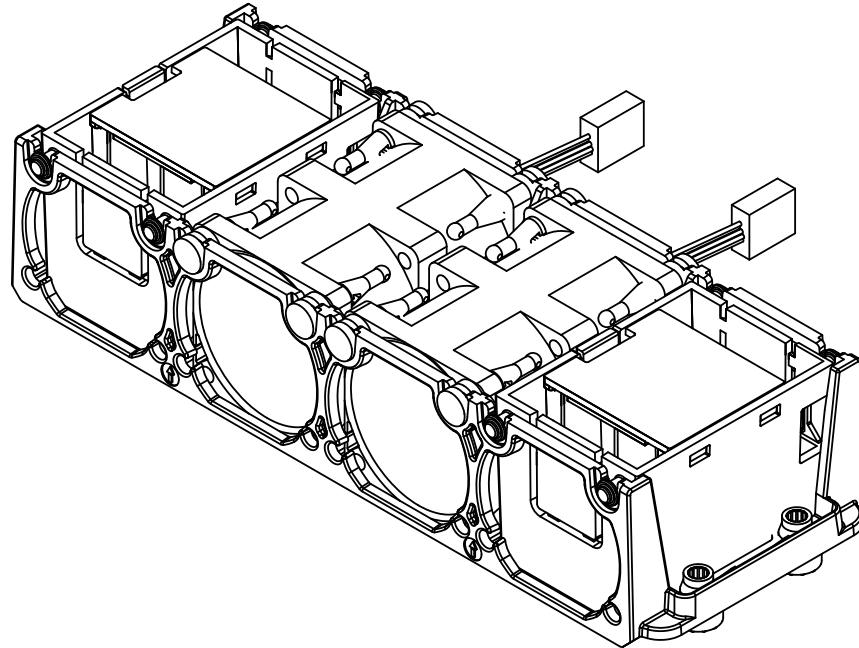

Fan speed is controlled by a system temperature setting in IPMI. If a fan fails, the remaining fans will ramp up to full speed. The system can continue to run with a failed fan. Replace any failed fan at your earliest convenience with the same type and model.

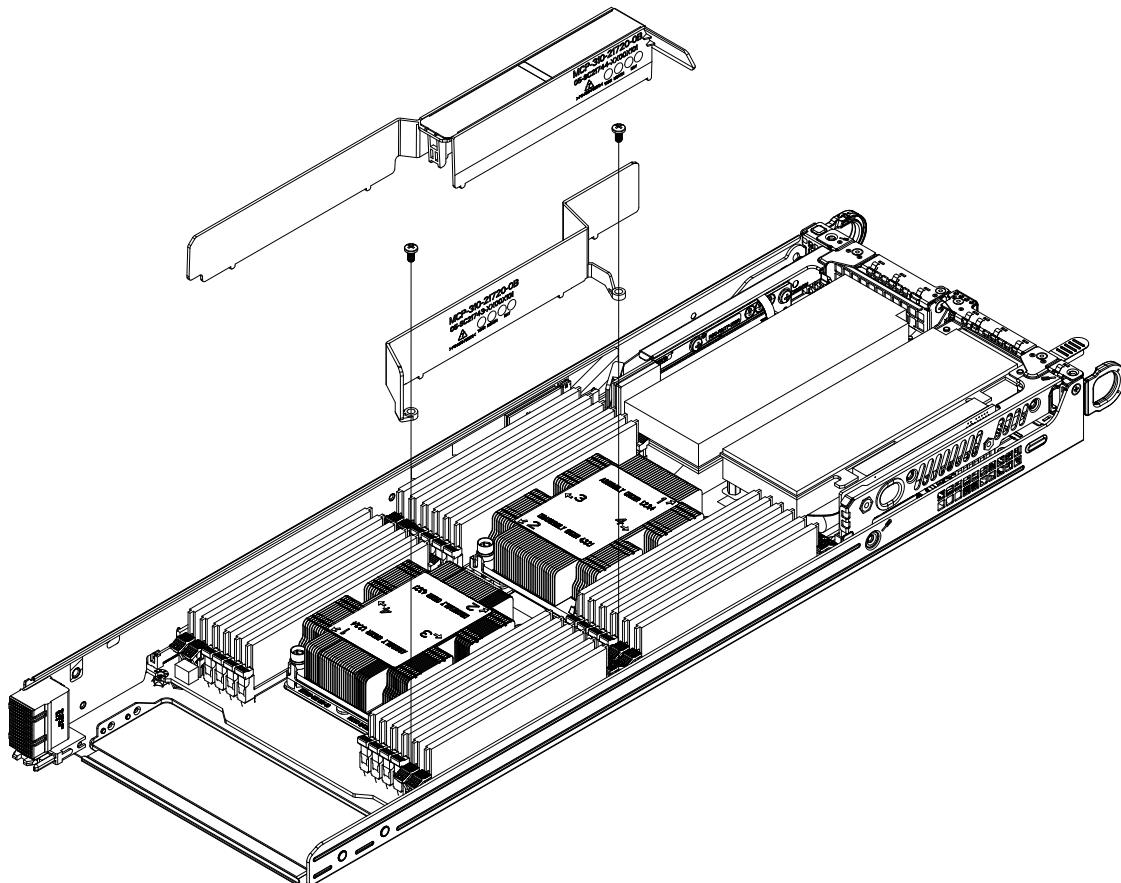
Figure 3-15. System Fan Placement

Changing a System Fan

1. Determine which fan is failing. Fan status can be found in the IPMI sensor log.
2. Power down the associated node as described in Section 3.1.
3. Remove the node drawer from the chassis.
4. Remove all the fan power cables from the motherboard connections.
5. Lift the fan housing up and out of the node.

Figure 3-16. Fans in Housing

6. Push the fan up from the bottom and out of the top of the housing.
7. Place the replacement fan into the vacant space in the housing while making sure the arrows on the top of the fan (indicating air direction) point in the same direction as the arrows on the other fans.
8. Put the fan housing back into the node and reconnect the cables.
9. Replace the node and confirm that the fan is working properly before replacing the chassis cover.


Installing the Air Shrouds

Air shrouds concentrate airflow to maximize fan efficiency. The system requires air shrouds for each motherboard node.

Installing an Air Shroud

The motherboard, any expansion cards, and all components must be installed in the node tray.

Place the air shrouds as shown below. Secure with screws as needed.

Figure 3-17. Installing an Air Shroud

Checking the Server Air Flow

- Make sure there are no objects to obstruct airflow in and out of the server.
- Do not operate the server without drives or drive carriers in the drive bays.
- Use only recommended server parts.
- Make sure no wires or foreign objects obstruct air flow through the chassis. Pull all excess cabling out of the airflow path or use shorter cables.

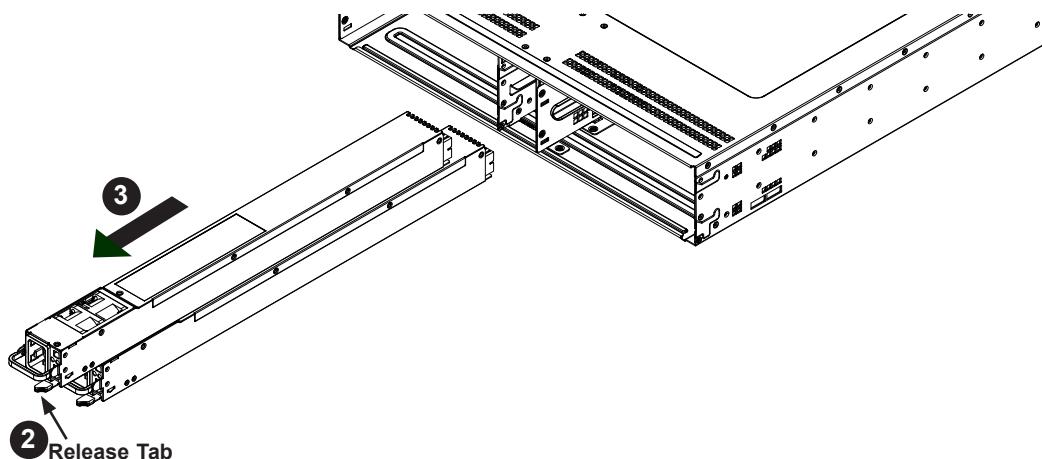
The control panel LEDs display system heat status. See “Control Panel” in Chapter 1 for details.

Overheating

There are several possible responses if the system overheats.

- Use the LEDs to determine the nature of the overheating condition.
- Confirm that the chassis covers are installed properly.
- Make sure all fans are present and operating normally.
- Check the routing of the cables.
- Verify that the heatsinks are installed properly.

Power Supply


The chassis features redundant power supplies. The power modules can be changed without powering down the system. New units can be ordered directly from Supermicro or authorized distributors.

These power supplies are auto-switching capable. This feature enables them to automatically sense the input voltage and operate at a 100-120v or 180-240v. An amber light will be illuminated on the power supply when the power is off. An illuminated green light indicates that the power supply is operating.

Note: PWS-2K60A-1R power supplies use an IEC320 C20 AC input connector

Replacing the Power Supply

1. Unplug the AC cord from the module to be replaced.
2. Push the release tab on the back of the power supply as illustrated.

Figure 3-18. Power Supply Release Tab

3. Pull the power supply out using the handle provided.
4. Replace the failed power module with the same model.
5. Push the new power supply module into the power bay until it clicks.
6. Plug the AC power cord back into the module.

Chapter 4

Motherboard Connections

This section describes the connections on the motherboard and provides pinout definitions. Note that depending on how the system is configured, not all connections are required. The LEDs on the motherboard are also described here. A motherboard layout indicating component locations may be found in Chapter 1.

Please review the Safety Precautions in Appendix B before installing or removing components.

4.1 Power Connections

Power to the nodes is provided through the backplane.

4.2 Headers and Connectors

Fan Headers

There are four fan headers on the motherboard (FANA-FAND). These are 4-pin fan headers; pins 1-3 are backward compatible with traditional 3-pin fans. The onboard fan speeds are controlled by Thermal Management in IPMI. When using Thermal Management setting, please use all 3-pin fans or all 4-pin fans.

Fan Header Pin Definitions	
Pin#	Definition
1	Ground (Black)
2	+12V (Red)
3	Tachometer
4	PWM Control

TPM Header

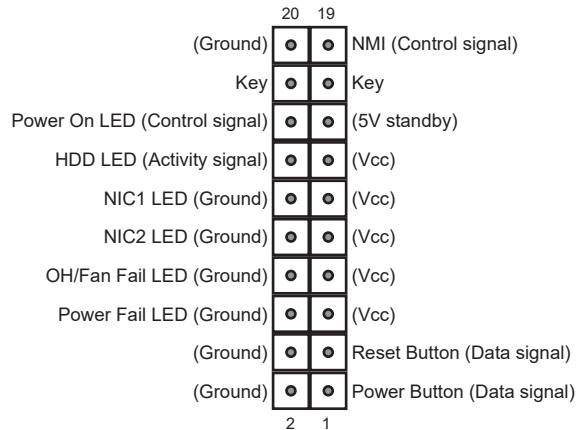
The JTPM1 header is used to connect a Trusted Platform Module (TPM), which is available from Supermicro. A TPM is a security device that supports encryption and authentication in hard drives. It enables the motherboard to deny access if the TPM associated with the hard drive is not installed in the system. More information at <http://www.supermicro.com/manuals/other/TPM.pdf>.

Trusted Platform Module/Port 80 Header Pin Definitions			
Pin#	Definition	Pin#	Definition
1	+3.3V	2	SPI_CS#
3	RESET#	4	SPI_MISO
5	SPI_CLK	6	GND
7	SPI_MOSI	8	
9	+3.3V Stdby	10	SPI_IRQ#

RAID Key Header

A RAID Key header is located at JRK1 on the motherboard. It supports VMD used in creating optional advanced NVMe RAID configurations.

Intel RAID Key Pin Definitions	
Pins	Definition
1	GND
2	PU 3.3V Stdby
3	GND
4	PCH RAID KEY


Powered SATADOM (SuperDOM)

A SATADOM (Device-on-Disk) is located at I-SATA6 on the motherboard. I-SATA6 is used with a Supermicro SuperDOM, which is a yellow SATADOM connector with a power pin built in, and no external power supply is needed. Supermicro SuperDOM is backward-compatible with a regular SATA HDD or SATADOM that requires an external power supply.

Control Panel

JF1 contains header pins for various control panel connections. See the figure below for the pin locations and definitions of the control panel buttons and LED indicators.

All JF1 wires have been bundled into a single cable to simplify this connection. Make sure the red wire plugs into pin 1 as marked on the motherboard. The other end connects to the control panel PCB board.

Figure 4-1. JF1: Control Panel Pins

Power Button

The Power Button connection is located on pins 1 and 2 of JF1. Momentarily contacting both pins will power on/off the system. This button can also be configured to function as a suspend button (with a setting in the BIOS - see Chapter 6). To turn off the power when the system is in suspend mode, press the button for 4 seconds or longer.

Power Button Pin Definitions (JF1)	
Pin#	Definition
1	Signal
2	Ground

Reset Button

The Reset Button connection is located on pins 3 and 4 of JF1. Attach it to a hardware reset switch on the computer case.

Reset Button Pin Definitions (JF1)	
Pin#	Definition
3	Reset
4	Ground

Power Fail LED

The Power Fail LED connection is located on pins 5 and 6 of JF1.

Power Fail LED Pin Definitions (JF1)	
Pin#	Definition
5	3.3V
6	PWR Supply Fail

Overheat (OH)/Fan Fail

Connect an LED cable to pins 7 and 8 of JF1 to use the Overheat/Fan Fail LED connections. The LED on pin 8 provides warnings of overheating or fan failure.

OH/Fan Fail Indicator Status	
Status	Definition
Off	Normal
On	Overheat
Flashing	Fan Fail

OH/Fan Fail LED Pin Definitions (JF1)	
Pin#	Definition
7	Blue LED
8	OH/Fan Fail LED

NIC1/NIC2 (LAN1/LAN2)

The NIC (Network Interface Controller) LED connection for LAN port 1 is located on pins 11 and 12 of JF1, and the LED connection for LAN Port 2 is on pins 9 and 10. Attach the NIC LED cables here to display network activity.

LAN1/LAN2 LED Pin Definitions (JF1)	
Pin#	Definition
9	NIC2 Activity LED
10	NIC2 Link LED
11	NIC1 Activity LED
12	NIC1 Link LED

HDD LED/UID Switch

The HDD LED/UID Switch connection is located on pins 13 and 14 of JF1. Attach a cable to pin 14 to show hard drive activity status. Attach a cable to pin 13 to use UID switch. Refer to the table below for pin definitions.

HDD LED Pin Definitions (JF1)	
Pin#	Definition
13	3.3V Standby/UID Switch
14	HDD Active

Power LED

The Power LED connection is located on pins 15 and 16 of JF1.

Power LED Pin Definitions (JF1)	
Pin#	Definition
15	3.3V
16	Power LED

NMI Button

The non-maskable interrupt button header is located on pins 19 and 20 of JF1.

NMI Button Pin Definitions (JF1)	
Pin#	Definition
19	Control
20	Ground

4.3 Ports

Input/Output Rear Panel

Each node provides the following input/output ports.

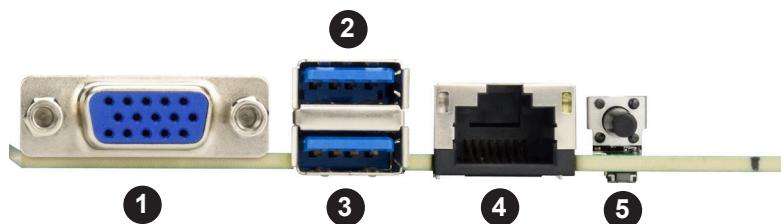
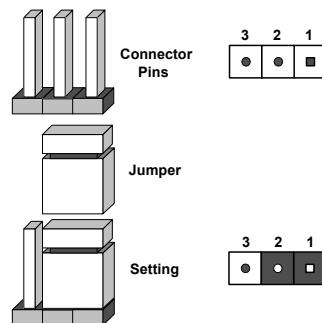


Figure 4-2. I/O Panel

Rear Panel I/O Ports			
No.	Description	No.	Description
1.	VGA Port	4.	Dedicated IPMI LAN
2.	USB1 (3.0)	5.	Unit Identifier Switch
3.	USB0 (3.0)		

LAN Ports

Network ports are provided by a SIOM card. Several models are available.


There is also a dedicated IPMI LAN port on the I/O back panel.

4.4 Jumpers

Explanation of Jumpers

To modify the operation of the motherboard, jumpers are used to choose between optional settings. Jumpers create shorts between two pins to change the function associated with it. Pin 1 is identified with a square solder pad on the printed circuit board. See the motherboard layout page for jumper locations.

Note: On a two-pin jumper, "Closed" means the jumper is on both pins and "Open" indicates the jumper is either on only one pin or has been completely removed.

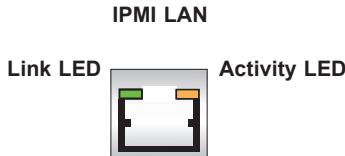
CMOS Clear

GBT1 is used to clear CMOS, which will also clear any passwords. Instead of pins, this jumper consists of contact pads to prevent accidentally clearing the contents of CMOS.

To Clear CMOS

1. First power down the system and unplug the power cord(s).
2. Remove the cover of the chassis to access the motherboard.
3. Remove the onboard battery from the motherboard.
4. Short the CMOS pads with a metal object such as a small screwdriver for at least four seconds.
5. Remove the screwdriver (or shorting device).
6. Replace the cover, reconnect the power cord(s) and power on the system.

Notes: Clearing CMOS will also clear all passwords.


Do not use the PW_ON connector to clear CMOS.

4.5 LED Indicators

IPMI LAN LEDs

A dedicated IPMI LAN port is also included on the motherboard. The amber LED on the right of the IPMI LAN port indicates activity, while the LED on the left indicates the speed of the connection.

IPMI LAN LED (Connection Speed Indicator)	
LED Color	Definition
Off	No connection
Green	100 Mb/s
Amber	1 Gb/s

BMC Heartbeat LED

BMC_HB_LED1 is the BMC heartbeat LED. When the LED is blinking green, BMC is functioning normally.

4.6 PCIe 3.0 Slots

- Two x16 slots on the motherboard. SXB3 is supported by CPU1 and SXB42 is supported by CPU2.
- One x4 slot supported by CPU1, located at SXB1. SXB1 is used for I-SATA0~5 and S-SATA0~5.
- One x24 slot supported by CPU2 is located at SXB2.

Super IO Module (SIOM) Networking Slot

There is one SIOM networking slot (PCI-E 3.0 x16).

4.7 SATA Ports

I-SATA 3.0 and S-SATA 3.0 Ports

The X11DPT-BHX11DPT-BH has eight SATA 3.0 ports (I-SATA0-5/S-SATA0-5/I-SATA6 + 1 SATA DOM). These are supported by the Intel C621 chipset. I-SATA0-5 and S-SATA0-5 are located at SXB1 and are supported by CPU1.

Chapter 5

Software

After the hardware has been installed, you can install the Operating System (OS), configure RAID settings and install the drivers.

5.1 Microsoft Windows OS Installation

If you will be using RAID, you must configure RAID settings before installing the Windows OS and the RAID driver. Refer to the RAID Configuration User Guides posted on our website at www.supermicro.com/support/manuals.

Installing the OS

1. Create a method to access the MS Windows installation ISO file. That might be a DVD, perhaps using an external USB/SATA DVD drive, or a USB flash drive, or the IPMI KVM console.
2. Retrieve the proper RST/RSTe driver. Go to the Supermicro web page for your motherboard and click on "Download the Latest Drivers and Utilities", select the proper driver, and copy it to a USB flash drive.
3. Boot from a bootable device with Windows OS installation. You can see a bootable device list by pressing **F11** during the system startup.

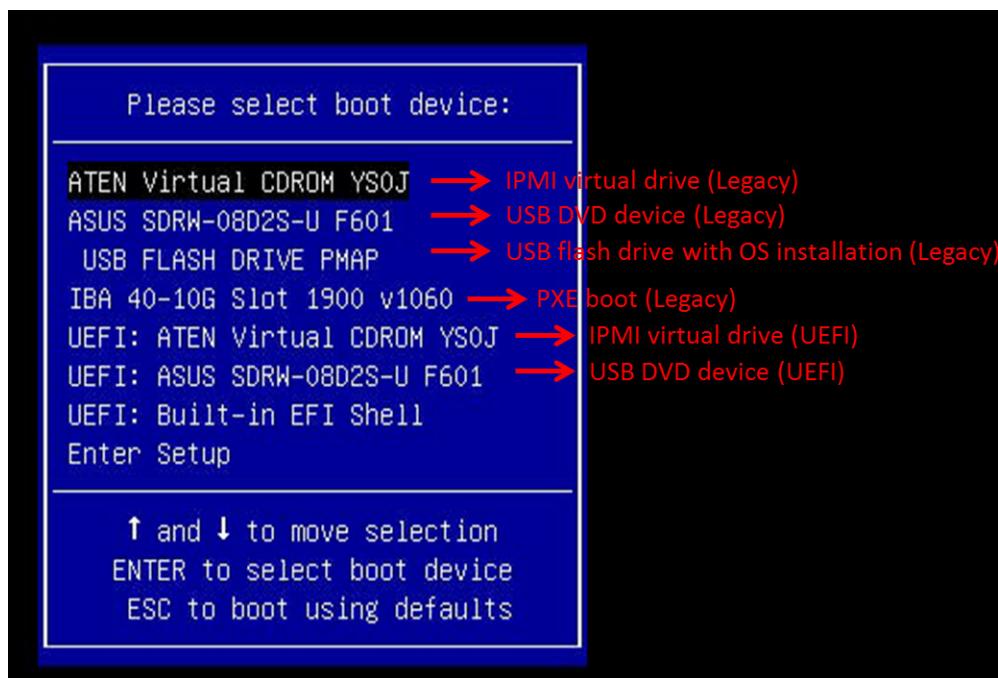
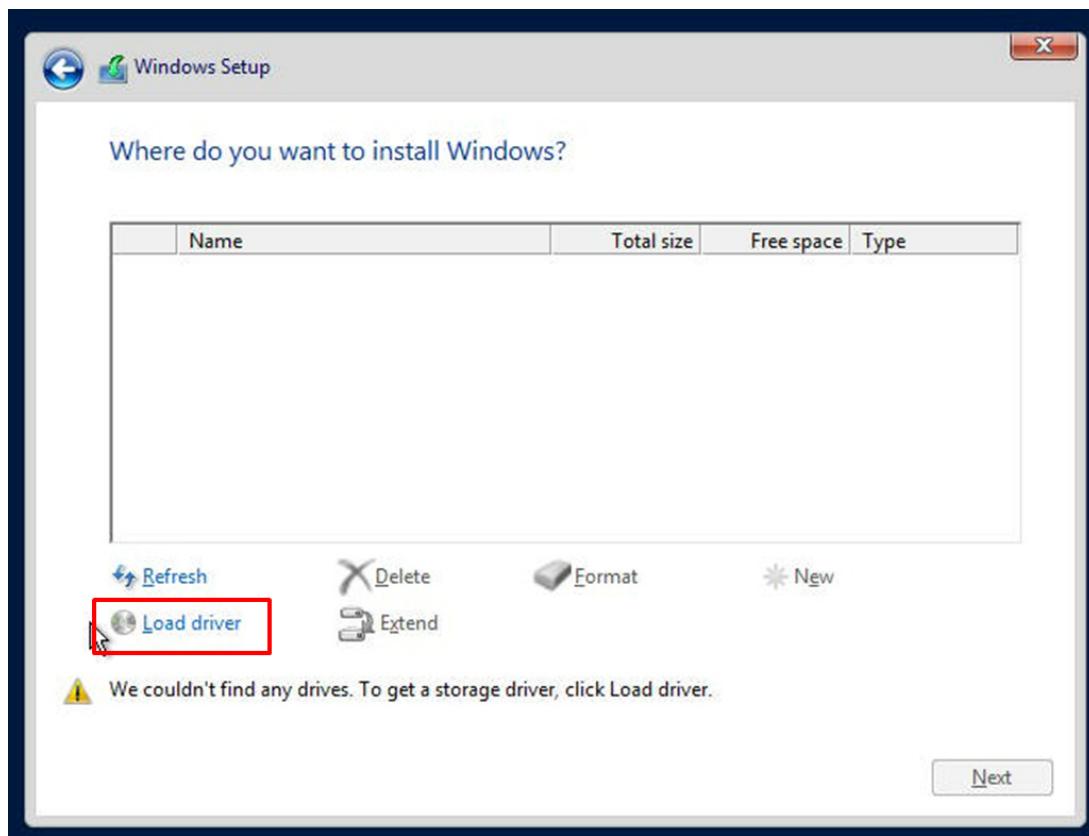



Figure 5-1. Select Boot Device

4. During Windows Setup, continue to the dialog where you select the drives on which to install Windows. If the disk you want to use is not listed, click on “Load driver” link at the bottom left corner.

Figure 5-2. Load Driver Link

To load the driver, browse the USB flash drive for the proper driver files.

- For RAID, choose the SATA/sSATA RAID driver indicated then choose the storage drive on which you want to install it.
- For non-RAID, choose the SATA/sSATA AHCI driver indicated then choose the storage drive on which you want to install it.

5. Once all devices are specified, continue with the installation.
6. After the Windows OS installation has completed, the system will automatically reboot multiple times.

5.2 Driver Installation

The Supermicro website contains drivers and utilities for your system at <https://www.supermicro.com/wdl/driver>. Some of these must be installed, such as the chipset driver.

After accessing the website, go into the CDR_Images (in the parent directory of the above link) and locate the ISO file for your motherboard. Download this file to a USB flash drive or a DVD. (You may also use a utility to extract the ISO file if preferred.)

Another option is to go to the Supermicro website at <http://www.supermicro.com/products/>. Find the product page for your motherboard, and "Download the Latest Drivers and Utilities". Insert the flash drive or disk and the screenshot shown below should appear.

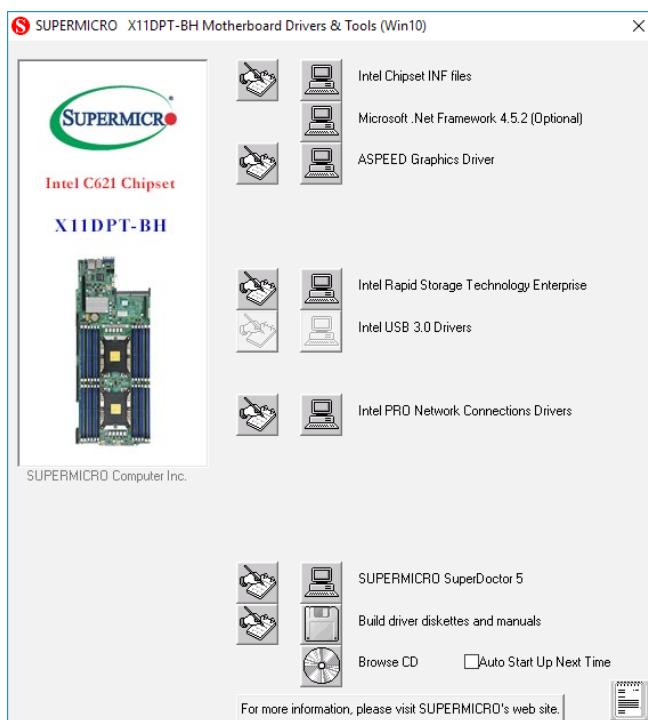


Figure 5-3. Driver & Tool Installation Screen

Note: Click the icons showing a hand writing on paper to view the readme files for each item. Click the computer icons to the right of these items to install each item (from top to the bottom) one at a time. **After installing each item, you must re-boot the system before moving on to the next item on the list.** The bottom icon with a CD on it allows you to view the entire contents.

5.3 SuperDoctor® 5

The Supermicro SuperDoctor 5 is a program that functions in a command-line or web-based interface for Windows and Linux operating systems. The program monitors such system health information as CPU temperature, system voltages, system power consumption, fan speed, and provides alerts via email or Simple Network Management Protocol (SNMP).

SuperDoctor 5 comes in local and remote management versions and can be used with Nagios to maximize your system monitoring needs. With SuperDoctor 5 Management Server (SSM Server), you can remotely control power on/off and reset chassis intrusion for multiple systems with SuperDoctor 5 or IPMI. SuperDoctor 5 Management Server monitors HTTP, FTP, and SMTP services to optimize the efficiency of your operation.

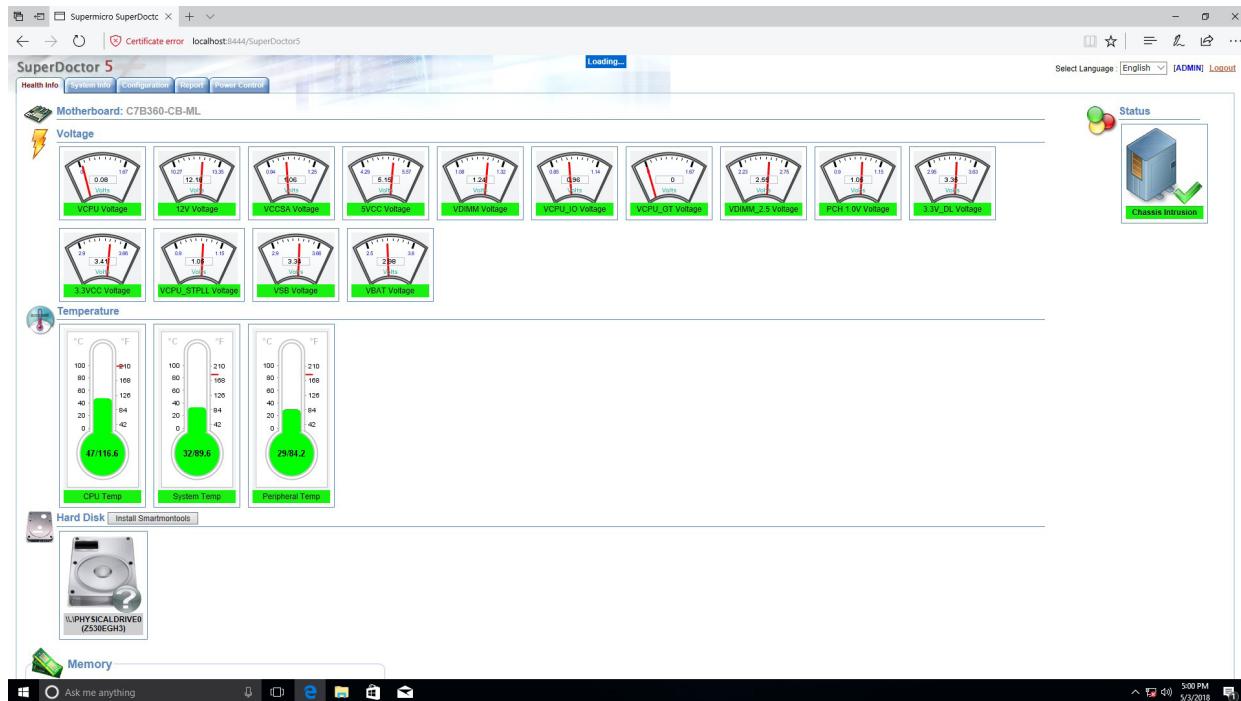


Figure 5-4. SuperDoctor 5 Interface Display Screen (Health Information)

.4 BMC

The motherboard provides remote access, monitoring and management through the baseboard management controller (BMC) and other management controllers distributed among different system modules. There are several BIOS settings that are related to BMC. For general documentation and information on BMC, visit our website at:

www.supermicro.com/en/solutions/management-software/bmc-resources

BMC ADMIN User Password

For security, each system is assigned a unique default BMC password for the ADMIN user. This can be found on a sticker on the chassis and a sticker on the motherboard. The sticker also displays the BMC MAC address. If necessary, the password can be reset using the Supermicro IPMICFG tool.

Figure 5-5. BMC Password Label

Chapter 6

BIOS

6.1 Introduction

This chapter describes the AMI BIOS setup utility for the X11DPT-BH and provides the instructions on navigating the setup screens. The BIOS is stored in a Flash EEPROM and can be updated.

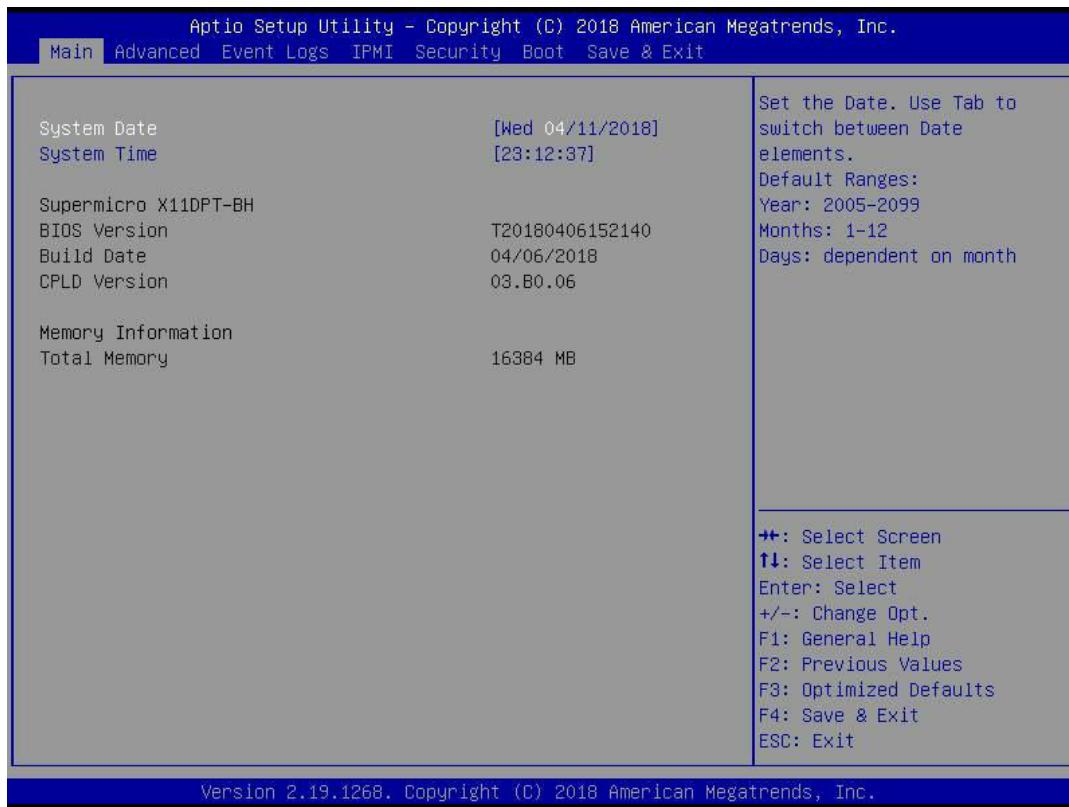
Note: Due to periodic changes to the BIOS, some settings may have been added or deleted since this manual was published.

Starting BIOS Setup Utility

To enter the AMI BIOS setup utility screens, press the **<Delete>** key while the system is booting up. (There are a few cases when other keys are used, such as **<F1>**, **<F2>**, etc.)

The BIOS screens have three main frames. The large left frame displays options can be configured by the user. These are blue. When an option is selected, it is highlighted in white. Settings printed in **Bold** are the default values.

In the left frame, a "►" indicates a submenu. Highlighting such an item and pressing the **<Enter>** key opens the list of settings in that submenu.


The upper right frame displays helpful information for the user. The AMI BIOS has default informational messages built in. The manufacturer retains the option to include, omit, or change any of these informational messages.

The lower right frame lists navigational methods. The AMI BIOS setup utility uses a key-based navigation system called *hot keys*. Most of these hot keys can be used at any time during setup navigation. These keys include **<F3>**, **<F4>**, **<Enter>**, **<ESC>**, arrow keys, etc.

Some system parameters may be changed.

6.2 Main Setup

When running the AMI BIOS setup utility, it starts with the Main screen. You can always return to it by selecting the Main tab on the top of the screen.

The Main tab page allows you to set the date and time, and it displays system information.

System Date/System Time

Use this option to change the system date and time. Highlight *System Date* or *System Time* using the arrow keys. Enter new values using the keyboard. Press the *<Tab>* key or the arrow keys to move between fields. The date must be entered in MM/DD/YYYY format. The time is entered in HH:MM:SS format.

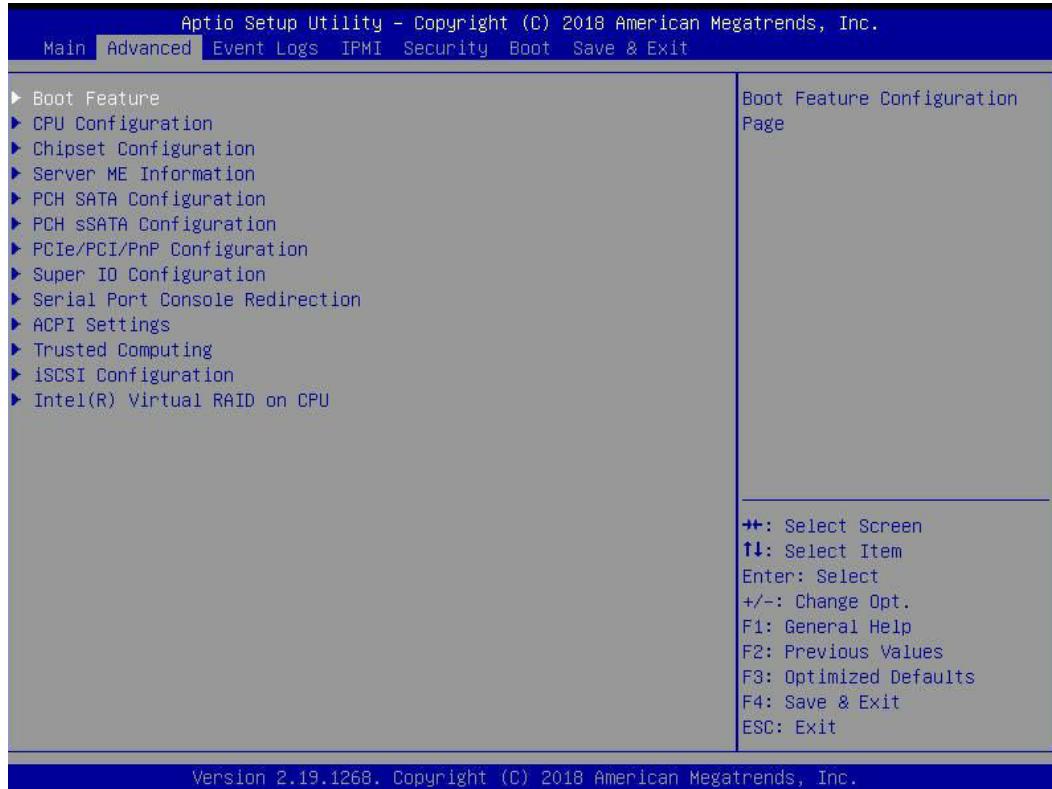
Note: The time is in the 24-hour format. For example, 5:30 P.M. appears as 17:30:00. The date's default value is 01/01/2016 after RTC reset.

Supermicro X11DPT-BH (Motherboard model)

BIOS Version

Build Date (of the BIOS)

CPLD (Complex Programmable Logic Device) Version: This item displays the CPLD version used in the system.


Memory Information

Total Memory (for the system)

Memory Speed

6.3 Advanced Setup Configurations

Use the arrow keys to select the Advanced tab and press <Enter> to access the submenu items.

Caution: Take caution when changing the Advanced settings. An incorrect value, a very high DRAM frequency, or an incorrect DRAM timing setting may make the system unstable. If this occurs, revert to the manufacture default settings.

►Boot Feature

Quiet Boot

Use this feature to select the screen display between the POST messages and the OEM logo upon bootup. Select Disabled to display the POST messages. Select Enabled to display the OEM logo instead of the normal POST messages. The options are **Disabled** and **Enabled**.

Option ROM Messages

Use this feature to set the display mode for the Option ROM. Select Keep Current to display the current AddOn ROM setting. Select Force BIOS to use the Option ROM display set by the system BIOS. The options are **Force BIOS** and **Keep Current**.

Bootup NumLock State

Use this feature to set the Power-on state for the <Numlock> key. The options are **On** and **Off**.

Wait For "F1" If Error

Use this feature to force the system to wait until the 'F1' key is pressed if an error occurs. The options are **Disabled** and **Enabled**.

INT19 (Interrupt 19) Trap Response

Interrupt 19 is the software interrupt that handles the boot disk function. When this item is set to **Immediate**, the ROM BIOS of the host adaptors will "capture" Interrupt 19 at bootup immediately and allow the drives that are attached to these host adaptors to function as bootable disks. If this item is set to **Postponed**, the ROM BIOS of the host adaptors will not capture Interrupt 19 immediately and allow the drives attached to these adaptors to function as bootable devices at bootup. The options are **Immediate** and **Postponed**.

Re-try Boot

If this item is enabled, the BIOS will automatically reboot the system from a specified boot device after its initial boot failure. The options are **Disabled**, **Legacy Boot**, and **EFI Boot**.

Install Windows 7 USB support

Enable this feature to use the USB keyboard and mouse during the Windows 7 installation, since the native XHCI driver support is unavailable. Use a SATA optical drive as a USB drive, and USB CD/DVD drives are not supported. Disable this feature after the XHCI driver has been installed in Windows. The options are **Disabled** and **Enabled**.

Port 61h Bit-4 Emulation

Select **Enabled** to enable the emulation of Port 61h bit-4 toggling in SMM (System Management Mode). The options are **Disabled** and **Enabled**.

►Power Configuration

Watch Dog Function

If enabled, the Watch Dog Timer will allow the system to reset or generate NMI based on jumper settings when it is expired for more than five minutes. The options are **Disabled** and **Enabled**.

Restore on AC Power Loss

Use this feature to set the power state after a power outage. Select **Stay Off** for the system power to remain off after a power loss. Select **Power On** for the system power to be turned on after a power loss. Select **Last State** to allow the system to resume its last power state before a power loss. The options are **Stay Off**, **Power On**, and **Last State**.

Power Button Function

This feature controls how the system shuts down when the power button is pressed. Select **4 Seconds Override** for the user to power off the system after pressing and holding the power

button for 4 seconds or longer. Select Instant Off to instantly power off the system as soon as the user presses the power button. The options are **Instant Off** and **4 Seconds Override**.

Throttle on Power Fail

Use this feature to decrease system power by throttling CPU frequency when one power supply has failed. The options are **Disabled** and **Enabled**.

System Firmware Progress Log

►CPU Configuration

Processor Configuration

The following CPU information will display:

- Processor BSP Revision
- Processor Socket
- Processor ID
- Processor Frequency
- Processor Max Ratio
- Processor Min Ratio
- Microcode Revision
- L1 Cache RAM
- L2 Cache RAM
- L3 Cache RAM
- Processor 0 Version
- Processor 1 Version

Hyper-Threading (ALL) (Available when supported by the CPU)

Select Enable to support Intel Hyper-threading Technology to enhance CPU performance. The options are **Disable** and **Enable**.

Execute Disable Bit (Available if supported by the OS & the CPU)

Select Enabled to enable the Execute-Disable Bit, which will allow the processor to designate areas in the system memory where an application code can execute and where it cannot, thus preventing a worm or a virus from flooding illegal codes to overwhelm the processor

or damage the system during an attack. The default is **Enable**. (Refer to the Intel® and Microsoft® websites for more information.)

Intel Virtualization Technology

Select **Enable** to use Intel Virtualization Technology which will allow the I/O device assignments to be directly reported to the VMM (Virtual Memory Management) through the DMAR ACPI tables. This feature offers fully protected I/O resource-sharing across Intel platforms, providing the user with greater reliability, security, and availability in networking and data-sharing. The settings are **Enable** and **Disable**.

PPIN Control

Select **Unlock/Enable** to use the Protected-Processor Inventory Number (PPIN) in the system. The options are **Unlock/Disable** and **Unlock/Enable**

Hardware Prefetcher (Available when supported by the CPU)

If set to **Enabled**, the hardware prefetcher will prefetch streams of data and instructions from the main memory to the L2 cache to improve CPU performance. The options are **Disable** and **Enable**.

Adjacent Cache Prefetch (Available when supported by the CPU)

The CPU prefetches the cache line for 64 bytes if this feature is set to **Disabled**. The CPU prefetches both cache lines for 128 bytes as comprised if this feature is set to **Enable**.

DCU Streamer Prefetcher (Available when supported by the CPU)

Select **Enabled** to enable the DCU (Data Cache Unit) Streamer Prefetcher which will stream and prefetch data and send it to the Level 1 data cache to improve data processing and system performance. The options are **Disable** and **Enable**.

DCU IP Prefetcher (Available when supported by the CPU)

Select **Enabled** for DCU (Data Cache Unit) IP Prefetcher support, which will prefetch IP addresses to improve network connectivity and system performance. The options are **Enable** and **Disable**.

LLC Prefetch

If set to **Enabled**, the hardware prefetcher will prefetch streams of data and instructions from the main memory to the L3 cache to improve CPU performance. The options are **Disable** and **Enable**.

Extended APIC

Select **Enable** to activate APIC (Advanced Programmable Interrupt Controller) support. The options are **Disable** and **Enable**.

AES-NI

Select **Enable** to use the Intel Advanced Encryption Standard (AES) New Instructions (NI) to ensure data security. The options are **Disable** and **Enable**.

►Advanced Power Management Configuration

Power Technology

This feature allows for switching between stored CPU Power Management profiles. The options are Disable, **Energy Efficient** and Custom.

Power Performance Tuning (Available when "Power Technology" is set to Custom)

Select BIOS to allow the system BIOS to configure the Power-Performance Tuning Bias setting below. The options are BIOS Controls EPB and **OS Controls EPB**.

ENERGY_PERF_BIAS_CFG Mode Energy (ENERGY PERFORMANCE BIAS CONFIGURATION Mode) (Available when supported by the Processor and when "Power Performance Tuning" is set to BIOS Controls EPB)

This feature allows the user to set the desired processor power use policy for the machine by prioritizing system performance or energy savings. Selecting Maximum Performance will maximize performance (to its highest potential); however, this may result in maximum power consumption. The higher the performance is, the higher the power consumption will be. Select Max Power Efficient to prioritize power saving; however, system performance may be substantially impacted. The options are Maximum Performance, Performance, **Balanced Performance**, Balanced Power, Power, and Max Power Efficient.

►CPU P State Control

This feature allows the user to configure the following CPU power settings

Speedstep (Pstates)

Intel SpeedStep Technology allows the system to automatically adjust processor voltage and core frequency to reduce power consumption and heat dissipation. The options are Disabled and **Enabled**.

EIST PSD Funtion

This feature allows the user to choose between Hardware and Software to control the processor's frequency and performance (P-state). In HW_ALL mode, the processor hardware is responsible for coordinating the P-state, and the OS is responsible for keeping the P-state request up to date on all logical processors. In SW_ALL mode, the OS Power Manager is responsible for coordinating the P-state, and must initiate the transition on all Logical Processors. In SW_ANY mode, the OS Power Manager is responsible for coordinating the P-state and may initiate the transition on any Logical Processors. Options available: HW_ALL/SW_ALL/SW_ANY. Default setting is HW_ALL.

Turbo Mode

This feature will enable dynamic control of the processor, allowing it to run above stock frequency. The options are Disable and **Enable**.

►Hardware PM State Control

Hardware P-States

If this feature is set to Disable, hardware will choose a P-state setting for the system based on an OS request. If this feature is set to Native Mode, hardware will choose a P-state setting based on OS guidance. If this feature is set to Native Mode with No Legacy Support, hardware will choose a P-state setting independently without OS guidance. The options are **Disable**, Native Mode, Out of Band Mode, and Native Mode with No Legacy Support.

►CPU C State Control

Autonomous Core C-State

Select Enable to support Autonomous Core C-State control which will allow the processor core to control its C-State setting automatically and independently. The options are **Enable** and **Disable**.

CPU C6 Report

Select Enabled to allow the BIOS to report the CPU C6 State (ACPI C3) to the operating system. During the CPU C6 State, the power to all cache is turned off. The options are **Disable**, **Enable**, and **Auto**.

Enhanced Halt State (C1E)

Select Enabled to use Enhanced Halt-State technology, which will significantly reduce the CPU's power consumption by reducing the CPU's clock cycle and voltage during a Halt-state. The options are **Disable** and **Enable**.

►Package C State Control

Package C State

This feature allows the user to set the limit on the C State package register. The options are C0/C1 State, C2 State, C6 (Non Retention) State, C6 (Retention) state, No Limit, and **Auto**.

►CPU T State Control

Software Controlled T-States

Select Enable to support Software Controlled Throttling states for CPUs installed on the motherboard. Such throttling states control the running time of CPUs with the goal of cooling down CPUs and preventing them from burning out. The options are **Disable** and **Enable**.

►Chipset Configuration

Warning: Setting the wrong values in the following features may cause the system to malfunction.

►North Bridge

This feature allows the user to configure the following North Bridge settings.

►UPI Configuration

►UPI General Configuration

The following UPI information will display:

- Number of CPU
- Number of IIO
- Current UPI Link Speed
- Current UPI Link Frequency
- UPI Global MMIO Low Base / Limit
- UPI Global MMIO High Base / Limit
- UPI Pci-e Configuration Base / Size

Degrade Precedence

Use this feature to set degrade precedence when system settings are in conflict. Select Topology Precedence to degrade Features. Select Feature Precedence to degrade Topology. The options are **Topology Precedence** and Feature Precedence.

Link L0p Enable

Select Enable for Link L0p support. The options are **Enable** and Disable.

Link L1 Enable

Select Enable for Link L1 support. The options are **Enable** and Disable.

IO Directory Cache (IODC)

IO Directory Cache is an 8-entry cache that stores the directory state of remote IIO writes and memory lookups, and saves directory updates. Use this feature to lower cache to cache (C2C) transfer latencies. The options are Disable, **Auto**, Enable for Remote InvltoM Hybrid Push, InvltoM AllocFlow, Enable for Remote InvltoM Hybrid AllocNonAlloc, and Enable for Remote InvltoM and Remote WViLF.

SNC

Sub NUMA Clustering (SNC) is a feature that breaks up the Last Level Cache (LLC) into clusters based on address range. Each cluster is connected to a subset of the memory controller. Enabling SNC improves average latency and reduces memory access congestion to achieve higher performance. Select Auto for 1-cluster or 2-clusters depending on IMC interleave. Select Enable for Full SNC (2-clusters and 1-way IMC interleave). The options are Disable, Enable, and Auto.

XPT Prefetch

XPT Prefetch speculatively makes a copy to the memory controller of a read request being sent to the LLC. If the read request maps to the local memory address and the recent memory reads are likely to miss the LLC, a speculative read is sent to the local memory controller. The options are **Disable** and **Enable**.

KTI Prefetch

KTI Pretech enables memory read to start early on a DDR bus, where the KTI Rx path will directly create a Memory Speculative Read command to the memory controller. The options are **Disable** and **Enable**.

Local/Remote Threshold

This feature allows the user to set the threshold for the Interrupt Request (IRQ) signal, which handles hardware interruptions. The features are **Disable**, **Enable**, **Auto**, **Low**, **Medium**, and **High**.

Stale AtoS

This feature optimizes A to S directory. When all snoop responses found in directory A are found to be Rsp1, then all data is moved to directory S and is returned in S-state. The options are **Disable**, **Enable**, and **Auto**.

LLC Dead Line Alloc

Select **Enable** to optimally fill dead lines in LLC. Select **Disable** to never fill dead lines in LLC. The options are **Disable**, **Enable**, and **Auto**.

Isoc Mode

Select **Enabled** for Isochronous support to meet QoS (Quality of Service) requirements. This feature is especially important for Virtualization Technology. The options are **Enable** and **Disable**.

►Memory Configuration

Enforce POR

Select **Enable** to enforce POR restrictions on DDR4 frequency and voltage programming. The options are **Enabled** and **Disable**.

Memory Frequency

Use this feature to set the maximum memory frequency for onboard memory modules. The options are **Auto**, 1333, 1400, 1600, 1800, 1867, 2000, 2133, 2200, and 2400.

Data Scrambling for NVDIMM

Use this feature to enable or disable data scrambling for non-volatile DIMM (NVDIMM) memory. The options are **Auto**, **Disable**, and **Enable**.

Data Scrambling for DDR4

Use this feature to enable or disable data scrambling for DDR4 memory. The options are **Auto**, **Disable**, and **Enable**.

tCCD_L Relaxation

If this feature is set to Enable, SPD (Serial Presence Detect) will override tCCD_L ("Column to Column Delay-Long", or "Command to Command Delay-Long" on the column side.) If this feature is set to Disable, tCCD_L will be enforced based on the memory frequency. The options are **Enable** and **Disable**.

tRWSR Relaxation

If this feature is set to Enabled, the tRWSR overrides the SPD. When this feature is set to **Disabled**, it is enforced based on memory frequency. The options are **Enable** and **Disable**.

Enable ADR

Select Enable for ADR (Automatic Diagnostic Repository) support to enhance memory performance. The options are **Disable** and **Enable**.

2X REFRESH

This option allows the user to select 2X refresh mode. The options are **Auto**, **Enabled**, and **Disabled**.

Page Policy

This feature allows the user to determine the desired page mode for IMC. When **Auto** is selected, the memory controller will close or open pages based on the current operation. Closed policy closes that page after reading or writing. Adaptive is similar to open page policy, but can be dynamically modified. The default is **Auto**.

IMC Interleaving

This feature allows the user to configure Integrated Memory Controller (IMC) Interleaving settings. The options are **Auto**, 1-way Interleave, and 2-way Interleave.

►Memory Topology

This feature displays DIMM population information.

►Memory RAS Configuration

Static Virtual Lockstep Mode

Select Enable to run the system's memory channels in lockstep mode to minimize memory access latency. The options are **Disable** and **Enable**.

Mirror Mode

This feature allows memory to be mirrored between two channels, providing 100% redundancy. The options are **Disable**, Mirror Mode 1LM, and Mirror Mode 2LM.

UEFI ARM Mirror

This options allows the system to imitate the behavior of the UEFI based Address Range Mirror with setup option. The options are **Disable** and **Enable**.

Memory Rank Sparing

Select **Enable** to enable memory-sparing support for memory ranks to improve memory performance. The options are **Disable** and **Enable**.

Correctable Error Threshold

Use this item to specify the threshold value for correctable memory-error logging, which sets a limit on the maximum number of events that can be logged in the memory-error log at a given time. The default setting is **10**.

Intel Run Sure

Intel Run Sure technology improves reliability, availability, and serviceability (RAS) on Intel® Xeon® Scalable processor enabled systems. Intel Run Sure uses advanced Machine Check Architecture Recovery to help reduce system downtime and increase data integrity by reducing fatal events when multiple recoverable faults occur in close proximity. The options are **Disabled** and **Enabled**.

SDDC Plus One

Single Device Data Correction (SDDC) organizes data in a single bundle (x4/x8 DRAM). If any or all the bits become corrupted, corrections occur. The x4 condition is corrected on all cases. The x8 condition is corrected only if the system is in Lockstep Mode. The options are **Disable** and **Enable**.

ADDDC Sparing

Adaptive Double Device Data Correction (ADDDC) Sparing detects when the predetermined threshold for correctable errors is reached, copying the contents of the failing DIMM to spare memory. The failing DIMM or memory rank will then be disabled. The options are **Disable** and **Enable**.

Patrol Scrub

Patrol Scrubbing is a process that allows the CPU to correct correctable memory errors detected on a memory module and send the correction to the requestor (the original source). When this item is set to **Enable**, the IO hub will read and write back one cache line every 16K cycles, if there is no delay caused by internal processing. By using this method, roughly 64 GB of memory behind the IO hub will be scrubbed every day. The options are **Disable** and **Enable**.

Patrol Scrub Interval

This feature allows you to decide how many hours the system should wait before the next complete patrol scrub is performed. Use the keyboard to enter a value from 0-24. The default setting is **24**.

►II0 Configuration

EV DFX Features

►CPU1 Configuration

IOU0 (II0 PCIe Br1)

This item configures the PCI-E port Bifurcation setting for a PCI-E port specified by the user. The options are x4x4x4x4, x4x4x8, x8x4x4, x8x8, x16, and **Auto**.

IOU1 (II0 PCIe Br2)

This item configures the PCI-E port Bifurcation setting for a PCI-E port specified by the user. The options are x4x4x4x4, x4x4x8, x8x4x4, x8x8, x16, and **Auto**.

IOU2 (II0 PCIe Br3)

This item configures the PCI-E port Bifurcation setting for a PCI-E port specified by the user. The options are x4x4x4x4, x4x4x8, x8x4x4, x8x8, x16, and **Auto**.

MCP0 (II0 PCIe Br4)

This item configures the PCI-E port Bifurcation setting for a PCI-E port specified by the user. The options are x4x4x4x4, x4x4x8, x8x4x4, x8x8, x16, and **Auto**.

MCP1 (II0 PCIe Br5)

This item configures the PCI-E port Bifurcation setting for a PCI-E port specified by the user. The options are x4x4x4x4, x4x4x8, x8x4x4, x8x8, x16, and **Auto**.

► CPU1 PcieBr0D00F0 - Port 0/DMI/CPU1 PcieBr1D00F0 - Port 1A/CPU1 PcieBr2D00F0 - Port 2A/CPU1 PcieBr3D00F0 - Port 3A/CPU1 PcieBr3D02F0 - Port 3C/CPU1 PcieBr3D03F0 - Port 3D/CPU1 PcieBr4D00F0 - MCP 0/ CPU1 PcieBr5D00F0 - MCP 1

Link Speed

Use this item to select the link speed for the PCI-E port specified by the user. The options are **Auto**, Gen 1 (2.5 GT/s), Gen 2 (5 GT/s), and Gen 3 (8 GT/s).

PCI-E Port Max Payload Size

Selecting **Auto** for this feature will enable the motherboard to automatically detect the maximum Transaction Layer Packet (TLP) size for the connected PCI-E device, allowing for maximum I/O efficiency. Selecting 128B or 256B will designate maximum packet size of 128 or 256. Options are **Auto**, 128, and 256. **Auto** is enabled by default.

►IOAT Configuration

Disable TPH

Transparent Hugepages is a Linux memory management system that enables communication in larger blocks (pages). Enabling this feature will increase performance. The options are **No** and **Yes**.

Prioritize TPH

Use this feature to enable Prioritize TPH support. The options are **Enable** and **Disable**.

Relaxed Ordering

Select **Enable** to enable Relaxed Ordering support which will allow certain transactions to violate the strict-ordering rules of PCI bus for a transaction to be completed prior to other transactions that have already been enqueued. The options are **Disable** and **Enable**.

►Intel® VT for Directed I/O (VT-d)

Intel® VT for Directed I/O (VT-d)

Select **Enable** to use Intel Virtualization Technology for Direct I/O VT-d support by reporting the I/O device assignments to the VMM (Virtual Machine Monitor) through the DMAR ACPI tables. This feature offers fully-protected I/O resource sharing across Intel platforms, providing greater reliability, security and availability in networking and data-sharing. The options are **Disabled** and **Enabled**.

ACS (Access Control Services) Control

Access Control Services (ACS) provides a mechanism by which a P2P PCIe transaction can be forced to go up through the Root Complex in a virtualization environment. This may affect P2P bandwidth, and GPU systems may request ACS to be disabled for better performance. The options are **Disable** and **Enable**.

Interrupt Remapping

Select **Enable** for Interrupt Remapping support to enhance system performance. The options are **Enable** and **Disable**.

PassThrough DMA

Use this feature to allow devices such as network cards to access the system memory without using a processor. Select **Enable** to use the Non-Isocoh VT_D Engine Pass Through Direct Memory Access (DMA) support. The options are **Enable** and **Disable**.

ATS

Use this feature to enable Non-Isocoh VT-d Engine Address Translation Services (ATS) support. ATS translates virtual addresses to physical addresses. The options are **Enable** and **Disable**.

Posted Interrupt

Use this feature to enable VT_D Posted Interrupt. The options are **Enable** and **Disable**.

Coherency Support (Non-Isocoh)

Use this feature to maintain setting coherency between processors or other devices. Select **Enable** for the Non-Isocoh VT-d engine to pass through DMA to enhance system performance. The options are **Enable** and **Disable**.

►Intel® VMD Technology

►Intel® VMD for Volume Management Device on CPU1

VMD Config for PStack1

Intel® VMD for Volume Management Device

Select **Enable** to use the Intel Volume Management Device Technology for this stack. The options are **Disable** and **Enable**.

If the item "Intel VMD for Volume Management Device" above is set to **Enable, the following items will be displayed:*

Intel® VMD for Volume Management Device

Select **Enable** to use the Intel Volume Management Device Technology for this stack. The options are **Disable** and **Enable**.

CPU SLOT1 VMD port 2A~CPU SLOT1 VMD port 2D (Available when the device is detected by the system)

Select **Enable** to use the Intel Volume Management Device Technology for this specific root port. The options are **Disable** and **Enable**.

Hot Plug Capable (Available when the device is detected by the system)

Select Enable to enable hot plug support for PCIe root ports 2A~2D, which will allow the user to change the devices populated on PCI-E Slots 2A~2D without turning off the system. The options are **Disable** and **Enable**.

VMD Config for PStack2**Intel® VMD for Volume Management Device**

Select Enable to use the Intel Volume Management Device Technology for this stack. The options are **Disable** and **Enable**.

**If the item "Intel VMD for Volume Management Device" above is set to Enable, the following items will be displayed:*

CPU1 SXB1 M.2 VMD port 3C~CPU1 JF2 M.2 VMD port 3D (Available when the device is detected by the system)

Select Enable to use the Intel Volume Management Device Technology for this specific root port. The options are **Disable** and **Enable**.

Hot Plug Capable (Available when the device is detected by the system)

Select Enable to enable hot plug support for PCIe root ports 3C~3D, which will allow the user to change the devices populated on PCI-E Slots 3C~3D without turning off the system. The options are **Disable** and **Enable**.

PCI-E Completion Timeout Disable

Use this feature to enable PCI-E Completion Timeout support for electric tuning. The options are **Yes**, **No**, and **Per-Port**.

►South Bridge

Legacy USB Support

This feature enables support for USB 2.0 and older. The options are **Enabled** and **Disabled**. Default setting is **Enabled**.

XHCI Hand-off

When disabled, the motherboard will not support USB 3.0. The options are **Enabled** and **Disabled**. Default setting is **Disabled**.

Port 60/64 Emulation

This feature allows legacy I/O support for USB devices like mice and keyboards. The options are **Enabled** and **disabled**. Default setting is **Enabled**.

PCIe PLL SSC

Use this feature to enable PCIE PLL spread spectrum clocking (SSC). The options are **Disable** and **Enable**.

►Server ME (Management Engine) Configuration

This feature displays the following system ME configuration settings.

- Operational Firmware Version
- Backup Firmware Version
- Recovery Firmware Version
- ME Firmware Status #1
- ME Firmware Status #2
- Current State
- Error Code

►PCH SATA Configuration

When this submenu is selected, the AMI BIOS automatically detects the presence of the SATA devices that are supported by the Intel PCH chip and displays the following items:

SATA Controller

This item enables or disables the onboard SATA controller supported by the Intel PCH chip. The options are **Disable** and **Enable**.

Configure SATA as

Select IDE to configure a SATA drive specified by the user as an IDE drive. Select AHCI to configure a SATA drive specified by the user as an AHCI drive. Select RAID to configure a SATA drive specified by the user as a RAID drive. The options are **IDE**, **AHCI**, and **RAID**.

SATA HDD Unlock

This feature allows the user to remove any password-protected SATA disk drives.

Aggressive Link Power Management

When this item is set to Enabled, the SATA AHCI controller manages the power usage of the SATA link. The controller will put the link in a low power mode during extended periods of I/O inactivity, and will return the link to an active state when I/O activity resumes. The options are **Disabled** and **Enabled**.

****If the item above "Configure SATA as" is set to RAID, the following items will display:***

SATA Port 0 ~ Port 7

This item displays the information detected on the installed SATA drive on the particular SATA port.

- Model number of drive and capacity
- Software Preserve Support

Port 0 ~ Port 7 Hot Plug

Set this item to Enabled for hot-plugging support, which will allow the user to replace a SATA drive without shutting down the system. The options are Disabled and **Enabled**.

Port 0 ~ Port 7 Spin Up Device

On an edge detect from 0 to 1, set this item to allow the PCH to initialize the device. The options are **Disabled** and Enabled.

Port 0 ~ Port 7 SATA Device Type

Use this item to specify if the SATA port specified by the user should be connected to a Solid State drive or a Hard Disk Drive. The options are **Hard Disk Drive** and Solid State Drive.

►PCH sSATA Configuration

When this submenu is selected, the AMI BIOS automatically detects the presence of the SATA devices that are supported by the Intel PCH chip and displays the following items:

sSATA Controller

This item enables or disables the onboard sSATA controller supported by the Intel PCH chip. The options are **Disable** and **Enable**.

Configure sSATA as

Select AHCI to configure an sSATA drive specified by the user as an AHCI drive. Select RAID to configure an sSATA drive specified by the user as a RAID drive. The options are **AHCI**, and RAID.

SATA HDD Unlock

This feature allows the user to remove any password-protected SATA disk drives.

Aggressive Link Power Management

When this item is set to Enabled, the SATA AHCI controller manages the power usage of the SATA link. The controller will put the link in a low power mode during extended periods of I/O inactivity, and will return the link to an active state when I/O activity resumes. The options are **Disabled** and **Enabled**.

**If the item above "Configure SATA as" is set to RAID, the following items will display:*

sSATA Port 0 ~ Port 5

This item displays the information detected on the installed sSATA drive on the particular sSATA port.

- Model number of drive and capacity
- Software Preserve Support

Port 0 ~ Port 5 Hot Plug

Set this item to Enabled for hot-plugging support, which will allow the user to replace a SATA drive without shutting down the system. The options are Disabled and **Enabled**.

Port 0 ~ Port 5 Spin Up Device

On an edge detect from 0 to 1, set this item to allow the PCH to initialize the device. The options are **Disabled** and Enabled.

Port 0 ~ Port 5 SsATA Device Type

Use this item to specify if the SATA port specified by the user should be connected to a Solid State drive or a Hard Disk Drive. The options are **Hard Disk Drive** and Solid State Drive.

►PCIe/PCI/PnP Configuration

The following information will display:

- PCI Bus Driver Version
- PCI Devices Common Settings:

Above 4G Decoding (Available if the system supports 64-bit PCI decoding)

Select Enabled to decode a PCI device that supports 64-bit in the space above 4G Address. The options are **Disabled** and Enabled.

SR-IOV Support

Use this feature to enable or disable Single Root IO Virtualization Support. The options are **Disabled** and Enabled.

MMIO High Base

Use this item to select the base memory size according to memory-address mapping for the IO hub. The options are **56 TB**, 40 TB, 24 TB, 3 TB, 2 TB, and 1 TB.

MMIO High Granularity Size

Use this item to select the high memory size according to memory-address mapping for the IO hub. The options are **256 GB**, 128 GB, 512 GB, and 1024 GB.

Maximum Read Request

Select Auto for the system BIOS to automatically set the maximum size for a read request for a PCI-E device to enhance system performance. The options are **Auto**, 128 Bytes, 256 Bytes, 512 Bytes, 1024 Bytes, 2048 Bytes, and 4096 Bytes.

MMCFG Base

Use this item to select the low base address for PCIE adapters to increase base memory. The options are 1G, 1.5G, 1.75G, **2G**, 2.25G. and 3G.

NVMe Firmware Source

Use this item to select the NVMe firmware to support booting. The options are **Vendor**

VGA Priority

Use this item to select the graphics device to be used as the primary video display for system boot. The options are **Onboard** and Offboard.

CPU1 SLOT1 PCI-E 3.0 x16 OPROM

This feature Enables or Disables Option ROM support to boot the computer using a device installed on the slot specified by the user. The options are Disabled, **Legacy**, and EFI.

CPU1 SXB1 PCI-E 3.0 x4 OPROM

This feature Enables or Disables Option ROM support to boot the computer using a device installed on the slot specified by the user. The options are Disabled, **Legacy**, and EFI.

CPU1 JF2 PCI-E 3.0 x4 OPROM

This feature Enables or Disables Option ROM support to boot the computer using a device installed on the slot specified by the user. The options are Disabled, **Legacy**, and EFI.

SIOM: CPU1 PCI-E 3.0 x16 OPROM

Use this item to select the Onboard Video Option ROM type. The options are Disabled, **Legacy**, and EFI.

Bus Master Enable

This feature enables a device connected to the bus to initiate Direct Memory Access (DMA) transactions. When **Disabled** is selected, the PCI Bus Driver disables Bus Master Attribute for Pre-Boot DMA Protection. When **Enabled** is selected, the PCI Bus Driver enables Bus Master Attribute for DMA transactions. Some devices request Bus Master to be enabled for operations. The options are **Disabled** and **Enabled**.

Onboard LAN Option ROM Type

Use this to select firmware type to be loaded for onboard LANs. The options are **Legacy** and EFI.

Onboard LAN1 Option ROM

Use this feature to select the type of device installed in LAN Port1 used for system boot. The options are **Legacy**, **EFI** and **Disabled**.

Onboard LAN2 Option ROM

Use this feature to select the type of device installed in LAN Port2 used for system boot. The options are **Legacy**, **EFI** and **Disabled**.

Onboard LAN3 Option ROM

Use this feature to select the type of device installed in LAN Port3 used for system boot. The options are **Legacy**, **EFI** and **Disabled**.

Onboard LAN4 Option ROM

Use this feature to select the type of device installed in LAN Port4 used for system boot. The options are **Legacy**, **EFI** and **Disabled**.

Onboard NVMe1 Option ROM

Use this feature to select the type of device installed in NVMe Port1 used for system boot. The options are **Legacy**, **EFI** and **Disabled**.

Onboard NVMe2 Option ROM

Use this feature to select the type of device installed in NVMe Port2 used for system boot. The options are **Legacy**, **EFI** and **Disabled**.

Onboard NVMe3 Option ROM

Use this feature to select the type of device installed in NVMe Port3 used for system boot. The options are **Legacy**, **EFI** and **Disabled**.

Onboard NVMe4 Option ROM

Use this feature to select the type of device installed in NVMe Port4 used for system boot. The options are **Legacy**, **EFI** and **Disabled**.

Onboard Video Option ROM

Use this feature to select the Onboard Video Option ROM type. The options are **Disabled**, **Legacy** and **EFI**.

► Network Stack Configuration

Network Stack

Select **Enabled** to enable PXE (Preboot Execution Environment) or UEFI (Unified Extensible Firmware Interface) for network stack support. The options are **Enabled** and **Disabled**.

***If "Network Stack" is set to Enabled, the following items will display:**

Ipv4 PXE Support

Use this feature to enable Ipv4 PXE Boot Support. If this feature is disabled, it will not create the Ipv4 PXE Boot option. The options are **Disabled** and **Enabled**.

Ipv4 HTTP Support

Use this feature to enable Ipv4 HTTP Boot Support. If this feature is disabled, it will not create the Ipv4 HTTP Boot option. The options are **Disabled** and **Enabled**.

Ipv6 PXE Support

Use this feature to enable Ipv6 PXE Boot Support. If this feature is disabled, it will not create the Ipv6 PXE Boot option. The options are **Disabled** and **Enabled**.

PXE Boot Wait Time

Use this feature to select the wait time to press the ESC key to abort the PXE boot. The default is 0.

Media Detect Count

Use this feature to select the wait time in seconds to detect LAN media. The default is 1.

►Super IO Configuration

The following Super IO information will display:

- Super IO Chip 2500

►Serial Port 1 Configuration

Serial Port 1

Select Enabled to enable the onboard serial port specified by the user. The options are **Enabled** and **Disabled**.

Device Settings

This item displays the base I/O port address and the Interrupt Request address of a serial port specified by the user.

Note: This item is hidden when Serial Port 1 is set to Disabled.

Change Port 1 Settings

This feature specifies the base I/O port address and the Interrupt Request address of Serial Port 1. Select **Auto** for the BIOS to automatically assign the base I/O and IRQ address to a serial port specified.

The options for Serial Port 2 are **Auto**, (IO=3F8h; IRQ=4), (IO=3F8h; IRQ=3, 4, 5, 6, 7, 9, 10, 11, 12), (IO=2F8h; IRQ=3, 4, 5, 6, 7, 9, 10, 11, 12); (IO=3E8h; IRQ=3, 4, 5, 6, 7, 9, 10, 11, 12), and (IO=2E8h; IRQ=3, 4, 5, 6, 7, 9, 10, 11, 12).

►Serial Port 2 Configuration

Serial Port 2

Select Enabled to enable the onboard serial port specified by the user. The options are Enabled and Disabled.

Device Settings

This item displays the base I/O port address and the Interrupt Request address of a serial port specified by the user.

Note: This item is hidden when Serial Port 2 is set to Disabled.

Change Port 2 Settings

This feature specifies the base I/O port address and the Interrupt Request address of Serial Port 2. Select **Auto** for the BIOS to automatically assign the base I/O and IRQ address to a serial port specified.

The options for Serial Port 2 are **Auto**, (IO=3F8h; IRQ=4), (IO=3F8h; IRQ=3, 4, 5, 6, 7, 9, 10, 11, 12), (IO=2F8h; IRQ=3, 4, 5, 6, 7, 9, 10, 11, 12); (IO=3E8h; IRQ=3, 4, 5, 6, 7, 9, 10, 11, 12), and (IO=2E8h; IRQ=3, 4, 5, 6, 7, 9, 10, 11, 12).

Serial Port 2 Attribute

Select SOL to use COM Port 2 as a Serial_Over_LAN (SOL) port for console redirectoin. The options are COM and **SOL**.

►Serial Port Console Redirection

COM1 Console Redirection

Select Enabled to enable console redirection support for a serial port specified by the user. The options are Enabled and **Disabled**.

**If the item above set to Enabled, the following items will become available for user's configuration:*

►SOL/COM2 Console Redirection Settings

This feature allows the user to specify how the host computer will exchange data with the client computer, which is the remote computer used by the user.

Terminal Type

This feature allows the user to select the target terminal emulation type for Console Redirection. Select VT100 to use the ASCII Character set. Select VT100+ to add color and function key support. Select ANSI to use the Extended ASCII Character Set. Select VT-UTF8 to use UTF8 encoding to map Unicode characters into one or more bytes. The options are **VT100**, **VT100+**, **VT-UTF8**, and **ANSI**.

Bits per second

Use this feature to set the transmission speed for a serial port used in Console Redirection. Make sure that the same speed is used in the host computer and the client computer. A lower transmission speed may be required for long and busy lines. The options are 9600, 19200, 38400, 57600 and **115200** (bits per second).

Data Bits

Use this feature to set the data transmission size for Console Redirection. The options are **7 Bits** and **8 Bits**.

Parity

A parity bit can be sent along with regular data bits to detect data transmission errors. Select Even if the parity bit is set to 0, and the number of 1's in data bits is even. Select Odd if the parity bit is set to 0, and the number of 1's in data bits is odd. Select None if you do not want to send a parity bit with your data bits in transmission. Select Mark to add a mark as a parity bit to be sent along with the data bits. Select Space to add a Space as a parity bit to be sent with your data bits. The options are **None**, Even, Odd, Mark, and Space.

Stop Bits

A stop bit indicates the end of a serial data packet. Select 1 Stop Bit for standard serial data communication. Select 2 Stop Bits if slower devices are used. The options are **1** and **2**.

Flow Control

Use this feature to set the flow control for Console Redirection to prevent data loss caused by buffer overflow. Send a "Stop" signal to stop sending data when the receiving buffer is full. Send a "Start" signal to start sending data when the receiving buffer is empty. The options are **None** and Hardware RTS/CTS.

VT-UTF8 Combo Key Support

Select Enabled to enable VT-UTF8 Combination Key support for ANSI/VT100 terminals. The options are **Disabled** and **Enabled**.

Recorder Mode

Select Enabled to capture the data displayed on a terminal and send it as text messages to a remote server. The options are **Disabled** and **Enabled**.

Resolution 100x31

Select Enabled for extended-terminal resolution support. The options are **Disabled** and **Enabled**.

Legacy OS Redirection Resolution

Use this feature to select the number of rows and columns used in Console Redirection for legacy OS support. The options are 80x24 and **80x25**.

Putty KeyPad

This feature selects the settings for Function Keys and KeyPad used for Putty, which is a terminal emulator designed for the Windows OS. The options are **VT100**, **LINUX**, **XTERM**, **MR6**, **SC0**, **ESCN**, and **VT400**.

Redirection After BIOS POST

Use this feature to enable or disable legacy console redirection after BIOS POST. When set to Bootloader, legacy console redirection is disabled before booting the OS. When set to Always Enable, legacy console redirection remains enabled when booting the OS. The options are **Always Enable** and **Bootloader**.

►Legacy Console Redirection Settings

Legacy Serial Redirection Port

Use this feature to select a COM port to display redirection of Legacy OS and Legacy OPROM messages. The options are **COM1** and **SOL/COM2**

►EMS Console Redirection Settings

EMS Console Redirection

This feature allows the user to specify how the host computer will exchange data with the client computer, which is the remote computer used by the user.

****If the item above set to Enabled, the following items will become available for user's configuration:***

Out-of-Band Management Port

The feature selects a serial port in a client server to be used by the Windows Emergency Management Services (EMS) to communicate with a remote host server. The options are **COM1** and **SOL**.

Terminal Type

Use this feature to select the target terminal emulation type for Console Redirection. Select **VT100** to use the ASCII character set. Select **VT100+** to add color and function key support. Select **ANSI** to use the extended ASCII character set. Select **VT-UTF8** to use UTF8 encoding to map Unicode characters into one or more bytes. The options are **VT100**, **VT100+**, **VT-UTF8**, and **ANSI**.

Bits Per Second

This item sets the transmission speed for a serial port used in Console Redirection. Make sure that the same speed is used in the host computer and the client computer. A lower transmission speed may be required for long and busy lines. The options are **9600**, **19200**, **57600**, and **115200** (bits per second).

Flow Control

Use this item to set the flow control for Console Redirection to prevent data loss caused by buffer overflow. Send a "Stop" signal to stop sending data when the receiving buffer is full. Send a "Start" signal to start sending data when the receiving buffer is empty. The options are **None**, Hardware RTS/CTS, and Software Xon/Xoff.

Data Bits

Use this feature to set the data transmission size for Console Redirection. The options are **7 Bits** and **8 Bits**.

Parity

A parity bit can be sent along with regular data bits to detect data transmission errors. Select Even if the parity bit is set to 0, and the number of 1's in data bits is even. Select Odd if the parity bit is set to 0, and the number of 1's in data bits is odd. Select None if you do not want to send a parity bit with your data bits in transmission. Select Mark to add a mark as a parity bit to be sent along with the data bits. Select Space to add a Space as a parity bit to be sent with your data bits. The options are None, Even, Odd, Mark and Space.

Stop Bits

A stop bit indicates the end of a serial data packet. Select 1 Stop Bit for standard serial data communication. Select 2 Stop Bits if slower devices are used. The options are **1** and **2**.

►ACPI Settings

Numa

Select **Enable** for Non-Uniform Memory Access (NUMA) support which will improve memory-to-processor communication and performance. The options are **Enabled** or **Disabled**.

WHEA Support

Select Enabled to support the Windows Hardware Error Architecture (WHEA) platform and provide a common infrastructure for the system to handle hardware errors within the Windows OS environment to reduce system crashes and to enhance system recovery and health monitoring. The options are **Enabled** and **Disabled**.

High Precision Timer

Select Enabled to activate the High Precision Event Timer (HPET) that produces periodic interrupts at a much higher frequency than a Real-time Clock (RTC) does in synchronizing multimedia streams, providing smooth playback and reducing the dependency on other timestamp calculation devices, such as an x86 RDTSC Instruction embedded in the CPU. The High Performance Event Timer is used to replace the 8254 Programmable Interval Timer. The options are **Enabled** and **Disabled**.

►Trusted Computing (Available when a TPM device is installed and detected by the BIOS)

When a TPM (Trusted-Platform Module) device is detected in your machine, the following information will be displayed.

- TPM2.0 Device Found
- Vendor
- Firmware Version

Security Device Support

If this feature and the TPM jumper (JPT1 if installed onboard) on the motherboard are both enabled, the onboard security (TPM) device will be enabled in the BIOS to enhance data integrity and system security. Please note that the OS will not show the security device. Neither TCG EFI protocol nor INT1A interaction will be made available for use. If you have made changes on the setting on this item, be sure to reboot the system for the change to take effect. The options are Disable and **Enable**. If this option is set to Enable, the following screen and items will display:

- Active PCR Banks
- Available PCR Banks

Pending Operation

Use this feature to schedule a TPM-related operation to be performed by a security (TPM) device at the next system boot to enhance system data integrity. Your system will reboot to carry out a pending TPM operation. The options are **None** and TPM Clear.

Note: Your system will reboot to carry out a pending TPM operation.

Platform Hierarchy (for TPM Version 2.0 and above)

Select Enabled for TPM Platform Hierarchy support which will allow the manufacturer to utilize the cryptographic algorithm to define a constant key or a fixed set of keys to be used for initial system boot. This early boot code is shipped with the platform and is included in the list of "public keys". During system boot, the platform firmware uses this trusted public key to verify a digital signature in an attempt to manage and control the security of the platform firmware used in a host system via a TPM device. The options are **Enabled** and **Disabled**.

Storage Hierarchy

Select Enabled for TPM Storage Hierarchy support that is intended to be used for non-privacy-sensitive operations by the platform owner such as an IT professional or the end user. Storage Hierarchy has an owner policy and an authorization value, both of which can be set and are held constant (-rarely changed) through reboots. This hierarchy can be cleared or changed independently of the other hierarchies. The options are **Enabled** and **Disabled**.

Endorsement Hierarchy

Select Enabled for Endorsement Hierarchy support, which contains separate controls to address the user's privacy concerns because the primary keys in this hierarchy are certified by the TPM or a manufacturer to be constrained to an authentic TPM device that is attached to an authentic platform. A primary key can be an encrypted, and a certificate can be created using TPM2_ActivateCredential. It allows the user to independently enable "flag, policy, and authorization value" without involving other hierarchies. A user with privacy concerns can disable the endorsement hierarchy while still using the storage hierarchy for TPM applications and permitting the platform software to use the TPM. The options are **Enabled** and **Disabled**.

PH (Platform Hierarchy) Randomization (for TPM Version 2.0 and above)

Select Enabled for Platform Hierarchy Randomization support, which is used only during the platform developmental stage. This feature cannot be enabled in the production platforms. The options are **Disabled** and **Enabled**.

TXT Support

Select Enabled to enable Intel Trusted Execution Technology (TXT) support to enhance system security and data integrity. The options are **Disabled** and **Enabled**.

Note 1: If the option for this item (TXT Support) is set to Enabled, be sure to disable EV DFX (Device Function On-Hide) support for the system to work properly. (EV DFX is under "IIO Configuration" in the "Chipset/North Bridge" submenu).

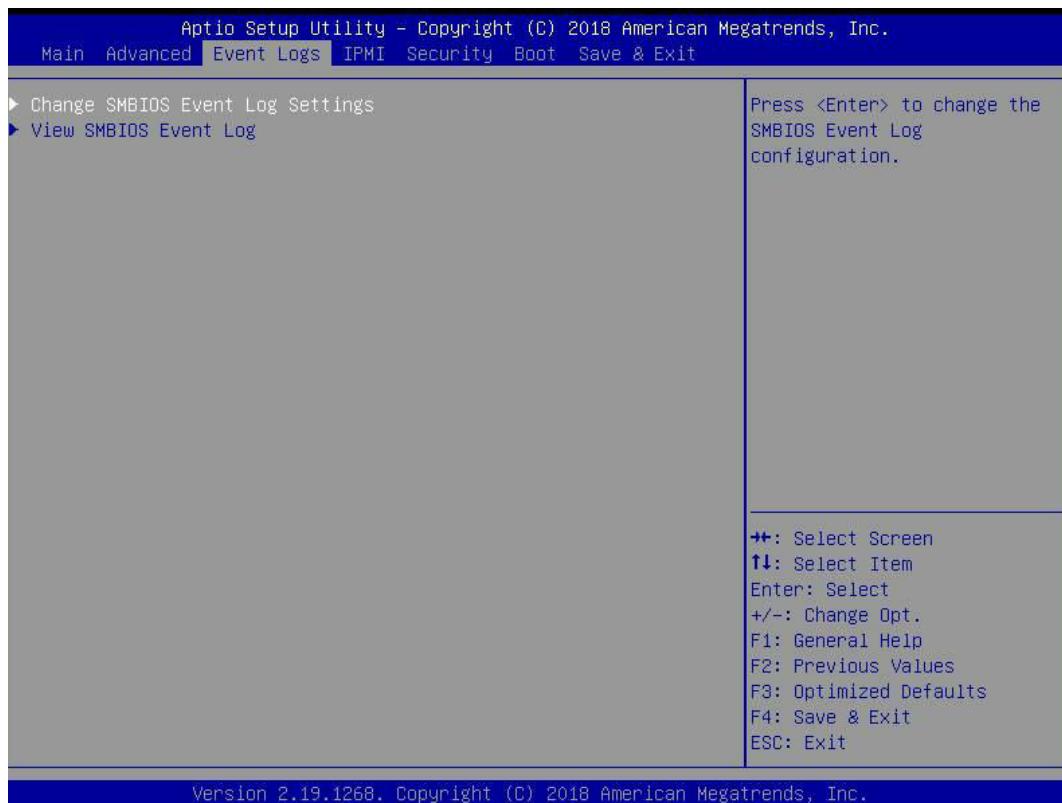
Note 2: For more information on TPM, please refer to the TPM manual at <http://www.supermicro.com/manuals/other>.

►iSCSI Configuration

iSCSI Initiator Name

This feature allows the user to enter the unique name of the iSCSI Initiator in IQN format. Once the name of the iSCSI Initiator is entered into the system, configure the proper settings for the following items.

- Add an Attempt
- Delete Attempts
- Change Attempt Order


►Intel(R) Virtual RAID on CPU

Intel(R) VROC with VMD Technology

RAID volumes and Intel VMD Controllers information will be displayed if they are detected by the system.

6.4 Event Logs

Use this tab page to configure Event Log settings.

►Change SMBIOS Event Log Settings

Enabling/Disabling Options

SMBIOS Event Log

Change this item to enable or disable all features of the SMBIOS Event Logging during system boot. The options are **Enabled** and **Disabled**.

Erasing Settings

Erase Event Log

If **No** is selected, data stored in the event log will not be erased. Select **Yes**, **Next Reset**, data in the event log will be erased upon next system reboot. Select **Yes**, **Every Reset**, data in the event log will be erased upon every system reboot. The options are **No**, **Yes**, **Next reset**, and **Yes, Every reset**.

When Log is Full

Select **Erase Immediately** for all messages to be automatically erased from the event log when the event log memory is full. The options are **Do Nothing** and **Erase Immediately**.

SMBIOS Event Long Standard Settings

Log System Boot Event

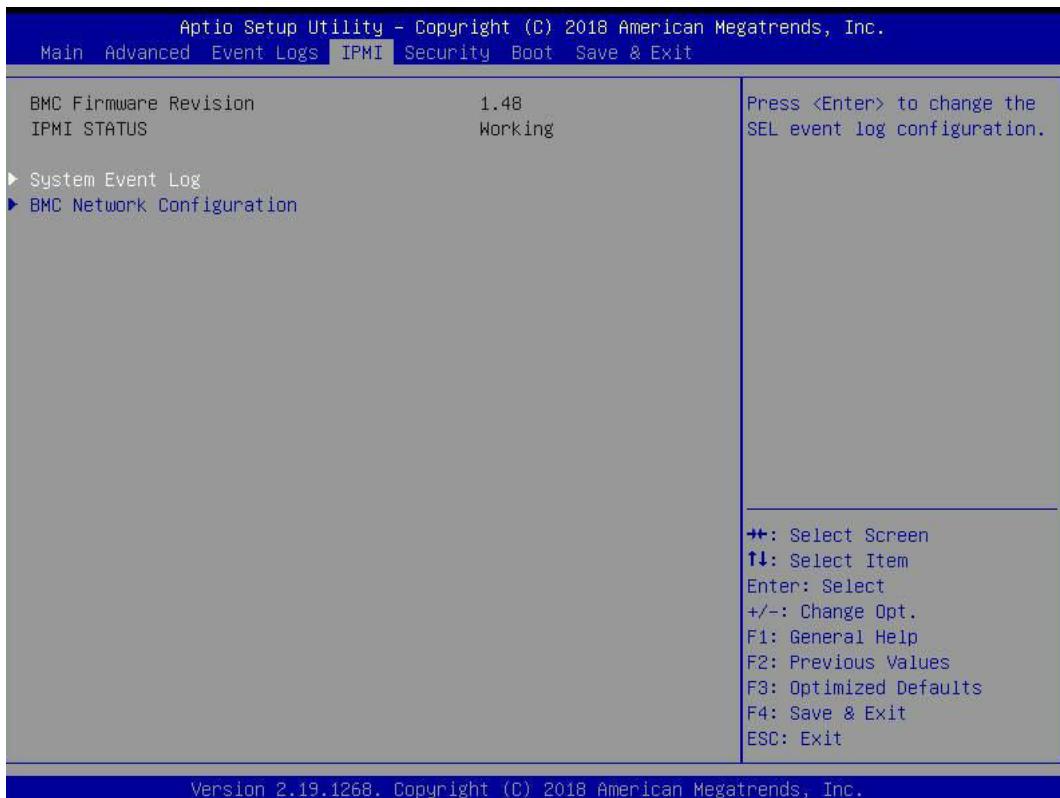
This option toggles the System Boot Event logging to enabled or disabled. The options are **Disabled** and **Enabled**.

MECI

The Multiple Event Count Increment (MECI) counter counts the number of occurrences that a duplicate event must happen before the MECI counter is incremented. This is a numeric value. The default value is **1**.

METW

The Multiple Event Time Window (METW) defines number of minutes must pass between duplicate log events before MECI is incremented. This is in minutes, from 0 to 99. The default value is **60**.


Note: After making changes on a setting, be sure to reboot the system for the changes to take effect.

►View SMBIOS Event Log

This section displays the contents of the SMBIOS Event Log. The following categories will be displayed: Date/Time/Error Codes/Severity.

6.5 IPMI

Use this tab page to configure Intelligent Platform Management Interface (IPMI) settings.

BMC Firmware Revision

This item indicates the IPMI firmware revision used in your system.

IPMI Status (Baseboard Management Controller)

This item indicates the status of the IPMI firmware installed in your system.

►System Event Log

Enabling/Disabling Options

SEL Components

Select Enabled for all system event logging at bootup. The options are **Enabled** and **Disabled**.

Erasing Settings

Erase SEL

Select Yes, On next reset to erase all system event logs upon next system reboot. Select Yes, On every reset to erase all system event logs upon each system reboot. Select No to keep all system event logs after each system reboot. The options are **No**, **Yes, On next reset**, and **Yes, On every reset**.

When SEL is Full

This feature allows the user to decide what the BIOS should do when the system event log is full. Select Erase Immediately to erase all events in the log when the system event log is full. The options are **Do Nothing** and **Erase Immediately**.

Note: After making changes on a setting, be sure to reboot the system for the changes to take effect.

►BMC Network Configuration

BMC Network Configuration

Configure IPV4 support

IPMI LAN Selection

This item displays the IPMI LAN setting. The default setting is **Failover**.

IPMI Network Link Status

This item displays the IPMI Network Link status. The default setting is **Dedicated LAN**.

Configuration Address Source

This feature allows the user to select the source of the IP address for this computer. If Static is selected, you will need to know the IP address of this computer and enter it to the system manually in the field. If DHCP is selected, the BIOS will search for a DHCP (Dynamic Host Configuration Protocol) server in the network that is attached to and request the next available IP address for this computer. The options are **DHCP** and **Static**.

Station IP Address

This item displays the Station IP address for this computer. This should be in decimal and in dotted quad form (i.e., 192.168.10.253).

Subnet Mask

This item displays the sub-network that this computer belongs to. The value of each three-digit number separated by dots should not exceed 255.

Station MAC Address

This item displays the Station MAC address for this computer. Mac addresses are 6 two-digit hexadecimal numbers.

Gateway IP Address

This item displays the Gateway IP address for this computer. This should be in decimal and in dotted quad form (i.e., 172.31.0.1).

VLAN

This item displays the virtual LAN settings.

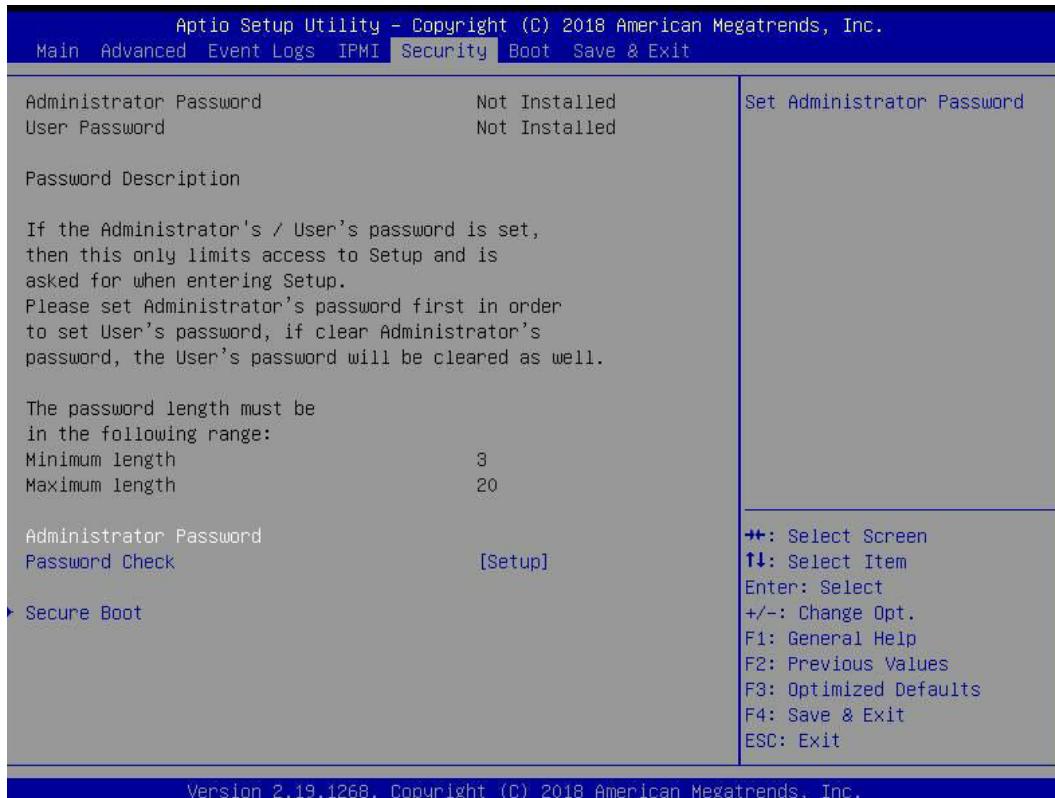
Configure IPV6 Support

This section displays configuration features for IPV6 support.

IPV6 Support

Use this feature to enable IPV6 support. The options are **Enabled** and **Disabled**.

Configuration Address Source


This feature allows the user to select the source of the IP address for this computer. If **Static** is selected, you will need to know the IP address of this computer and enter it to the system manually in the field. If **DHCP** is selected, the BIOS will search for a **DHCP** (Dynamic Host Configuration Protocol) server in the network that is attached to and request the next available IP address for this computer. The options are **Unspecified**, **Static**, and **DHCP**.

**If the item "Configuration Address Source" above is set to Static, the following items will become available for configuration:*

- Station IPV6 Address
- Prefix Length
- IPV6 Router1 IP Address

6.6 Security

Use this tab page to configure Security settings.

Administrator Password

Use this feature to set the administrator password which is required to enter the BIOS setup utility. The length of the password should be from 3 characters to 20 characters long.

Password Check

Select Setup for the system to check for a password at Setup. Select Always for the system to check for a password at bootup or upon entering the BIOS Setup utility. The options are **Setup** and **Always**.

►Secure Boot

When you select this submenu and press the <Enter> key, the following items will display:

- System Mode
- Secure Boot
- Vendor Keys

Secure Boot

If this item is set to Enabled, Secure Boot will be activated when a Platform Key (PK) is entered. A Platform Key is a security key used to manage the security settings of the platform firmware used in your system. The options are **Disabled** and Enabled.

Secure Boot Mode

Use this feature to select the desired secure boot mode for the system. The options are Standard and **Custom**.

CSM Support

Use this feature to select the desired secure boot mode for the system. The options are **Disabled** and Enabled.

►Key Management

Provision Factory Defaults

Select Enabled to install all manufacturer default keys for the following system security settings. The options are **Disabled** and Enabled.

►Enroll all Factory Default Keys

Select Yes to install all manufacturer defaults for the following system security settings. The options are **Yes** and No.

►Enroll EFI Image

Select this item and press <Enter> to select an EFI (Extensible Firmware Interface) image for the system to operate in Secure Boot mode.

►Save All Secure Boot Variables

This feature allows the user to set and save the secure boot key variables specified by the user.

Secure Boot Variable/Size/Key#/Key Sources

►Platform Key (PK)

This feature allows the user to enter and configure a set of values to be used as a platform firmware key for the system. This set of values also indicate the size, the keys numbers, and the key source of the Platform Key. The options are **Save to File**, Set New, and Erase

►Key Exchange Keys

This feature allows the user to enter and configure a set of values to be used as a Key-Exchange-Keys for the system. This set of values also indicate the size, the keys numbers,

and the key source of the Key-Exchange-Keys. The options are **Save to File**, Set New, Append and Erase.

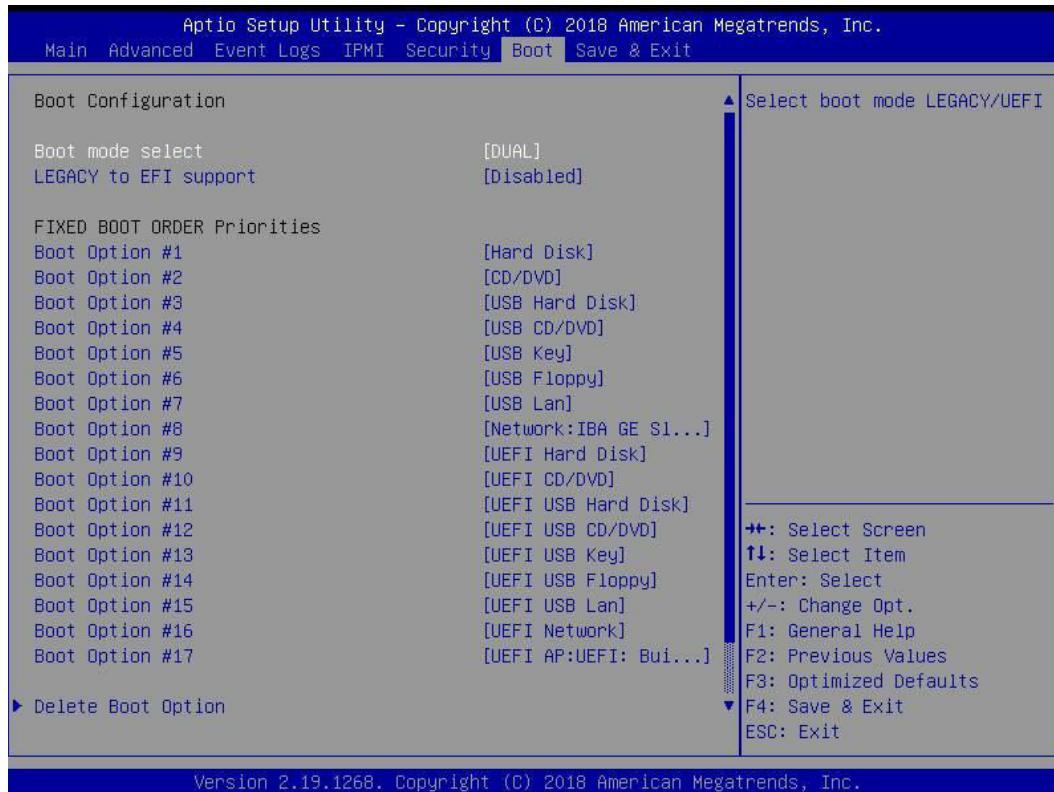
►Authorized Signatures

This feature allows the user to enter and configure a set of values to be used as Authorized Signatures for the system. This set of values also indicate the size, the keys numbers, and the key source of the Authorized Signatures. The options are **Save to File**, Set New, Append and Erase.

►Forbidden Signatures

This feature allows the user to enter and configure a set of values to be used as Forbidden Signatures for the system. This set of values also indicate the size, the keys numbers, and the key source of the Forbidden Signatures. The options are **Save to File**, Set New, Append and Erase.

►Authorized TimeStamps


This feature allows the user to set and save the timestamps for Authorized Signatures to indicate when these signatures were entered into the system. The options are **Save to File**, Set New, Append and Erase.

►OsRecovery Signatures

This feature allows the user to set and save the Authorized Signatures used for OS recovery. The options are **Save to File**, Set New, Append and Erase.

6.7 Boot

Use this tab page to configure Boot Settings.

Boot Mode Select

Use this feature to select the type of devices that the system is going to boot from. The options are Legacy, UEFI (Unified Extensible Firmware Interface), and **Dual**.

Legacy to EFI Support

Select Enabled to boot EFI OS support after Legacy boot order has failed. The options are **Disabled** and **Enabled**.

Fixed Boot Order Priorities

This feature prioritizes the order of a bootable device from which the system will boot. Press **<Enter>** on each entry from top to bottom to select devices.

When the item above -"Boot Mode Select" is set to **Dual** (default), the following items will be displayed for configuration:

- Boot Option #1 - Boot Option #17

When the item above -"Boot Mode Select" is set to Legacy, the following items will be display for configuration:

- Boot Option #1 - Boot Option #8

When the item above -"Boot Mode Select" is set to UEFI, the following items will be display for configuration:

- Boot Option #1 - Boot Option #9

►Delete Boot Option

Use this feature to select a boot device to delete from the boot priority list.

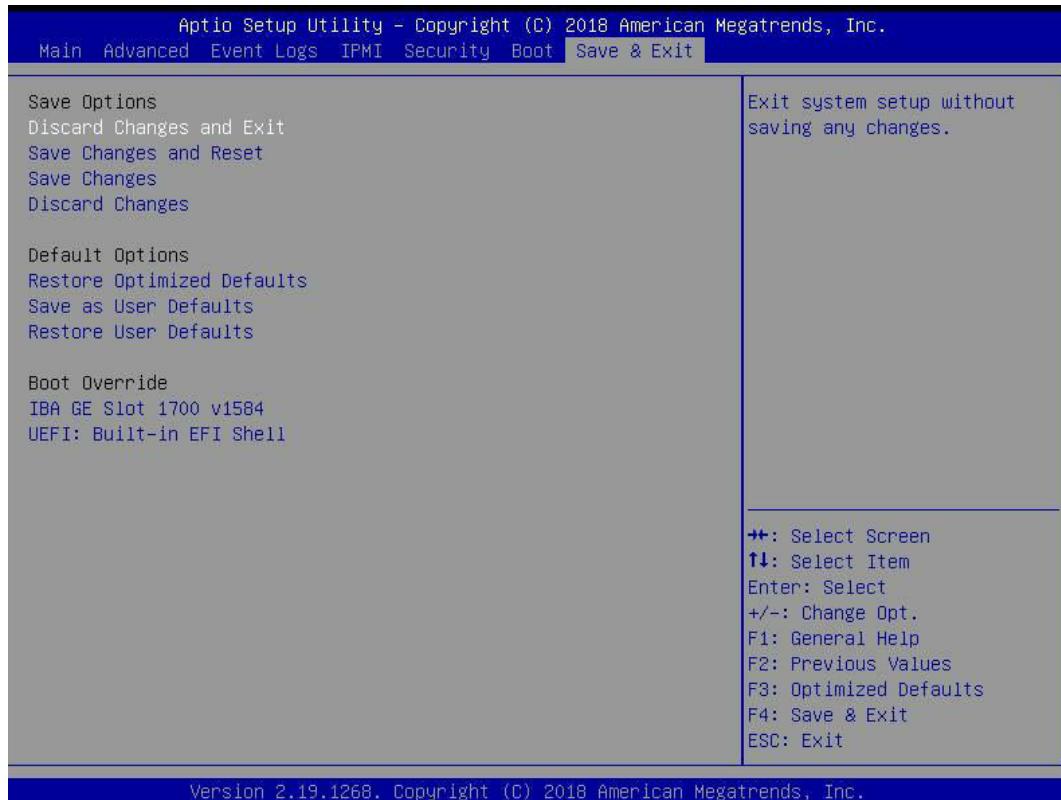
Delete Boot Option

Use this feature to remove an EFI boot option from the boot priority list.

►UEFI Application Boot Priorities

This feature sets the system boot order of detected devices.

- Boot Option #1


►NETWORK Drive BBS Priorities

This feature sets the system boot order of detected devices.

- Boot Option #1

6.8 Save & Exit

Use this tab page to configure Save & Exit settings.

Save Options

Discard Changes and Exit

Select this option to quit the BIOS setup without making any permanent changes to the system configuration and reboot the computer. Select Discard Changes and Exit from the Exit menu and press <Enter>.

Save Changes and Reset

When you have completed the system configuration changes, select this option to leave the BIOS setup utility and reboot the computer for the new system configuration parameters to take effect. Select Save Changes and Exit from the Exit menu and press <Enter>.

Save Changes

When you have completed the system configuration changes, select this option to save all changes made. This will not reset (reboot) the system.

Discard Changes

Select this option and press <Enter> to discard all the changes and return to the AMI BIOS setup utility.

Default Options

Restore Optimized Defaults

To set this feature, select Restore Defaults from the Exit menu and press <Enter> to load manufacturer default settings which are intended for maximum system performance but not for maximum stability.

Save As User Defaults

To set this feature, select Save as User Defaults from the Exit menu and press <Enter>. This enables the user to save any changes to the BIOS setup for future use.

Restore User Defaults

To set this feature, select Restore User Defaults from the Exit menu and press <Enter>. Use this feature to retrieve user-defined settings that were saved previously.

Boot Override

This feature allows the user to override the Boot priorities sequence in the Boot menu, and immediately boot the system with a device specified by the user instead of the one specified in the boot list. This is a one-time override.

Appendix A

BIOS Error Codes

A.1 BIOS Error Beep (POST) Codes

During the POST (Power-On Self-Test) routines, which are performed each time the system is powered on, errors may occur.

Non-fatal errors are those which, in most cases, allow the system to continue the boot-up process. The error messages normally appear on the screen.

Fatal errors are those which will not allow the system to continue the boot-up procedure. If a fatal error occurs, you should consult with your system manufacturer for possible repairs.

These fatal errors are usually communicated through a series of audible beeps. The table below lists some common errors and their corresponding beep codes encountered by users.

BIOS Error Beep (POST) Codes		
Beep Code	Error Message	Description
1 short	Refresh	Circuits have been reset (Ready to power up)
5 short, 1 long	Memory error	No memory detected in system
5 long, 2 short	Display memory read/write error	Video adapter missing or with faulty memory
1 long continuous	System OH	System overheat condition

A.2 Additional BIOS POST Codes

The AMI BIOS supplies additional checkpoint codes, which are documented online at <http://www.supermicro.com/support/manuals/> ("AMI BIOS POST Codes User's Guide").

When BIOS performs the Power On Self Test, it writes checkpoint codes to I/O port 0080h. If the computer cannot complete the boot process, a diagnostic card can be attached to the computer to read I/O port 0080h (Supermicro p/n AOC-LPC80-20).

For information on AMI updates, please refer to <http://www.ami.com/products/>.

Appendix B

Standardized Warning Statements for AC Systems

About Standardized Warning Statements

The following statements are industry standard warnings, provided to warn the user of situations which have the potential for bodily injury. Should you have questions or experience difficulty, contact Supermicro's Technical Support department for assistance. Only certified technicians should attempt to install or configure components.

Read this appendix in its entirety before installing or configuring components in the Supermicro chassis.

These warnings may also be found on our website at http://www.supermicro.com/about/policies/safety_information.cfm.

Warning Definition

Warning! This warning symbol means danger. You are in a situation that could cause bodily injury. Before you work on any equipment, be aware of the hazards involved with electrical circuitry and be familiar with standard practices for preventing accidents.

警告の定義

この警告サインは危険を意味します。

人身事故につながる可能性がありますので、いずれの機器でも動作させる前に、
電気回路に含まれる危険性に注意して、標準的な事故防止策に精通して下さい。

此警告符号代表危险。

您正处于可能受到严重伤害的工作环境中。在您使用设备开始工作之前，必须充分意识到触电的危险，并熟练掌握防止事故发生的标准工作程序。请根据每项警告结尾的声明号码找到此设备的安全性警告说明的翻译文本。

此警告符號代表危險。

您正處於可能身體可能會受損傷的工作環境中。在您使用任何設備之前，請注意觸電的危險，並且要熟悉預防事故發生的標準工作程序。請依照每一注意事項後的號碼找到相關的翻譯說明內容。

Warnung

WICHTIGE SICHERHEITSHINWEISE

Dieses Warnsymbol bedeutet Gefahr. Sie befinden sich in einer Situation, die zu Verletzungen führen kann. Machen Sie sich vor der Arbeit mit Geräten mit den Gefahren elektrischer Schaltungen und den üblichen Verfahren zur Vorbeugung von Unfällen vertraut. Suchen Sie mit der am Ende jeder Warnung angegebenen Anweisungsnummer nach der jeweiligen Übersetzung in den übersetzten Sicherheitshinweisen, die zusammen mit diesem Gerät ausgeliefert wurden.

BEWAHREN SIE DIESE HINWEISE GUT AUF.

INSTRUCCIONES IMPORTANTES DE SEGURIDAD

Este símbolo de aviso indica peligro. Existe riesgo para su integridad física. Antes de manipular cualquier equipo, considere los riesgos de la corriente eléctrica y familiarícese con los procedimientos estándar de prevención de accidentes. Al final de cada advertencia encontrará el número que le ayudará a encontrar el texto traducido en el apartado de traducciones que acompaña a este dispositivo.

GUARDE ESTAS INSTRUCCIONES.

IMPORTANTES INFORMATIONS DE SÉCURITÉ

Ce symbole d'avertissement indique un danger. Vous vous trouvez dans une situation pouvant entraîner des blessures ou des dommages corporels. Avant de travailler sur un équipement, soyez conscient des dangers liés aux circuits électriques et familiarisez-vous avec les procédures couramment utilisées pour éviter les accidents. Pour prendre connaissance des traductions des avertissements figurant dans les consignes de sécurité traduites qui accompagnent cet appareil, référez-vous au numéro de l'instruction situé à la fin de chaque avertissement.

CONSERVEZ CES INFORMATIONS.

תקנון הצהרות אזהרה

הצהרות הבאות הן אזהרות על פי התקני התעשייה, על מנת להזהיר את המשתמש מפני חבלה פיזית אפשרית. במידה ויש שאלות או היתקלות בעיה כלשהי, יש ליצור קשר עם מחלקת תמייה טכנית של סופרמיקרו. טכנאים מוסמכים בלבד רשאים להתקין או להגדיר את הרכיבים. יש לקרוא את הנספח במלואו לפני התקנת או הגדרת הרכיבים במאזן סופרמיקרו.

اًكَّ فَحَالَةٌ وُكِيَّ أَيْ تَتَسَبَّبُ فِي اصَابَةٍ جَسْدَهُ هَذَا الْزَهْزَعُ عُ خَطْرٌ تَحْذِيرٌ .
 قَبْلَ أَيْ تَعْوِلُ عَلَى أَيْ هَعْدَاتٍ، كَيْ عَلَى عَلَنْ بِالْوَخَاطِرِ الْأَجْوَهُ عَيْ الْذَوَائِزِ
 الْكَهْزَبَائِيَّهُ
 وَكَيْ عَلَى دَرَاهُ بِالْوَوَارِسَاتِ الْقَائِيَّهُ لَوْعُ وَقَعَ أَيْ حَادِثٌ
 اسْتَخْدِمْ رَقْنَ الْبِيِّ الْوَصْصَ فَهَاهُ كُلَّ تَحْذِيرٍ لِلْعَشْرِ تَرْجُوتَهَا

안전을 위한 주의사항

경고!

이 경고 기호는 위험이 있음을 알려 줍니다. 작업자의 신체에 부상을 야기 할 수 있는 상태에 있게 됩니다. 모든 장비에 대한 작업을 수행하기 전에 전기회로와 관련된 위험요소들을 확인하시고 사전에 사고를 방지할 수 있도록 표준 작업절차를 준수해 주시기 바랍니다.

해당 번역문을 찾기 위해 각 경고의 마지막 부분에 제공된 경고문 번호를 참조하십시오

BELANGRIJKE VEILIGHEIDSINSTRUCTIES

Dit waarschuwingssymbool betekent gevaar. U verkeert in een situatie die lichamelijk letsel kan veroorzaken. Voordat u aan enige apparatuur gaat werken, dient u zich bewust te zijn van de bij een elektrische installatie betrokken risico's en dient u op de hoogte te zijn van de standaard procedures om ongelukken te voorkomen. Gebruik de nummers aan het eind van elke waarschuwing om deze te herleiden naar de desbetreffende locatie.

BEWAAR DEZE INSTRUCTIES

Installation Instructions

Warning! Read the installation instructions before connecting the system to the power source.

設置手順書

システムを電源に接続する前に、設置手順書をお読み下さい。

警告

将此系统连接电源前,请先阅读安装说明。

警告

將系統與電源連接前，請先閱讀安裝說明。

Warnung

Vor dem Anschließen des Systems an die Stromquelle die Installationsanweisungen lesen.

¡Advertencia!

Lea las instrucciones de instalación antes de conectar el sistema a la red de alimentación.

Attention

Avant de brancher le système sur la source d'alimentation, consulter les directives d'installation.

יש לקרוא את הוראות התקינה לפני חיבור המערכת למקור מתח.

اقر إرشادات التركيب قبل توصيل النظام إلى مصدر للطاقة

시스템을 전원에 연결하기 전에 설치 안내를 읽어주십시오.

Waarschuwing

Raadpleeg de installatie-instructies voordat u het systeem op de voedingsbron aansluit.

Circuit Breaker

Warning! This product relies on the building's installation for short-circuit (overcurrent) protection. Ensure that the protective device is rated not greater than: 250 V, 20 A.

サーキット・ブレーカー

この製品は、短絡(過電流)保護装置がある建物での設置を前提としています。

保護装置の定格が250 V、20 Aを超えないことを確認下さい。

警告

此产品的短路(过载电流)保护由建筑物的供电系统提供,确保短路保护设备的额定电流不大于250V,20A。

警告

此產品的短路(過載電流)保護由建築物的供電系統提供,確保短路保護設備的額定電流不大於250V,20A。

Warnung

Dieses Produkt ist darauf angewiesen, dass im Gebäude ein Kurzschluss- bzw. Überstromschutz installiert ist. Stellen Sie sicher, dass der Nennwert der Schutzvorrichtung nicht mehr als: 250 V, 20 A beträgt.

¡Advertencia!

Este equipo utiliza el sistema de protección contra cortocircuitos (o sobrecorrientes) del edificio. Asegúrese de que el dispositivo de protección no sea superior a: 250 V, 20 A.

Attention

Pour ce qui est de la protection contre les courts-circuits (surtension), ce produit dépend de l'installation électrique du local. Vérifiez que le courant nominal du dispositif de protection n'est pas supérieur à :250 V, 20 A.

מווצר זה מסתמך על הגנה המותקנת במבנים **למניעת קוצר חשמל**. יש לוודא כי המכשיר המגן מפני הקוצר החשמלי הוא לא יותר מ- 250VDC, 20A

هذا المنتج يعتمد على معدات الحماية من الدوائر القصيرة التي تم تثبيتها في المبني
تأكد من أن تقييم الجهاز الوقائي ليس أكثر من : 20A, 250V

경고!

이 제품은 전원의 단락(과전류)방지에 대해서 전적으로 건물의 관련 설비에 의존합니다.
보호장치의 정격이 반드시 250V(볼트), 20A(암페어)를 초과하지 않도록 해야 합니다.

Waarschuwing

Dit product is afhankelijk van de kortsluitbeveiliging (overspanning) van uw electrische installatie. Controleer of het beveiligde apparaat niet groter gedimensioneerd is dan 250V, 20A.

Power Disconnection Warning

Warning! The system must be disconnected from all sources of power and the power cord removed from the power supply module(s) before accessing the chassis interior to install or remove system components.

電源切断の警告

システムコンポーネントの取り付けまたは取り外しのために、シャーシー内部にアクセスするには、システムの電源はすべてのソースから切断され、電源コードは電源モジュールから取り外す必要があります。

警告

在你打开机箱并安装或移除内部器件前,必须将系统完全断电,并移除电源线。

警告

在您打開機殼安裝或移除內部元件前，必須將系統完全斷電，並移除電源線。

Warnung

Das System muss von allen Quellen der Energie und vom Netzanschlusskabel getrennt sein, das von den Spg. Versorgungsteilmulen entfernt wird, bevor es auf den Chassisinnenraum zurückgreift, um Systemsbestandteile anzubringen oder zu entfernen.

¡Advertencia!

El sistema debe ser disconnected de todas las fuentes de energía y del cable eléctrico quitado de los módulos de fuente de alimentación antes de tener acceso el interior del chasis para instalar o para quitar componentes de sistema.

Attention

Le système doit être débranché de toutes les sources de puissance ainsi que de son cordon d'alimentation secteur avant d'accéder à l'intérieur du chasis pour installer ou enlever des composants de système.

ازהרה מפני ניתוק חשמלי

ازהרה!

יש לנתק את המערכת מכל מקורות החשמל וייש להסיר את כל החשמלי מהספק. לפני גישה לחלק הפנימי של המארז לצורך התקנת או הסרת רכיבים.

يجب فصل فصل انتظار من جميع مصادر انطاقت وإزالت سلك انكهرباء من وحدة امداد انطاقت قبل

انفصل إلى إمناطق إنداخهيت نههيكم نتثبيج أو إزالت مكناث الجهاز

경고!

시스템에 부품들을 장착하거나 제거하기 위해서는 새시 내부에 접근하기 전에 반드시 전원 공급장치로부터 연결되어있는 모든 전원과 전기코드를 분리해주어야 합니다.

Waarschuwing

Voordat u toegang neemt tot het binnenwerk van de behuizing voor het installeren of verwijderen van systeem onderdelen, dient u alle spanningsbronnen en alle stroomkabels aangesloten op de voeding(en) van de behuizing te verwijderen

Equipment Installation

Warning! Only trained and qualified personnel should be allowed to install, replace, or service this equipment.

機器の設置

トレーニングを受け認定された人だけがこの装置の設置、交換、またはサービスを許可されています。

警告

只有经过培训且具有资格的人员才能进行此设备的安装、更换和维修。

警告

只有經過受訓且具資格人員才可安裝、更換與維修此設備。

Warnung

Das Installieren, Ersetzen oder Bedienen dieser Ausrüstung sollte nur geschultem, qualifiziertem Personal gestattet werden.

¡Advertencia!

Solamente el personal calificado debe instalar, reemplazar o utilizar este equipo.

Attention

Il est vivement recommandé de confier l'installation, le remplacement et la maintenance de ces équipements à des personnels qualifiés et expérimentés.

אזהרה!

צוות מוסמך בלבד רשאי להתקין, להחליפם את הציוד או לחתם שירות עבור הציוד.

والمدربين لتركيب واستبدال أو خدمة هذا الجهاز يجب أن يسمح فقط للموظفه المؤهلية

경고!

훈련을 받고 공인된 기술자만이 이 장비의 설치, 교체 또는 서비스를 수행할 수 있습니다.

Waarschuwing

Deze apparatuur mag alleen worden geïnstalleerd, vervangen of hersteld door geschoold en gekwalificeerd personeel.

Restricted Area

Warning! This unit is intended for installation in restricted access areas. A restricted access area can be accessed only through the use of a special tool, lock and key, or other means of security. (This warning does not apply to workstations).

アクセス制限区域

このユニットは、アクセス制限区域に設置されることを想定しています。

アクセス制限区域は、特別なツール、鍵と錠前、その他のセキュリティの手段を用いてのみ出入りが可能です。

警告

此部件应安装在限制进出的场所，限制进出的场所指只能通过使用特殊工具、锁和钥匙或其它安全手段进出的场所。

警告

此裝置僅限安裝於進出管制區域，進出管制區域係指僅能以特殊工具、鎖頭及鑰匙或其他安全方式才能進入的區域。

Warnung

Diese Einheit ist zur Installation in Bereichen mit beschränktem Zutritt vorgesehen. Der Zutritt zu derartigen Bereichen ist nur mit einem Spezialwerkzeug, Schloss und Schlüssel oder einer sonstigen Sicherheitsvorkehrung möglich.

¡Advertencia!

Esta unidad ha sido diseñada para instalación en áreas de acceso restringido. Sólo puede obtenerse acceso a una de estas áreas mediante la utilización de una herramienta especial, cerradura con llave u otro medio de seguridad.

Attention

Cet appareil doit être installée dans des zones d'accès réservés. L'accès à une zone d'accès réservé n'est possible qu'en utilisant un outil spécial, un mécanisme de verrouillage et une clé, ou tout autre moyen de sécurité.

אזור עם גישה מוגבלת
ゾーンに制限されたアクセスがあります

יש להתקן את היחידה באזוריים שיש בהם הגבלת גישה. הגישה ניתנת בעזרת
'כלי אבטחה בלבד (מפתח, מנעול ועוד).

تحصيص هذه انحذة ترك بها ف مناطق محظورة تم .
يمكن انتصيل إن منطق ممحظورة فقط من خلال استخدام أداة خاصة
أو أوس هُت أخرى نلاًاما قم و مفتاح

경고!

이 장치는 접근이 제한된 구역에 설치하도록 되어있습니다. 특수도구, 잠금 장치 및 키,
또는 기타 보안 수단을 통해서만 접근 제한 구역에 들어갈 수 있습니다.

Waarschuwing

Dit apparaat is bedoeld voor installatie in gebieden met een beperkte toegang. Toegang tot dergelijke gebieden kunnen alleen verkregen worden door gebruik te maken van speciaal gereedschap, slot en sleutel of andere veiligheidsmaatregelen.

Battery Handling

Warning! There is the danger of explosion if the battery is replaced incorrectly. Replace the battery only with the same or equivalent type recommended by the manufacturer. Dispose of used batteries according to the manufacturer's instructions

電池の取り扱い

電池交換が正しく行われなかった場合、破裂の危険性があります。交換する電池はメーカーが推奨する型、または同等のものを使用下さい。使用済電池は製造元の指示に従って処分して下さい。

警告

电池更换不当会有爆炸危险。请只使用同类电池或制造商推荐的功能相当的电池更换原有电池。请按制造商的说明处理废旧电池。

警告

電池更換不當會有爆炸危險。請使用製造商建議之相同或功能相當的電池更換原有電池。請按照製造商的說明指示處理廢棄舊電池。

Warnung

Bei Einsetzen einer falschen Batterie besteht Explosionsgefahr. Ersetzen Sie die Batterie nur durch den gleichen oder vom Hersteller empfohlenen Batterietyp. Entsorgen Sie die benutzten Batterien nach den Anweisungen des Herstellers.

Attention

Danger d'explosion si la pile n'est pas remplacée correctement. Ne la remplacer que par une pile de type semblable ou équivalent, recommandée par le fabricant. Jeter les piles usagées conformément aux instructions du fabricant.

¡Advertencia!

Existe peligro de explosión si la batería se reemplaza de manera incorrecta. Reemplazar la batería exclusivamente con el mismo tipo o el equivalente recomendado por el fabricante. Desechar las baterías gastadas según las instrucciones del fabricante.

ازهرا!

קיימת סכנת פיצוץ של הסוללה במידה והוחלפה בדרך לא תקינה. יש להחליף את הסוללה בסוג התואם מחברת יצירות מומלצת.
סילוק הסוללות המשמשות יש לבצע לפי הוראות היצרן.

هناك خطر من انفجار في حالة اسحذال البطارية بطريقة غير صحيحة فعليل
اسحذال البطارية

فقط بنفس النوع أو ما يعادلها مما أوصى به الشرمة المصنعة
جخلص من البطاريات الممسحعملة وفقا لتعليمات الشرمة الصانعة

경고!

배터리가 올바르게 교체되지 않으면 폭발의 위험이 있습니다. 기존 배터리와 동일하거나 제조사에서 권장하는 동등한 종류의 배터리로만 교체해야 합니다. 제조사의 안내에 따라 사용된 배터리를 처리하여 주십시오.

Waarschuwing

Er is ontploffingsgevaar indien de batterij verkeerd vervangen wordt. Vervang de batterij slechts met hetzelfde of een equivalent type die door de fabrikant aanbevolen wordt. Gebruikte batterijen dienen overeenkomstig fabrieksvoorschriften afgevoerd te worden.

Redundant Power Supplies

Warning! This unit might have more than one power supply connection. All connections must be removed to de-energize the unit.

冗長電源装置

このユニットは複数の電源装置が接続されている場合があります。

ユニットの電源を切るためには、すべての接続を取り外さなければなりません。

警告

此部件连接的电源可能不止一个，必须将所有电源断开才能停止给该部件供电。

警告

此裝置連接的電源可能不只一個，必須切斷所有電源才能停止對該裝置的供電。

Warnung

Dieses Gerät kann mehr als eine Stromzufuhr haben. Um sicherzustellen, dass der Einheit kein Strom zugeführt wird, müssen alle Verbindungen entfernt werden.

¡Advertencia!

Puede que esta unidad tenga más de una conexión para fuentes de alimentación. Para cortar por completo el suministro de energía, deben desconectarse todas las conexiones.

Attention

Cette unité peut avoir plus d'une connexion d'alimentation. Pour supprimer toute tension et tout courant électrique de l'unité, toutes les connexions d'alimentation doivent être débranchées.

אם קיים יותר מספק אחד
אוורה!

ליחדה יש יותר מחיבור אחד של ספק. יש להסיר את כל החיבורים על מנת לרוקן
את היחידה.

قد يكون لهذا الجهاز عدة اتصالات بوحدات امداد الطاقة .
يجب إزالة كافة الاتصالات لعزل الوحدة عن الكهرباء

경고!

이 장치에는 한 개 이상의 전원 공급 단자가 연결되어 있을 수 있습니다. 이 장치에 전원을 차단하기 위해서는 모든 연결 단자를 제거해야만 합니다.

Waarschuwing

Deze eenheid kan meer dan één stroomtoevoeraansluiting bevatten. Alle aansluitingen dienen verwijderd te worden om het apparaat stroomloos te maken.

Backplane Voltage

Warning! Hazardous voltage or energy is present on the backplane when the system is operating. Use caution when servicing.

バックプレーンの電圧

システムの稼働中は危険な電圧または電力が、バックプレーン上にかかりています。

修理する際には注意ください。

警告

当系统正在进行时，背板上有很危险的电压或能量，进行维修时务必小心。

警告

當系統正在進行時，背板上有危險的電壓或能量，進行維修時務必小心。

Warnung

Wenn das System in Betrieb ist, treten auf der Rückwandplatine gefährliche Spannungen oder Energien auf. Vorsicht bei der Wartung.

¡Advertencia!

Cuando el sistema está en funcionamiento, el voltaje del plano trasero es peligroso. Tenga cuidado cuando lo revise.

Attention

Lorsque le système est en fonctionnement, des tensions électriques circulent sur le fond de panier. Prendre des précautions lors de la maintenance.

מתה בפנל האחורי

אוורה!

קיימת סכנת מתה בפנל האחורי בזמן תפעול המערכת. יש להיזהר במהלך העבודה.

هناك خطر مه التيار الكهربائي أو الطاقة المبذدة على اللحمة
عندما يكن النظام يعمل كه حذرا عند خدمة هذا الجهاز

경고!

시스템이 동작 중일 때 후면판 (Backplane)에는 위험한 전압이나 에너지가 발생 합니다.
서비스 작업 시 주의하십시오.

Waarschuwing

Een gevaarlijke spanning of energie is aanwezig op de backplane wanneer het systeem in gebruik is. Voorzichtigheid is geboden tijdens het onderhoud.

Comply with Local and National Electrical Codes

Warning! Installation of the equipment must comply with local and national electrical codes.

地方および国の電気規格に準拠

機器の取り付けはその地方および国の電気規格に準拠する必要があります。

警告

设备安装必须符合本地与本国电气法规。

警告

設備安裝必須符合本地與本國電氣法規。

Warnung

Die Installation der Geräte muss den Sicherheitsstandards entsprechen.

¡Advertencia!

La instalacion del equipo debe cumplir con las normas de electricidad locales y nacionales.

Attention

L'équipement doit être installé conformément aux normes électriques nationales et locales.

תיאום חוקי החשמל הארץ
אוורה!

התקנת הציוד חייבת להיות توואמת לחוקי החשמל המקומיים והארציים.

تركيب المعدات الكهربائية يجب أن يمتثل للقوانين المحلية والطبية المتعلقة
بالكهرباء.

경고!

현 지역 및 국가의 전기 규정에 따라 장비를 설치해야 합니다.

Waarschuwing

Bij installatie van de apparatuur moet worden voldaan aan de lokale en nationale elektriciteitsvoorschriften.

Product Disposal

Warning! Ultimate disposal of this product should be handled according to all national laws and regulations.

製品の廃棄

この製品を廃棄処分する場合、国の関係する全ての法律・条例に従い処理する必要があります。

警告

本产品的废弃处理应根据所有国家的法律和规章进行。

警告

本產品的廢棄處理應根據所有國家的法律和規章進行。

Warnung

Die Entsorgung dieses Produkts sollte gemäß allen Bestimmungen und Gesetzen des Landes erfolgen.

¡Advertencia!

Al deshacerse por completo de este producto debe seguir todas las leyes y reglamentos nacionales.

Attention

La mise au rebut ou le recyclage de ce produit sont généralement soumis à des lois et/ou directives de respect de l'environnement. Renseignez-vous auprès de l'organisme compétent.

סילוק המוצר

ازהרה!

סילוק סופי של מוצר זה חייב להיות בהתאם להנחיות וחוקי המדינה.

التخلص النهائي من هذا المنتج ينبغي التعامل معه وفقاً لجميع القوانين واللائحة الوطنية عند

경고!

이 제품은 해당 국가의 관련 법규 및 규정에 따라 폐기되어야 합니다.

Waarschuwing

De uiteindelijke verwijdering van dit product dient te geschieden in overeenstemming met alle nationale wetten en reglementen.

Hot Swap Fan Warning

Warning! Hazardous moving parts. Keep away from moving fan blades. The fans might still be turning when you remove the fan assembly from the chassis. Keep fingers, screwdrivers, and other objects away from the openings in the fan assembly's housing.

ファン・ホットスワップの警告

警告!回転部品に注意。運転中は回転部(羽根)に触れないでください。シャーシから冷却ファン装置を取り外した際、ファンがまだ回転している可能性があります。ファンの開口部に、指、ドライバー、およびその他のものを近づけないで下さい。

警告!

警告！危险的可移动性零件。请务必与转动的风扇叶片保持距离。当您从机架移除风扇装置，风扇可能仍在转动。小心不要将手指、螺丝起子和其他物品太靠近风扇

警告

危險的可移動性零件。請務必與轉動的風扇葉片保持距離。當您從機架移除風扇裝置，風扇可能仍在轉動。小心不要將手指、螺絲起子和其他物品太靠近風扇。

Warnung

Gefährlich Bewegende Teile. Von den bewegenden Lüfterblätter fern halten. Die Lüfter drehen sich u. U. noch, wenn die Lüfterbaugruppe aus dem Chassis genommen wird. Halten Sie Finger, Schraubendreher und andere Gegenstände von den Öffnungen des Lüftergehäuses entfernt.

¡Advertencia!

Riesgo de piezas móviles. Mantener alejado de las aspas del ventilador. Los ventiladores podran dar vuelta cuando usted quite el montaje del ventilador del chasis. Mantenga los dedos, los destornilladores y todos los objetos lejos de las aberturas del ventilador

Attention

Pieces mobiles dangereuses. Se tenir a l'écart des lames du ventilateur Il est possible que les ventilateurs soient toujours en rotation lorsque vous retirerez le bloc ventilateur du châssis. Prenez garde à ce que doigts, tournevis et autres objets soient éloignés du logement du bloc ventilateur.

ازهارה!

חלקים נייחים מסוכנים. התרחק מלהבי המא Orr בפעולת הכח מסירם את חלקו המא Orr מהמארז, יתכן והמא Orrים עדים עובדים. יש להרחק למרחק בטוח את הא צבעות וכל עבודה שונות מהפתחים בתוך המא Orr

تحذير! أجزاء متحركة خطيرة. ابتعد عن شفرات المروحة المتحركة. من الممكن أن المروحة لا تزال تدور عند إزالة كتلة المروحة من الهيكل يجب إبقاء الأصابع ومفكات البراغي وغيرها من الأشياء بعيداً عن الفتحات في كتلة المروحة.

경고!

움직이는 위험한 부품. 회전하는 송풍 날개에 접근하지 마세요. 새시로부터 팬 조립품을 제거할 때 팬은 여전히 회전하고 있을 수 있습니다. 팬 조립품 외관의 열려있는 부분들로부터 손가락 및 스크류드라이버, 다른 물체들이 가까이 하지 않도록 배치해 주십시오.

Waarschuwing

Gevaarlijk bewegende onderdelen. Houd voldoende afstand tot de bewegende ventilatorbladen. Het is mogelijk dat de ventilator nog draait tijdens het verwijderen van het ventilatorsamenstel uit het chassis. Houd uw vingers, schroevendraaiers en eventuele andere voorwerpen uit de buurt van de openingen in de ventilatorbehuizing.

Power Cable and AC Adapter

Warning! When installing the product, use the provided or designated connection cables, power cables and AC adaptors. Using any other cables and adaptors could cause a malfunction or a fire. Electrical Appliance and Material Safety Law prohibits the use of UL or CSA -certified cables (that have UL/CSA shown on the cord) for any other electrical devices than products designated by Supermicro only.

電源コードとACアダプター

製品を設置する場合、提供または指定および購入された接続ケーブル、電源コードとACアダプターを該当する地域の条例や安全基準に適合するコードサイズやプラグと共に使用下さい。他のケーブルやアダプタを使用すると故障や火災の原因になることがあります。

電気用品安全法は、ULまたはCSA認定のケーブル(UL/CSAマークがコードに表記)を Supermicro が指定する製品以外に使用することを禁止しています。

警告

安装此产品时,请使用本身提供的或指定的或采购的连接线,电源线和电源适配器, 包含遵照当地法规和安全要求的合规的电源线尺寸和插头. 使用其它线材或适配器可能会引起故障或火灾。

除了Supermicro所指定的产品,电气用品和材料安全法律规定禁止

使用未经UL或CSA认证的线材。(线材上会显示UL/CSA符号)。

警告

安裝此產品時,請使用本身提供的或指定的或採購的連接線,電源線和電源適配器, 包含遵照當地法規和安全要求的合規的電源線尺寸和插頭. 使用其它線材或適配器可能會引起故障或火災。

除了Supermicro所指定的產品,電氣用品和材料安全法律規定禁止

使用未經UL或CSA認證的線材。(線材上會顯示UL/CSA符號)。

Warnung

Nutzen Sie beim Installieren des Produkts ausschließlich die von uns zur Verfügung gestellten Verbindungskabeln, Stromkabeln und/oder Adapter, die Ihre örtlichen Sicherheitsstandards einhalten. Der Gebrauch von anderen Kabeln und Adaptern können Fehlfunktionen oder Feuer verursachen. Die Richtlinien untersagen das Nutzen von UL oder CAS zertifizierten Kabeln (mit UL/CSA gekennzeichnet), an Geräten oder Produkten die nicht mit Supermicro gekennzeichnet sind.

¡Advertencia!

Cuando instale el producto, utilice la conexión provista o designada o procure cables, Cables de alimentación y adaptadores de CA que cumplan con los códigos locales y los requisitos de seguridad, incluyendo el tamaño adecuado del cable y el enchufe. El uso de otros cables y adaptadores podría causar un mal funcionamiento o un incendio. La Ley de Seguridad de Aparatos Eléctricos y de Materiales prohíbe El uso de cables certificados por UL o CSA (que tienen el certificado UL / CSA en el código) para cualquier otros dispositivos eléctricos que los productos designados únicamente por Supermicro.

Attention

Lors de l'installation du produit, utilisez les cables de connection fournis ou désigné ou achetez des cables, cables de puissance et adaptateurs respectant les normes locales et les conditions de sécurité y compris les tailles de cables et les prises électriques appropriées. L'utilisation d'autres cables et adaptateurs peut provoquer un dysfonctionnement ou un incendie. Appareils électroménagers et la Loi sur la Sécurité Matériel interdit l'utilisation de câbles certifiés- UL ou CSA (qui ont UL ou CSA indiqué sur le code) pour tous les autres appareils électriques sauf les produits désignés par Supermicro seulement.

AC ימאתו סילבך סילבך
הרזה!

רוצל ומאותה וא שכרנו רשא AC סימאתמו מיקפו, סילבכ שמתshall שי, רצומה תא מיניקתם רשאכ לבב שומיש. עקתוו לבכה לש הנוכנ הדימ לLOC, תויומקמה תוחיתבה תושירידל ומאותה רשאו, הנקתהה לשחה ירישכמב שומישה י��וחל מסתhab. ילםשה רצק וא הלקטל סורגל לולע, רחא גוסם מסתאם וא לבכ לש דוק מהילע עיפומ רשאכ) A-B ו-AUL-ב סיכמסומה סילבכ שמתshall רוסיא מיק, תוחיתבה י��וחה. דבלב Supermicro י"ע מאותה רשא רצומב קר אלא, רחא ילםשה רצום לכ חובע AUL/CSA.

تالب اكلا ءارشب مق وأ قدحـملـا وـأـ قـرفـوتـملـاـ تـالـيـصـوتـلـاـ مـادـخـتـسـابـ مقـ ،ـجـتنـمـلـاـ بـيـكـرـتـ دـنـعـ
كلـذـ يـفـ اـمـبـ ئـيـلـحـمـلـاـ قـمـالـسـلـاـ تـابـلـطـتـمـوـ نـيـنـاـوـقـبـ مـازـتـلـالـاـ عـمـ دـدـرـتـمـلـاـ رـايـتـلـاـ تـالـوـحـمـوـ ئـيـئـاـبـرـهـكـلـاـ
قـيـرـحـ وـأـ لـطـعـ يـفـ بـبـسـتـيـ دـقـ ئـرـخـأـ تـالـوـحـمـوـ تـالـبـاـكـ يـأـ مـادـخـتـسـاـ.ـ مـيـلـسـلـاـ سـبـاـقـلـاوـ لـصـوـمـلـاـ مـجـحـ
وـأـ ULـ لـبـقـ نـمـ قـدـمـتـعـمـلـاـ تـالـبـاـكـلـاـ مـادـخـتـسـاـ تـادـعـمـلـاوـ ئـيـئـاـبـرـهـكـلـاـ قـزـهـجـأـلـلـ قـمـالـسـلـاـ نـونـاـقـ رـظـحـيـ
Supermicroـ لـبـقـ نـمـ قدـحـمـلـاوـ ئـيـنـعـمـلـاـ تـاجـتـنـمـلـاـ رـيـغـ ئـرـخـأـ تـادـعـمـ يـأـ عـمـ (UL/CSA)ـ قـمـالـعـ لـمـحـتـ يـتـلـاوـ

전원 케이블 및 AC 어댑터

경고! 제품을 설치할 때 현지 코드 및 적절한 굽기의 코드와 플러그를 포함한 안전 요구 사항을 준수하여 제공되거나 지정된 연결 혹은 구매 케이블, 전원 케이블 및 AC 어댑터를 사용하십시오.

다른 케이블이나 어댑터를 사용하면 오작동이나 화재가 발생할 수 있습니다. 전기 용품 안전법은 UL 또는 CSA 인증 케이블 (코드에 UL / CSA가 표시된 케이블)을 Supermicro 가 지정한 제품 이외의 전기 장치에 사용하는 것을 금지합니다.

Stroomkabel en AC-Adapter

Waarschuwing! Bij het aansluiten van het Product uitsluitend gebruik maken van de geleverde Kabels of een andere geschikte aan te schaffen Aansluitmethode, deze moet altijd voldoen aan de lokale voorschriften en veiligheidsnormen, inclusief de juiste kabeldikte en stekker. Het gebruik van niet geschikte Kabels en/of Adapters kan een storing of brand veroorzaken. Wetgeving voor Elektrische apparatuur en Materiaalveiligheid verbied het gebruik van UL of CSA -gecertificeerde Kabels (met UL/CSA in de code) voor elke andere toepassing dan de door Supermicro hiervoor beoogde Producten.

Appendix C

System Specifications

Processors (per node)

Dual Intel Xeon 82xx/62xx/52xx/42xx/32xx or 81xx/61xx/51xx/41xx/31xx processors in a P (LGA 3647) type socket

Note: Please refer to the motherboard specifications pages on our website for updates to supported processors.

Chipset

Intel C621 chipset

BIOS

AMI 32Mb SPI Flash ROM

Memory (per node)

Up to 3 TB 3DS Load Reduced DIMM (LRDIMM), or Registered DIMM (RDIMM), up to 2666 MHz ECC DDR4 SDRAM or Non-Volatile DIMM (NVDIMM) modules in 24 slots; DIMM size up to 128 GB at 1.2 V.

Drive Bays

Twenty four DIMM slots supporting up to 6 TB of memory with DDR4 2933 MT/s ECC Load Reduced DIMMs (LRDIMM) and Registered DIMMs (RDIMM); also supports Non-Volatile DIMM (NV-DIMM) and Intel Optane DC Persistent Memory (DCPMM) (Optional) M.2: Up to two NVMe or SATA (2240/2260/2280) via optional AOC-SMG3-2H8M2-B per node

PCI Expansion Slots (per node)

Two low-profile, PCIe x16 slots

Motherboard (per node)

X11DPT-BH; Length 18.9", width 7.62" (194 mm x 479 mm)

Input/Output (per node)

Networking: One SIOM slot (SIOM cards support Ethernet/IB/OPA with speeds ranging from 1G to 100G)

One dedicated LAN port for IPM

USB 3.0: Two ports on the rear I/O panel (USB 0/1)

Video: One VGA port

DOM: One SuperDOM port

Chassis

SC217BHQ+-R2K60FP; 2U Rackmount, (WxHxD) 17.6 x 3.5 x 28.8 in. (447 x 89 x 730 mm)

System Cooling

Sixteen heavy duty 40x56mm PWM fans (4 per node); two CPU heatsinks, two air shrouds to direct air flow (per node)

Weight

Net Weight: 54.5 lbs (24.7 kg)

Gross Weight: 85 lbs (38.6 kg)

Power Supply

Model: PWS-2K60A-1R, 2600 W redundant 80Plus Titanium level modules

Input:

208-240Vac/15-12.5A

220-240Vdc/13.5-12.5A (For CQC only)

Output, +12V

Max: 216.6A / Min: 0A

12Vsb

Max: 4.5A / Min: 0A

Operating Environment

Operating Temperature: 10° to 35° C (50° to 95° F)
Non-operating Temperature: -40° to 60° C (-40° to 140° F)
Operating Relative Humidity: 8% to 90% (non-condensing)
Non-operating Relative Humidity: 5% to 95% (non-condensing)

Regulatory Compliance

FCC, ICES, CE, UKCA, VCCI, RCM, NRTL, CB

Applied Directives, Standards

EMC/EMI: 2014/30/EU (EMC Directive)
Electromagnetic Compatibility Regulations 2016
FCC Part 15
ICES-003
VCCI-CISPR 32
AS/NZS CISPR 32
BS/EN55032
BS/EN55035
CISPR 32
CISPR 24/CISPR 35
BS/EN 61000-3-2
BS/EN 61000-3-3
BS/EN 61000-4-2
BS/EN 61000-4-3
BS/EN 61000-4-4
BS/EN 61000-4-5
BS/EN 61000-4-6
BS/EN 61000-4-8
BS/EN 61000-4-11

Environment:

2011/65/EU (RoHS Directive)
EC 1907/2006 (REACH)
2012/19/EU (WEEE Directive)
California Proposition 65

Product Safety: 2014/35/EU (LVD Directive)
UL/CSA 62368-1 (USA and Canada)
Electrical Equipment (Safety) Regulations 2016
IEC/BS/EN 62368-1

Perchlorate Warning

California Best Management Practices Regulations for Perchlorate Materials: This Perchlorate warning applies only to products containing CR (Manganese Dioxide) Lithium coin cells. "Perchlorate Material-special handling may apply. See www.dtsc.ca.gov/hazardouswaste/perchlorate"

限用物質含有情況標示聲明書

Declaration of the Presence Condition of the Restricted Substances Marking

設備名稱: 伺服器/Server Equipment name						
Type designation (Type) 型號 (型式) : F10404 (系列型號: 217BZ-26, 217B-26, SYS-2029BZ-HNR)						
單元 Unit 機殼 (Chassis) 機殼風扇 (Chassis Fan) 線材 (Cable) 主機板 (Motherboard) 電源供應器 (Power Supply) 電源背板 (PDB) 硬碟 (SSD) 附加卡 (Add-on Card)	Restricted substances and its chemical symbols 限用物質及其化學符號					
	鉛 Lead (Pb)	汞 Mercury (Hg)	鎘 Cadmium (Cd)	六價鉻 Hexavalent chromium (Cr ⁺⁶)	多溴聯苯 Polybrominated biphenyls (PBB)	多溴二苯醚 Polybrominated diphenyl ethers (PBDE)
	○	○	○	○	○	○
	-	○	○	○	○	○
	○	○	○	○	○	○
	-	○	○	○	○	○
	-	○	○	○	○	○
	-	○	○	○	○	○
	-	○	○	○	○	○
備考1. ``超出 0.1 wt %'' 及 ``超出 0.01 wt %'' 係指限用物質之百分比含量超出百分比含量基準值。 Note 1: ``Exceeding 0.1 wt %'' and ``exceeding 0.01 wt %'' indicate that the percentage content of the restricted substance exceeds the reference percentage value of presence condition.						
Note 2 : ``○'' indicates that the percentage content of the restricted substance does not exceed the percentage of reference value of presence. 備考2. ``○'' 係指該項限用物質之百分比含量未超出百分比含量基準值。						
Note 3 : The ``-'' indicates that the restricted substance corresponds to the exemption.						
備考3. `` - '' 係指該項限用物質為排除項目。						

警告使用者：

此為用類客印技術設備，於正常環境中使用時，可能會造成射頻擾動，在此種情況下，

輸入額定：

200-240 Vac, 60-50 Hz, 15-12.5 A (2x)

*使用者不能任意拆除或替換內部配備

Appendix D

UEFI BIOS Recovery

Warning: Do not upgrade the BIOS unless your system has a BIOS-related issue. Flashing the wrong BIOS can cause irreparable damage to the system. In no event shall Supermicro be liable for direct, indirect, special, incidental, or consequential damages arising from a BIOS update. If you do update the BIOS, do not shut down or reset the system while the BIOS is updating to avoid possible boot failure.

D.1 Overview

The Unified Extensible Firmware Interface (UEFI) provides a software-based interface between the operating system and the platform firmware in the pre-boot environment. The UEFI specification supports an architecture-independent mechanism that will allow the UEFI OS loader stored in an add-on card to boot the system. The UEFI offers clean, hands-off management to a computer during system boot.

D.2 Recovering the UEFI BIOS Image

A UEFI BIOS flash chip consists of a recovery BIOS block and a main BIOS block (a main BIOS image). The recovery block contains critical BIOS codes, including memory detection and recovery codes for the user to flash a healthy BIOS image if the original main BIOS image is corrupted. When the system power is turned on, the recovery block codes execute first. Once this process is complete, the main BIOS code will continue with system initialization and the remaining POST (Power-On Self-Test) routines.

Note 1: Follow the BIOS recovery instructions below for BIOS recovery when the main BIOS block crashes.

Note 2: When the BIOS recovery block crashes, you will need to follow the procedures to make a Returned Merchandise Authorization (RMA) request. (For a RMA request, please see section 3.5 for more information). Also, you may use the Supermicro Update Manager (SUM) Out-of-Band (OOB) (https://www.supermicro.com.tw/products/info/SMS_SUM.cfm) to reflash the BIOS.

D.3 Recovering the Main BIOS Block with a USB Device

This feature allows the user to recover the main BIOS image using a USB-attached device without additional utilities used. A USB flash device such as a USB Flash Drive, or a USB CD/DVD ROM/RW device can be used for this purpose. However, a USB Hard Disk drive cannot be used for BIOS recovery at this time.

The file system supported by the recovery block is FAT (including FAT12, FAT16, and FAT32) which is installed on a bootable or non-bootable USB-attached device. However, the BIOS might need several minutes to locate the SUPER.ROM file if the media size becomes too large due to the huge volumes of folders and files stored in the device.

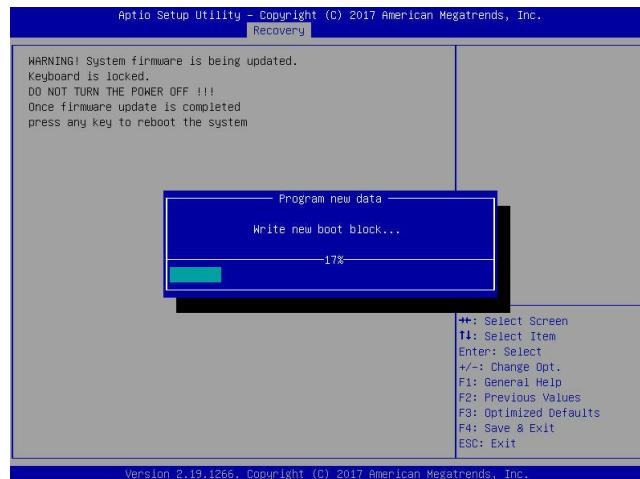
To perform UEFI BIOS recovery using a USB-attached device, follow the instructions below.

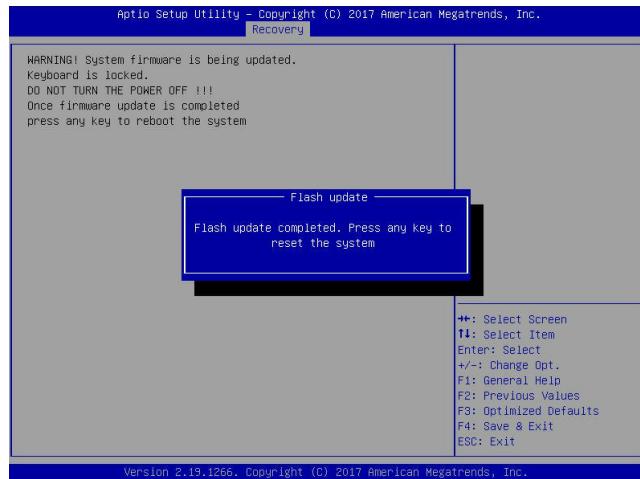
1. Using a different machine, copy the "Super.ROM" binary image file into the Root "\\" directory of a USB device or a writable CD/DVD.

Note 1: If you cannot locate the "Super.ROM" file in your drive disk, visit our website at www.supermicro.com to download the BIOS package. Extract the BIOS binary image into a USB flash device and rename it "Super.ROM" for the BIOS recovery use.

Note 2: Before recovering the main BIOS image, confirm that the "Super.ROM" binary image file you download is the same version or a close version meant for your motherboard.

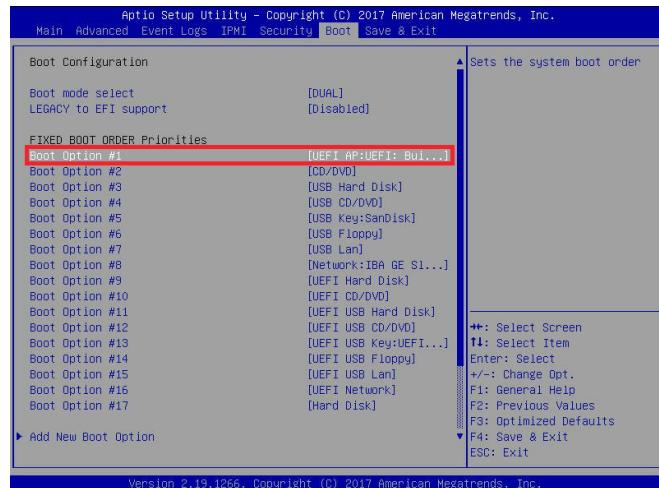
2. Insert the USB device that contains the new BIOS image ("Super.ROM") into your USB drive and reset the system when the following screen appears.


3. After locating the healthy BIOS binary image, the system will enter the BIOS Recovery menu as shown below.

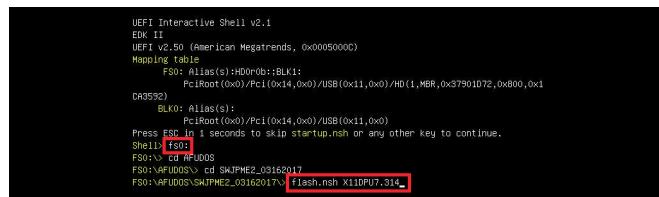

Note: At this point, you may decide if you want to start the BIOS recovery. If you decide to proceed with BIOS recovery, follow the procedures below.

4. When the screen as shown above displays, use the arrow keys to select the item "Proceed with flash update" and press the <Enter> key. You will see the BIOS recovery progress as shown in the screen below.

Note: Do not interrupt the BIOS flashing process until it has completed.



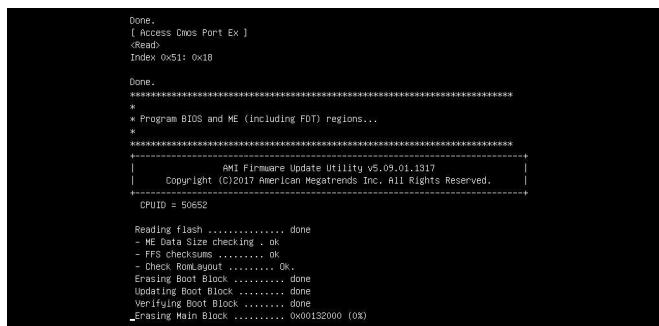
5. After the BIOS recovery process is complete, press any key to reboot the system.



6. Using a different system, extract the BIOS package into a USB flash drive.

7. Press **** continuously during system boot to enter the BIOS Setup utility. From the top of the tool bar, select Boot to enter the submenu. From the submenu list, select Boot Option #1 as shown below. Then, set Boot Option #1 to [UEFI AP:UEFI: Built-in EFI Shell]. Press **<F4>** to save the settings and exit the BIOS Setup utility.

- When the UEFI Shell prompt appears, type `fs#` to change the device directory path. Go to the directory that contains the BIOS package you extracted earlier from Step 6. Enter `flash.nsh BIOSname.###` at the prompt to start the BIOS update process.



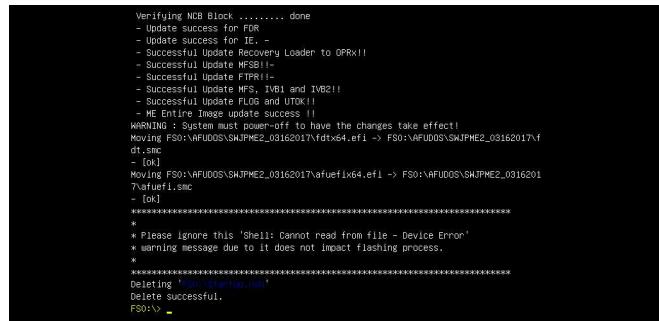

```

UEFI Interactive Shell v2.1
EDK II
UEFI v2.50 (American Megatrends, 0x0005000C)
Mapping table
  FS0: Alias(s):+00R0b::BLK1:
    PciRoot(0x0)/Pci(0x14,0x0)/USB(0x11,0x0)/HD(1,MBR,0x37901072,0x800,0x1
049592)
  BLK0: Alias(s):
    PciRoot(0x0)/Pci(0x14,0x0)/USB(0x11,0x0)
Press ESC in 1 seconds to skip startup.nsh or any other key to continue.
Shell> fs0:
FS0:\> cd \FUDOS
FS0:\FUDOS> cd SJJPME2_03162017
FS0:\FUDOS\SJJPME2_03162017> flash.nsh X10PDU7.314

```

Note: *Do not interrupt this process* until the BIOS flashing is complete.


```


Done.
[ Access Cmos Port Ex ]
<read>
Index 0x51: 0x18

Done.
*****
* Program BIOS and ME (including FOT) regions...
*
*****
| AMI Firmware Update Utility v5.09.01.1317
| copyright (C)2017 American Megatrends Inc. All Rights Reserved.
|
CRVID = 50652

Reading Flash ..... done
- ME Data Size Checking .. ok
- FFS Checksums ..... ok
- Check RomLayout ..... Ok.
Erasing Main Block ..... done
Verifying Main Block ..... done
Verifying Boot Block ..... done
Erasing Main Block ..... (0%) (0%)

```

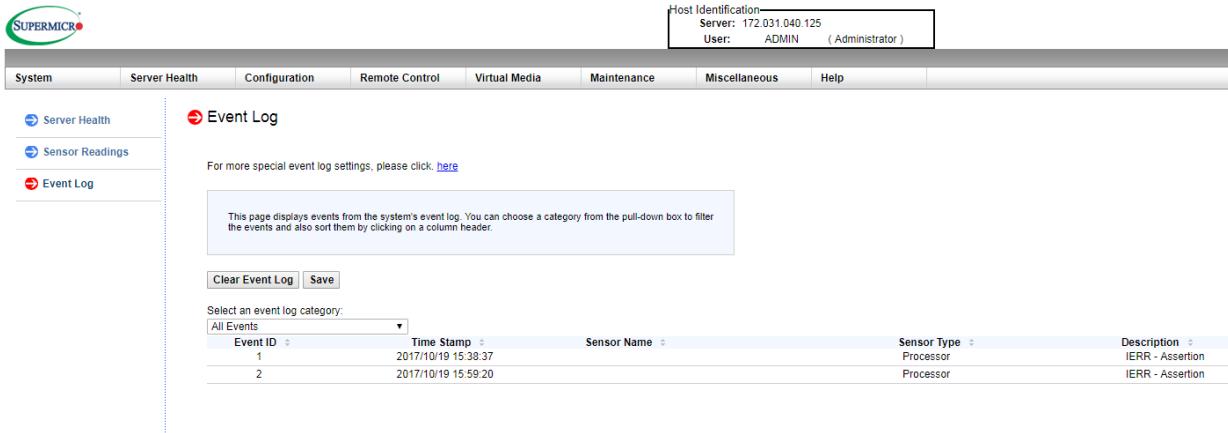
- The screen above indicates that the BIOS update process is complete. When you see the screen above, unplug the AC power cable from the power supply, clear CMOS, and plug the AC power cable in the power supply again to power on the system.


```

Verifying NCB Block ..... done
- Update success for FDR
- Update success for IE, -
- Successful update Recovery Loader to OPRx1!
- Successful update MFSB1!
- Successful update FTRP1!
- Successful update MFS, IVB1 and IVB2!
- Successful update FLOG and UTOK!
- ME Data Size Checking .. ok
WARNING : System must power-off to have the changes take effect!
Moving FS0:\FUDOS\SJJPME2_03162017\fdtx64.efi -> FS0:\FUDOS\SJJPME2_03162017\f
dt.smc
- [ok]
Moving FS0:\FUDOS\SJJPME2_03162017\afuefi64.efi -> FS0:\FUDOS\SJJPME2_03162017\afuefi.smc
- [ok]
*****
* Please ignore this 'Shell: Cannot read from file - Device Error'
* warning message due to it does not impact flashing process.
*
Delete "flash.nsh"
Delete successful.
FS0:\>

```

- Press **** continuously to enter the BIOS Setup utility.
- Press **<F3>** to load the default settings.
- After loading the default settings, press **<F4>** to save the settings and exit the BIOS Setup utility.


Appendix E

IPMI Crash Dump

In the event of a processor internal error (IERR) that crashes your system, you may want to provide information to support staff. You can download a crash dump of status information using IPMI. The IPMI manual is available at <https://www.supermicro.com/solutions/IPMI.cfm>.

Check IPMI Error Log

1. Access the IPMI web interface.
2. Click the **Server Health** tab, then **Event Log** to verify an IERR error.

The screenshot shows the IPMI web interface with the following details:

- Host Identification:** Server: 172.031.040.125, User: ADMIN (Administrator)
- Menu Bar:** System, Server Health, Configuration, Remote Control, Virtual Media, Maintenance, Miscellaneous, Help
- Left Sidebar:** Server Health, Sensor Readings, Event Log (selected)
- Current Page:** Event Log
- Message:** For more special event log settings, please click: [here](#)
- Table Headers:** Event ID, Time Stamp, Sensor Name, Sensor Type, Description
- Table Data:**

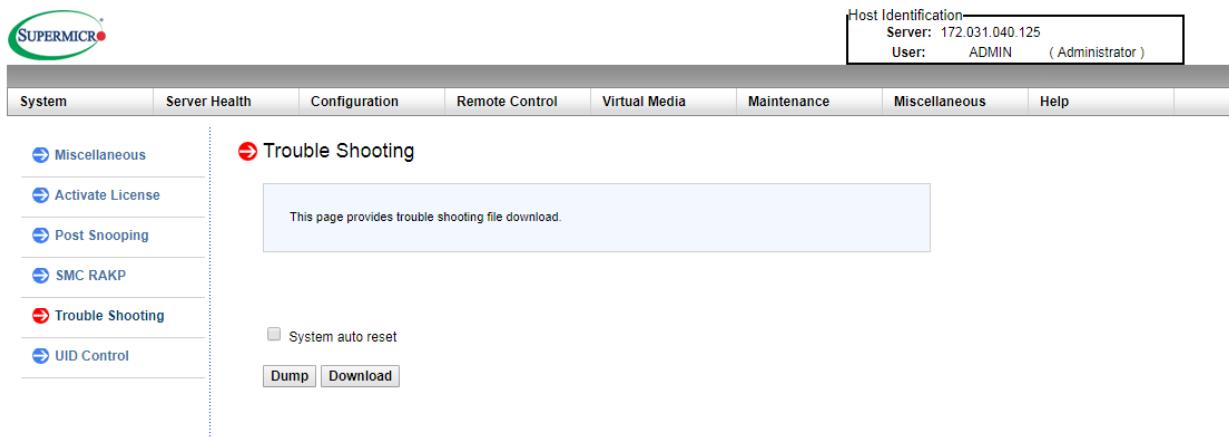

Event ID	Time Stamp	Sensor Name	Sensor Type	Description
1	2017/10/19 15:38:37		Processor	IERR - Assertion
2	2017/10/19 15:59:20		Processor	IERR - Assertion

Figure E-1. IPMI Event Log

In the event of an IERR, the BMC executes a crash dump. You must download the crash dump and save it.

Downloading the Crash Dump File

1. In the IPMI interface, click the **Miscellaneous** tab, then the **Trouble Shooting** option.
2. Click the **Dump** button and wait five minutes for the file to be created. (No confirmation message will appear.)
3. Click the **Download** button and a Save As dialog appears.
4. Save the zipped dump file, noting the name and location.

Figure E-2. IPMI Crash Dump Download

Note: The **System auto reset** check box dictates behavior after an IERR. If checked, the system will restart automatically, and the dump file will be erased. If not, the system remains in a failed state. Do not check this box until after the dump file has been sent to Support.

Appendix F

CPU-Based RAID for NVMe

Intel® Virtual RAID on CPU (Intel VROC) is an enterprise RAID solution for NVMe SSDs directly attached to Intel Xeon Scalable processors. Intel Volume Management Device (VMD) is an integrated controller inside the CPU PCI-E root complex.

- A single processor supports up to 12 NVMe SSDs and up to 6 RAID arrays.
- A dual processor system supports up to 24 NVMe SSDs and 12 RAID arrays.

Strip sizes are 4K, 8K, 16K, 32K, 64K, 128K.

Requirements and Restrictions

- **Intel VROC is only available when the system is configured for UEFI boot mode.**
- To enable the **mdadm** command and support for RSTe, install the patch from
 - Linux: <https://downloadcenter.intel.com/download/28158/Intel-Virtual-RAID-on-CPU-Intel-VROC-and-Intel-Rapid-Storage-Technology-enterprise-Intel-RSTe-Driver-for-Linux>
 - Windows: <https://downloadcenter.intel.com/download/28108/Intel-Virtual-RAID-on-CPU-Intel-VROC-and-Intel-Rapid-Storage-Technology-enterprise-Intel-RSTe-Driver-for-Windows->
- To enable Intel VROC, a hardware key must be inserted on the motherboard, and the appropriate processor's Virtual Management Devices must be enabled in the BIOS setup.
- It is possible to enable Intel VROC without a hardware key installed, but only RAID0 will be enabled.
- Intel VROC is not compatible with secure boot. This feature must be disabled.
- When creating bootable OS RAID1 devices, you must have both devices on the same CPU, and a VMD on that CPU.
- Spanning drives when creating RAID devices is not recommended due to performance issues, even though it is supported.

Supported SSDs and Operating Systems

To see the latest support information: <https://www.intel.com/content/www/us/en/support/articles/000030310/memory-and-storage/ssd-software.html>

Additional Information

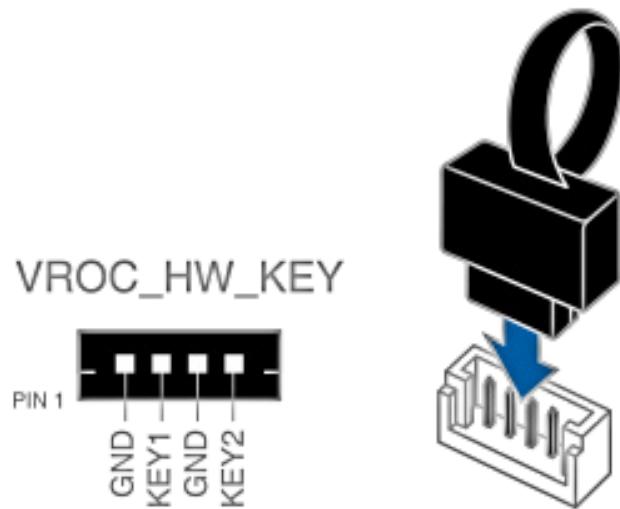
Additional information is available on the product page for the Supermicro add-on card and the linked manuals.

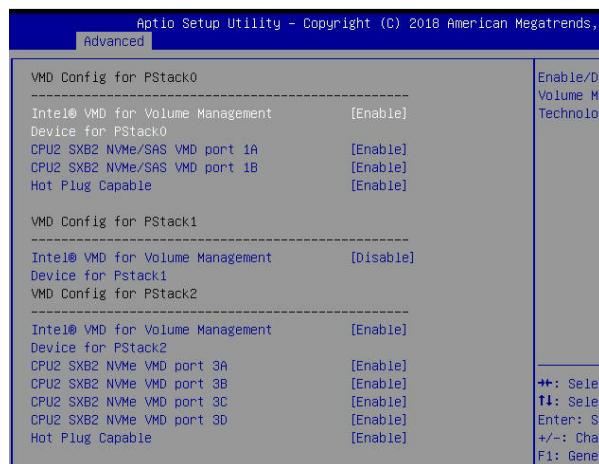
www.supermicro.com/products/accessories/addon/AOC-VROCxxxMOD.cfm

F.1 Hardware Key

The Intel VROC hardware key is a license key that detects the Intel VROC SKU and activates the function accordingly. The key must be plugged into the Supermicro motherboard (connector JRK1). The key options are:

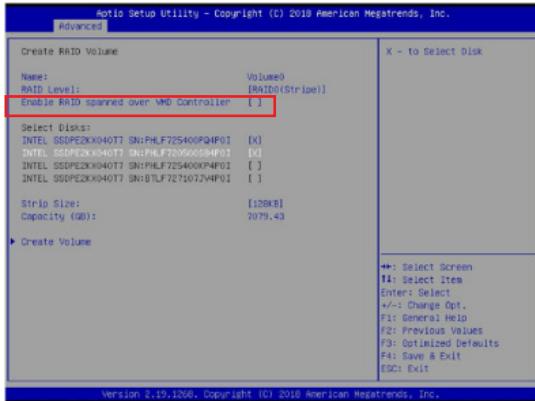
Intel® VROC Keys			
VROC Package	Description	Part Number	Intel MM Number
Standard	RAID 0, 1, 10 Supports 3rd party SSDs	AOC-VROCSTNMOD	951605
Premium	RAID 0, 1, 5, 10 Supports 3rd party SSDs	AOC-VROCPREMOD	951606
Intel SSD only	RAID 0, 1, 5, 10 Supports Intel SSDs only	AOC-VROCINTMOD	956822




Figure F-1. Intel® VROC RAID Key and Motherboard Connector JRK1

F.2 Enabling NVMe RAID

RAID for NVMe SSDs must be enabled through the UEFI BIOS.


1. Install the patch as described in the Restrictions and Requirements section on a previous page.
2. Reboot the server.
3. Press [DEL] key to enter BIOS.
4. Switch to **Advanced > Chipset Configuration > North Bridge > IIO Configuration > Intel VMD Technology > Intel VMD for Volume Management on CPU2**.
5. **Enable** the VMD.

Enable VMD Config for PStack0 and PStack2 and enable all the sub-items under PStack0 and PStack2.

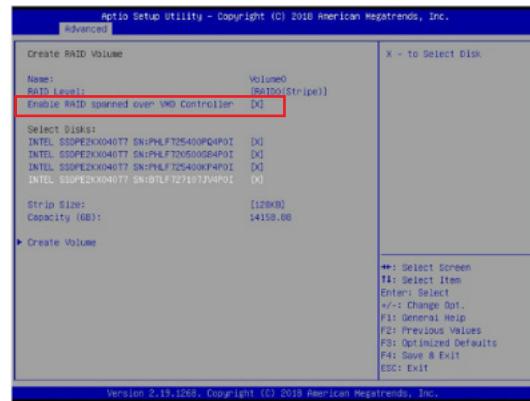


Figure F-2. BIOS VMD Settings

6. Press [F4] to save the configuration and reboot the system.
7. Press [DEL] to enter BIOS.
8. Switch to **Advanced > Intel® Virtual RAID on CPU > All Intel VMD Controllers > Create RAID Volume**.
9. Set **Name**.
10. Set **RAID Level**.

Figure F-3. Created Volume *without* enabling RAID spanned over VMD controller

Figure F-4. Created Volume *with* enabling RAID spanned over VMD controller

11. If cross-controller RAID is required, select **Enable RAID spanned over VMD Controller** as shown in Figure F-4.
12. Select specific disks for RAID with an [X].
 - RAID0: Select at least two [2 - 24] disks
 - RAID1: Select only two disks
 - RAID5: Select at least three [3 - 24] disks
 - RAID10: Select only four disks
13. Select **Strip Size** (Default 64KB).
14. Select **Create Volume**.
15. If another RAID is needed, start again at step 6.
16. Press [F4] to save and reboot.

F.3 Status Indications

An LED indicator on the drive carrier shows the RAID status of the drive.

Drive Carrier Status LED Indicator	
Status	State (red)
Normal function	Off
Locating	4 Hz blink
Fault	Solid on
Rebuilding	1 Hz Blink

IBPI SFF 8489 Defined Status LED States

F.4 Hot Swap Drives

Intel VMD enables hot-plug and hot-unplug for NVMe SSDs, whether from Intel or other manufacturers. Under vSphere ESXi, several steps are necessary to avoid potential stability issues. See the information at link [1] below.

Hot-unplug

1. Prevent devices from being re-detected during rescan:

```
esxcli storage core claiming autoclaim --enabled=false
```

2. Unmount the VMFS volumes on the device. Check [2] for details.
3. Detach the device. Check [3] for details.
4. Physically remove the device.

Hot-plug

- Physically install the device.

ESXi will automatically discover NVMe SSDs, but a manual scan may be required in some cases.

Related Information Links

[1] <https://kb.vmware.com/s/article/2151404>

[2] <https://docs.vmware.com/en/VMware-vSphere/6.5/com.vmware.vsphere.storage.doc/GUID-1B56EF97-F60E-4F21-82A7-8F2A7294604D.html>

[3] <https://docs.vmware.com/en/VMware-vSphere/6.5/com.vmware.vsphere.storage.doc/GUID-F2E75F67-740B-4406-9F0C-A2D99A698F2A.html>