

FatTwin

F618R2-FT

USER'S MANUAL

Revision 1.0b

The information in this User's Manual has been carefully reviewed and is believed to be accurate. The vendor assumes no responsibility for any inaccuracies that may be contained in this document, makes no commitment to update or to keep current the information in this manual, or to notify any person or organization of the updates. **Please Note: For the most up-to-date version of this manual, please see our web site at www.supermicro.com.**

Super Micro Computer, Inc. ("Supermicro") reserves the right to make changes to the product described in this manual at any time and without notice. This product, including software and documentation, is the property of Supermicro and/or its licensors, and is supplied only under a license. Any use or reproduction of this product is not allowed, except as expressly permitted by the terms of said license.

IN NO EVENT WILL SUPERMICRO BE LIABLE FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, SPECULATIVE OR CONSEQUENTIAL DAMAGES ARISING FROM THE USE OR INABILITY TO USE THIS PRODUCT OR DOCUMENTATION, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. IN PARTICULAR, SUPERMICRO SHALL NOT HAVE LIABILITY FOR ANY HARDWARE, SOFTWARE, OR DATA STORED OR USED WITH THE PRODUCT, INCLUDING THE COSTS OF REPAIRING, REPLACING, INTEGRATING, INSTALLING OR RECOVERING SUCH HARDWARE, SOFTWARE, OR DATA.

Any disputes arising between manufacturer and customer shall be governed by the laws of Santa Clara County in the State of California, USA. The State of California, County of Santa Clara shall be the exclusive venue for the resolution of any such disputes. Super Micro's total liability for all claims will not exceed the price paid for the hardware product.

FCC Statement: This equipment has been tested and found to comply with the limits for a Class A digital device pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the manufacturer's instruction manual, may cause harmful interference with radio communications. Operation of this equipment in a residential area is likely to cause harmful interference, in which case you will be required to correct the interference at your own expense.

California Best Management Practices Regulations for Perchlorate Materials: This Perchlorate warning applies only to products containing CR (Manganese Dioxide) Lithium coin cells. "Perchlorate Material-special handling may apply. See www.dtsc.ca.gov/hazardouswaste/perchlorate"

WARNING: Handling of lead solder materials used in this product may expose you to lead, a chemical known to the State of California to cause birth defects and other reproductive harm.

Manual Revision 1.0b
Release Date: March 12, 2019

Unless you request and receive written permission from Super Micro Computer, Inc., you may not copy any part of this document.

Information in this document is subject to change without notice. Other products and companies referred to herein are trademarks or registered trademarks of their respective companies or mark holders.

Copyright © 2019 by Super Micro Computer, Inc.
All rights reserved.
Printed in the United States of America

Preface

About This Manual

This manual is written for professional system integrators and PC technicians. It provides information for the installation and use of the FatTwin™ F618R2-FT. Installation and maintenance should be performed by experienced technicians only.

The FatTwin F618R2-FT is a high-end server based on the SCF418IL-R1K62BP 4U rackmount chassis and the dual processor X10DRFF serverboard.

Manual Organization

Chapter 1: Introduction

The first chapter provides a checklist of the main components included with the server system and describes the main features of the X10DRFF serverboard and the SCF418IL-R1K62BP chassis.

Chapter 2: Server Installation

This chapter describes the steps necessary to install the FatTwin F618R2-FT into a rack and check out the server configuration prior to powering up the system. If your server was ordered without processor and memory components, this chapter will refer you to the appropriate sections of the manual for their installation.

Chapter 3: System Interface

Refer here for details on the system interface, which includes the functions and information provided by the control panel on the chassis as well as other LEDs located throughout the system.

Chapter 4: System Safety

You should thoroughly familiarize yourself with this chapter for a general overview of safety precautions that should be followed when installing and servicing the FatTwin F618R2-FT.

Chapter 5: Advanced Serverboard Setup

Chapter 5 provides detailed information on the X10DRFF serverboard, including the locations and functions of connections, headers and jumpers. Refer to this chapter when adding or removing processors or main memory and when reconfiguring the serverboard.

Chapter 6: Advanced Chassis Setup

Refer to Chapter 6 for detailed information on the SCF418IL-R1K62BP server chassis. You should follow the procedures given in this chapter when installing, removing or reconfiguring SATA or peripheral drives and when replacing system power supply units and cooling fans.

Chapter 7: BIOS

The BIOS chapter includes an introduction to BIOS and provides detailed information on running the CMOS Setup Utility.

Appendix A: BIOS Error Beep Codes

Appendix B: System Specifications

Notes

Table of Contents

Chapter 1 Introduction

1-1	Overview	1-1
1-2	Serverboard Features	1-2
	Processors	1-2
	Memory	1-2
	Serial ATA	1-2
	PCI Expansion Slots	1-2
	Onboard Controllers/Ports	1-3
	Graphics Controller	1-3
	Aspeed AST2400 BMC Controller	1-3
	Other Features Supported by the Aspeed BMC Controller	1-4
	Super I/O	1-4
1-3	Server Chassis Features	1-5
	System Power	1-5
	SATA Subsystem	1-5
	Front Control Panel	1-5
	I/O Ports	1-5
	Cooling System	1-5
	Air Shrouds	1-6
	Mounting Rails	1-6
1-4	Advanced Power Management	1-6
	Intel® Intelligent Power Node Manager (NM)	1-6
	Manageability Engine (ME)	1-6
1-5	Contacting Supermicro	1-8
1-6	FatTwin: System Notes	1-9
	Nodes	1-9
	System Power	1-9
	SATA Drives	1-9

Chapter 2 Server Installation

2-1	Overview	2-1
2-2	Unpacking the System	2-1
2-3	Preparing for Setup	2-1
2-4	Warnings and Precautions	2-2
	Choosing a Setup Location	2-2
	Rack Precautions	2-2
	Server Precautions	2-2

Rack Mounting Considerations	2-3
Ambient Operating Temperature	2-3
Reduced Airflow	2-3
Mechanical Loading	2-3
Circuit Overloading.....	2-3
Reliable Ground	2-4
2-5 Rack Mounting Instructions.....	2-4
Identifying the Sections of the Rack Rails	2-4
Adjusting the Rails	2-4
Locking Tabs	2-5
Installing the Rails on a Rack	2-6
Chassis Installation	2-7
2-6 Checking the Serverboard Setup.....	2-8
2-7 Checking the Drive Bay Setup.....	2-9
Chapter 3 System Interface	
3-1 Overview	3-1
3-2 Control Panel Buttons	3-2
Chapter 4 Standardized Warning Statements for AC Systems	
4-1 About Standardized Warning Statements.....	4-1
Warning Definition	4-1
Installation Instructions.....	4-4
Circuit Breaker	4-5
Power Disconnection Warning	4-6
Equipment Installation.....	4-8
Restricted Area.....	4-9
Battery Handling.....	4-10
Redundant Power Supplies	4-12
Backplane Voltage	4-13
Comply with Local and National Electrical Codes.....	4-14
Product Disposal	4-15
Hot Swap Fan Warning.....	4-16
Power Cable and AC Adapter	4-18

Chapter 5 Advanced Serverboard Setup

5-1	Handling the Serverboard	5-1
	Precautions	5-1
	Unpacking	5-1
5-2	Connecting Cables.....	5-2
	Connecting Data Cables	5-2
5-3	I/O Ports	5-2
5-4	Processor and Heatsink Installation.....	5-3
	Installing the LGA2011 Processor	5-3
	Installing a Passive CPU Heatsink	5-7
	Removing the Passive Heatsink	5-8
5-5	Installing Memory	5-9
	Installing & Removing DIMMs.....	5-9
	Removing Memory Modules	5-9
	Memory Support for the X10DRFF Serverboard	5-10
5-7	Serverboard Details	5-12
5-8	Connector Definitions.....	5-15
5-9	Jumper Settings	5-19
	Explanation of Jumpers	5-19
5-10	Onboard Indicators.....	5-21
5-11	SAS/Serial ATA/PCI-E Connections	5-23
5-11	Installing Drivers.....	5-24
	SuperDoctor 5	5-25
5-12	Serverboard Battery	5-27

Chapter 6 Advanced Chassis Setup

6-1	Static-Sensitive Devices.....	6-1
	Precautions	6-1
	Unpacking	6-1
6-2	Control Panel	6-2
6-3	Removing the Power Cord.....	6-3
6-4	Installing and Removing the Node Drawers	6-3
6-5	Removing Nodes from the Chassis	6-4
6-6	Removing the Cover from the Node	6-4
6-7	Node Configuration	6-5
	SCF418IL-R1K62BP Node Layout.....	6-5
6-8	Nodes and Associated Hard Drives	6-6
	Installing and Removing 2.5" Hot-swap Hard Drives.....	6-7
6-9	Installing the Serverboard	6-10

	Compatible Serverboards	6-10
	Permanent and Optional Standoffs.....	6-10
6-10	Installing Expansion Cards	6-12
	F418IL PCI-E Slot Configurations.....	6-12
	Installing Front Low-profile Expansion Cards	6-12
	Assembling the PCI-E Slot Bracket Assembly.....	6-13
6-11	Installing Air Shrouds	6-15
	Air Shrouds	6-15
6-12	Removing and Installing System Fans	6-16
	Removing and Installing External System Fans.....	6-16
6-13	Replacing the Power Supplies	6-17
	Power Supply Replacement.....	6-17

Chapter 7 BIOS

7-1	Introduction.....	7-1
	Starting BIOS Setup Utility.....	7-1
	How To Change the Configuration Data	7-1
	Starting the Setup Utility	7-2
7-2	Main Setup	7-2
7-3	Advanced Setup Configurations.....	7-4
7-4	Event Logs	7-33
7-5	IPMI	7-35
7-6	Security Settings	7-37
7-7	Boot Settings.....	7-38
7-8	Save & Exit	7-40

Appendix A BIOS Error Beep Codes

Appendix B System Specifications

Notes

Chapter 1

Introduction

1-1 Overview

The FatTwin F618R2-FT is a high-end server comprised of two main subsystems: the SCF418IL-R1K62BP 4U server chassis and the X10DRFF dual processor serverboard in eight hot-swap nodes. Please refer to our web site for information on operating systems that have been certified for use with the system (www.supermicro.com).

In addition to the serverboard and chassis, various hardware components have been included with the FatTwin F618R2-FT server, as listed below:

- Eight (8) 1U passive CPU heat sinks for MBs with Square ILM (SNK-P0047P)
- Eight (8) 1U passive CPU heat sinks for MBs with Square ILM (SNK-P0057P)
- Eight (8) Plastic air shrouds (MCP-310-41802-0N)
- SATA Accessories:
 - Eight (8) Backplanes (BPN-SAS-F418-B2R)
 - Sixteen (16) 21-cm 30AWG SATA round cables (CBL-0473L)
 - Eight (8) 15-cm 18AWG 2x2 to 2x2 SATA Power cables (CBL-0486L)
 - Sixteen (16) hot-swap 2.5" HDD trays (CSE-PT0120L-B or CP-220-00098-0B)
- Eight (8) Riser cards (RSC-R1UFF-E16)
- One (1) F418/F424 Rail set (MCP-290-41803-0N)

Note: For your system to work properly, please follow the links below to download all necessary drivers/utilities and the user's manual for your server.

- Supermicro product manuals: <http://www.supermicro.com/support/manuals/>
- Product drivers and utilities: <http://www.supermicro.com>
- Product safety information:
http://www.supermicro.com/about/policies/safety_information.cfm
- If you have any questions, please contact our support team at:
support@supermicor.com

1-2 Serverboard Features

At the heart of the FatTwin F618R2-FT lies the X10DRFF, a dual processor serverboard based on the Intel® PCH C612 chipset and designed to provide maximum performance. Eight of these serverboards can be mounted in the SCF418IL-R1K62BP chassis.

The sections below cover the main features of the X10DRFF serverboard (see Figure 1-1 for a block diagram of the chipset).

Processors

The X10DRFF supports single or dual Intel® Xeon® E5-2600 v3/v4 series processors (Socket R3 LGA 2011). Each processor supports four full-width Intel QuickPath Interconnect (QPI) links, with support of up to 38.4 GT/s per QPI link and with Data Transfer Rate of up to 9.6 GT/s per direction. Please refer to the serverboard description pages on our web site for a complete listing of supported processors (www.supermicro.com).

Memory

Each X10DRFF serverboard node has eight (8) DIMM slots supporting up to 1 TB 3DS LRDIMM registered ECC or 512 GB of DDR4-2400/2133/1866/1600 MHz speed RDIMM SDRAM in up to 1 GB, 2 GB, 4 GB, 8 GB, 16 GB, 32 GB, 64 GB or 128 GB (3DS LRDIMM only) size at 1.20Vs voltages. See Chapter 5 for details.

Note: For the latest CPU/memory updates, please refer to our website at <http://www.supermicro.com/products/serverboard>.

Serial ATA

A Serial ATA controller is integrated into the PCH C612 to provide up to a ten-port SATA subsystem, (up to six SATA 3 (6 Gb/s), two SATA 3 SCU and two SATA+Power connection headers for SATA DOM and power supported by Intel SCU (S-SATA2/3)) which is RAID 0, 1, 5 and 10 supported. The FatTwin F618R2-FT server however only has two hot-swap 2.5" HDD in each node, so the SATA drives only support RAID 0 and 1 in each node.

PCI Expansion Slots

The FatTwin F618R2-FT has for each node one (1) PCI-Exp 3.0 x16 slots slot available for use with a riser card.

Onboard Controllers/Ports

One Fast UART 16550 serial port, one 9-pin RS-232 port are located on the serverboard. The front I/O ports include a VGA (monitor) port, two USB 3.0 ports, an IPMI dedicated LAN port and two Gigabit Ethernet ports.

Note: For IPMI Configuration Instructions, please refer to the Embedded IPMI Configuration User's Guide available @ <http://www.supermicro.com/support/manuals/>.

Graphics Controller

The X10DRFF features an integrated Aspeed AST2400 BMC Controller.

Aspeed AST2400 BMC Controller

Note: The term "IPMI controller" and the term "BMC controller" can be used interchangeably in this section.

The Aspeed AST2400 BMC Controller, a Baseboard Management Controller (BMC), supports 2D/VGA-compatible Graphic Cores with PCI interface, creating multi-media virtualization via Keyboard/Video/Mouse Redirection (KVMR). The Aspeed AST2400 BMC Controller is ideal for remote system management.

The Aspeed AST2400 BMC Controller interfaces with the host system via PCI connections to communicate with the graphics cores. It supports USB 2.0 and 1.1 for remote keyboard/mouse/virtual media emulation. It also provides LPC interface support to control Super IO functions. The Aspeed AST2400 BMC Controller is connected to the network via an external Ethernet PHY module or shared NCSI connections.

The Aspeed AST2400 BMC Controller communicates with onboard components via six SMBus interfaces, PECI (Platform Environment Control Interface) buses, and General Purpose I/O ports.

Other Features Supported by the Aspeed BMC Controller

The WPCM450R supports the following features:

- IPMI 2.0
- Serial over LAN
- KVM over LAN
- LAN Alerting-SNMP Trap
- Event Log
- X-Bus parallel interface for I/O expansion
- Multiple ADC inputs, Analog and Digital Video outputs
- SPI Flash Host BIOS and firmware bootstrap program supported
- Reduced Media Independent Interface (RMII)
- OS (Operating System) Independency
- Provides remote Hardware Health Monitoring via IPMI. Key features
- Provides Network Management Security via remote access/console redirection.
- Supports the following Management tools: IPMIView, CLI (Command Line Interface)
- RMCP+ protocol supported

Note: For more information on IPMI configuration, please refer to the IPMI User's Guide posted on our website at <http://www.supermicro.com/support/manuals/>.

Super I/O

The Super I/O provides functions that comply with ACPI (Advanced Configuration and Power Interface), which includes support of legacy and ACPI power management through an SMI or SCI function pin. It also features auto power management to reduce power consumption.

1-3 Server Chassis Features

The following is a general outline of the main features of the F418IL server chassis. The F418IL chassis is available in a variety of configurations. For more information, visit our Web site at www.supermicro.com.

System Power

Each F418IL chassis model includes a high-efficiency 94%+ Plus Platinum Level power supply, rated at 1620 Watts. In the unlikely event your power supply fails, replacement is simple and can be accomplished without tools.

Note: The power supplies are both redundant, hot-plug.

SATA Subsystem

The F418IL supports up to two (2) 2.5" hot-swap SATA drives on the serverboard trays for each node for a total of sixteen (16) drives. These drives are hot-swappable units and are connected to a backplane that provides power and control.

Front Control Panel

Each node of the SCF418IL-R1K62BP chassis includes front I/O with a power button LED and a UID indicator, with additional LED indicators directly on the serverboard which provides you with system monitoring and control for one server node.

I/O Ports

The F418IL is an proprietary form factor chassis designed to be used in a 4U rackmount configuration. The F418IL chassis provides a low-profile add-on card slot, a VGA port, two USB 3.0 ports, one IPMI Ethernet port and two gigabit Ethernet ports per node.

Cooling System

The F418IL chassis includes eight (8) 8-cm cooling fans for the chassis and its eight serverboard nodes so that when one of the serverboard drawers is removed, the other serverboards will continue running its fans.

Note: The fans in this system are redundant, hot-plug.

Air Shrouds

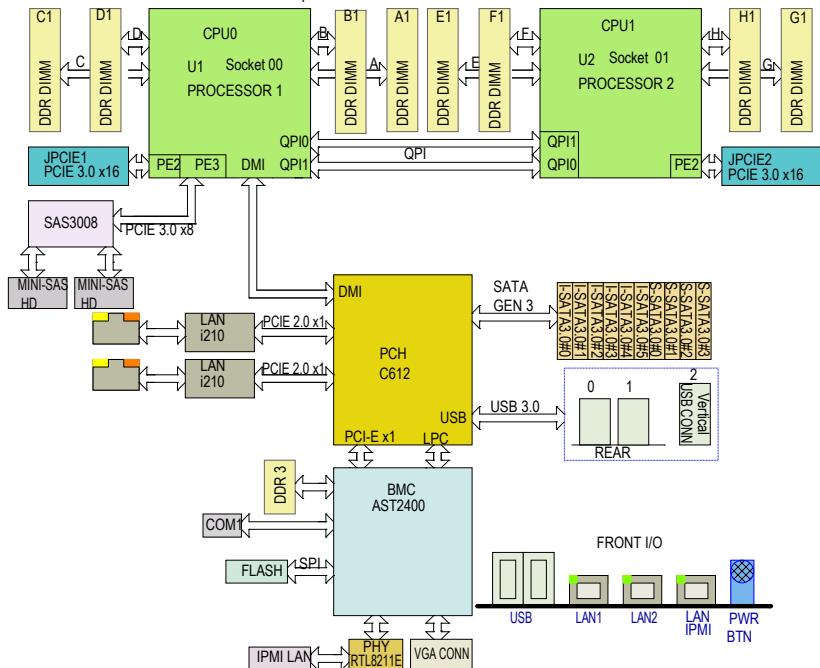
The F418IL chassis requires mylar air shrouds for each node to direct the airflow where cooling is needed. The air shroud will differ for different serverboards. If using a serverboard which is not the default in the chassis, refer to the optional parts in the Appendix of this manual, or the Supermicro Web site at www.supermicro.com to purchase the proper air shroud.

Mounting Rails

The F418IL includes a set of rails, and can be placed in a rack for secure storage and use. To setup your rack, follow the step-by-step instructions included in this manual.

1-4 Advanced Power Management

Intel® Intelligent Power Node Manager (NM)


The Intel® Intelligent Power Node Manager (IPNM) provides your system with real-time thermal control and power management for maximum energy efficiency. Although IPNM Specification Version 1.5 is supported by the BMC (Baseboard Management Controller), your system must also have IPNM-compatible Manageability Engine (ME) firmware installed to use this feature.

Manageability Engine (ME)

The Manageability Engine, which is an ARC controller embedded in the IOH (I/O Hub), provides Server Platform Services (SPS) to your system. The services provided by SPS are different from those provided by the ME on client platforms.

**Figure 1-1. Intel PCH C612 Chipset:
System Block Diagram**

Note: This is a general block diagram and may not exactly represent the features on your serverboard. See the previous pages for the actual specifications of your serverboard. This block diagram is intended for your reference only.

1-5 Contacting Supermicro

Headquarters

Address: Super Micro Computer, Inc.
980 Rock Ave.
San Jose, CA 95131 U.S.A.
Tel: +1 (408) 503-8000
Fax: +1 (408) 503-8008
Email: marketing@supermicro.com (General Information)
support@supermicro.com (Technical Support)
Website: www.supermicro.com

Europe

Address: Super Micro Computer B.V.
Het Sterrenbeeld 28, 5215 ML
's-Hertogenbosch, The Netherlands
Tel: +31 (0) 73-6400390
Fax: +31 (0) 73-6416525
Email: sales@supermicro.nl (General Information)
support@supermicro.nl (Technical Support)
rma@supermicro.nl (Customer Support)
Website: www.supermicro.nl

Asia-Pacific

Address: Super Micro Computer, Inc.
3F, No. 150, Jian 1st Rd.
Zhonghe Dist., New Taipei City 235
Taiwan (R.O.C)
Tel: +886-(2) 8226-3990
Fax: +886-(2) 8226-3992
Email: support@supermicro.com.tw
Website: www.supermicro.com.tw

1-6 FatTwin: System Notes

As a FatTwin configuration, the FatTwin F618R2-FT is a unique server system. With eight system boards incorporated into a single chassis acting as eight separate nodes, there are several points you should keep in mind.

Nodes

Each of the eight serverboards act as a separate node in the system. As independent nodes, each may be powered off and on without affecting the others. In addition, each node is a hot-swappable unit that may be removed from the chassis. The nodes are connected to the server backplane by means of an adapter card.

Note: A guide pin is located between the upper and lower nodes on the inner chassis wall. This guide pin also acts as a “stop” when a node is fully installed. If too much force is used when inserting a node this pin may break off. Take care to slowly slide a node in until you hear the “click” of the locking tab seating itself.

System Power

Four 1620 Watt power supplies are used to provide the power for all serverboards. Each serverboard however, can be shut down independently of the others with the power button on its own control panel.

SATA Drives

As a system, the FatTwin F618R2-FT supports the use of two (2) SATA HDD's serverboard trays per node for a total of sixteen (16) HDD drives in the system. These drives are hot-swappable. Consequently, RAID setup is limited to a two-drive scheme (RAID cannot be spread across all drives). See Chapter 6 for the logical hard drive and node configuration.

Notes

Chapter 2

Server Installation

2-1 Overview

This chapter provides a quick setup checklist to get your FatTwin F618R2-FT up and running. Following these steps in the order given should enable you to have the system operational within a minimum amount of time. This quick setup assumes that your system has come to you with the processors and memory preinstalled. If your system is not already fully integrated with a serverboard, processors, system memory etc., please turn to the chapter or section noted in each step for details on installing specific components.

2-2 Unpacking the System

You should inspect the box the FatTwin F618R2-FT was shipped in and note if it was damaged in any way. If the server itself shows damage you should file a damage claim with the carrier who delivered it.

Decide on a suitable location for the rack unit that will hold the FatTwin F618R2-FT. It should be situated in a clean, dust-free area that is well ventilated. Avoid areas where heat, electrical noise and electromagnetic fields are generated. You will also need it placed near a grounded power outlet. Read the Rack and Server Precautions in the next section.

2-3 Preparing for Setup

The box the FatTwin F618R2-FT was shipped in should include two sets of rail assemblies, two rail mounting brackets and the mounting screws you will need to install the system into the rack. Follow the steps in the order given to complete the installation process in a minimum amount of time. Please read this section in its entirety before you begin the installation procedure outlined in the sections that follow.

2-4 Warnings and Precautions

Choosing a Setup Location

- Leave enough clearance in front of the rack to enable you to open the front door completely (~25 inches) and approximately 30 inches of clearance in the back of the rack to allow for sufficient airflow and ease in servicing.
- This product is for installation only in a Restricted Access Location (dedicated equipment rooms, service closets and the like).
- This product is not suitable for use with visual display work place devices according to §2 of the German Ordinance for Work with Visual Display Units.

Rack Precautions

- Ensure that the leveling jacks on the bottom of the rack are fully extended to the floor with the full weight of the rack resting on them.
- In single rack installation, stabilizers should be attached to the rack. In multiple rack installations, the racks should be coupled together.
- Always make sure the rack is stable before extending a component from the rack.
- You should extend only one component at a time - extending two or more simultaneously may cause the rack to become unstable.

Server Precautions

- Review the electrical and general safety precautions in Chapter 4.
- Determine the placement of each component in the rack *before* you install the rails.
- Install the heaviest server components on the bottom of the rack first, and then work up.
- Use a regulating uninterruptible power supply (UPS) to protect the server from power surges, voltage spikes and to keep your system operating in case of a power failure.
- Allow any hot plug drives and power supply modules to cool before touching them.
- Always keep the rack's front door and all panels and components on the servers closed when not servicing to maintain proper cooling.

Rack Mounting Considerations

Warning! To prevent bodily injury when mounting or servicing this unit in a rack, you must take special precautions to ensure that the system remains stable. The following guidelines are provided to ensure your safety:

- This unit should be mounted at the bottom of the rack if it is the only unit in the rack.
- When mounting this unit in a partially filled rack, load the rack from the bottom to the top with the heaviest component at the bottom of the rack.
- If the rack is provided with stabilizing devices, install the stabilizers before mounting or servicing the unit in the rack.

Ambient Operating Temperature

If installed in a closed or multi-unit rack assembly, the ambient operating temperature of the rack environment may be greater than the ambient temperature of the room. Therefore, consideration should be given to installing the equipment in an environment compatible with the manufacturer's maximum rated ambient temperature (Tmra).

Reduced Airflow

Equipment should be mounted into a rack so that the amount of airflow required for safe operation is not compromised.

Mechanical Loading

Equipment should be mounted into a rack so that a hazardous condition does not arise due to uneven mechanical loading.

Circuit Overloading

Consideration should be given to the connection of the equipment to the power supply circuitry and the effect that any possible overloading of circuits might have on overcurrent protection and power supply wiring. Appropriate consideration of equipment nameplate ratings should be used when addressing this concern.

Reliable Ground

A reliable ground must be maintained at all times. To ensure this, the rack itself should be grounded. Particular attention should be given to power supply connections other than the direct connections to the branch circuit (i.e. the use of power strips, etc.).

2-5 Rack Mounting Instructions

This section provides information on installing the chassis into a rack unit with the rails provided. There are a variety of rack units on the market, which may mean that the assembly procedure will differ slightly from the instructions provided. You should also refer to the installation instructions that came with the rack unit you are using.

Note: This rail will fit a rack between 26.5" and 36.4" deep. The SCF418 is not designed for installation into a Telco post-style rack unit.

Warning: Do not pick up the server with the front handles. They are designed to pull the system from a rack only.

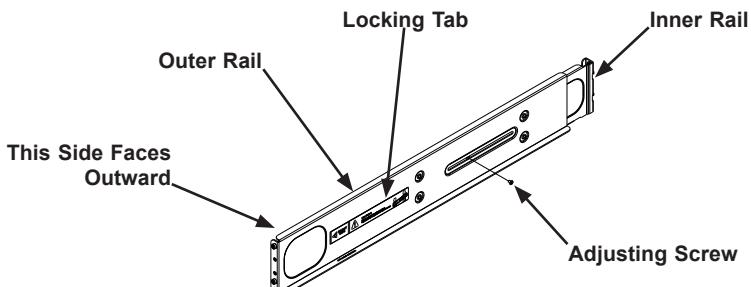
Stability Hazard: The rack stabilizing mechanism must be in place, or the rack must be bolted to the floor before you slide the unit out for servicing. Failure to stabilize the rack can cause the rack to tip over.

Warning: When initially installing the server to a rack, test that the rail locking tabs engage to prevent the server from being overextended. Have a rack lift in place as a precaution in case the test fails.

Warning: In any instance of pulling the system from the rack, always use a rack lift and follow all associated safety precautions.

Identifying the Sections of the Rack Rails

The chassis package includes two rail assemblies in the rack mounting kit. Each assembly consists of two sections: A front section which secures to the front post of the rack and a rear section which adjusts in length and secures to the rear post of the rack. These assemblies are specifically designed for the left and right side of the chassis (see Figure 2-1).

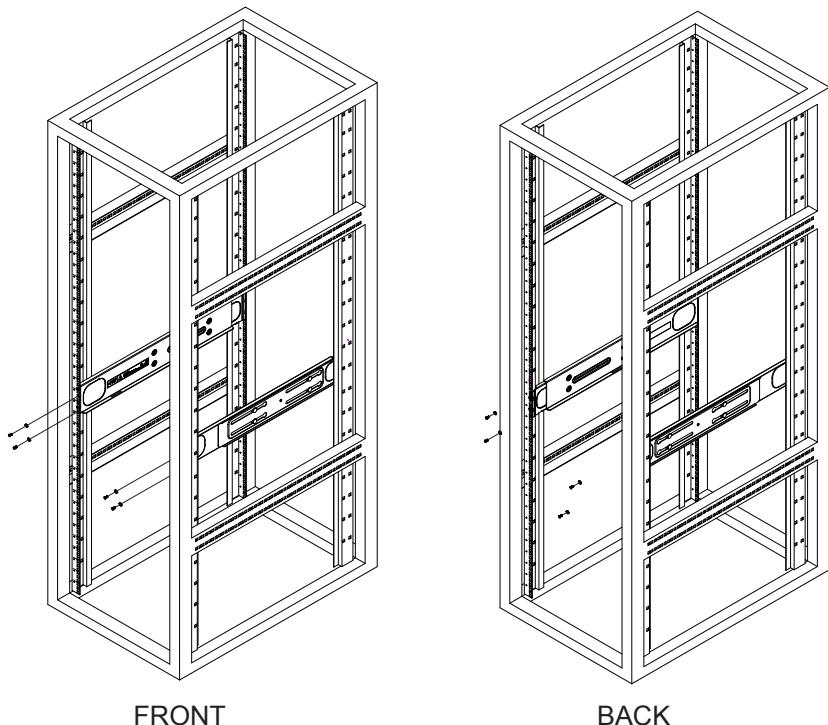

Adjusting the Rails

Each rail assembly has an adjusting screw. loosening this screw allows you to adjust the length of the rail to fit a variety of rack sizes.

Locking Tabs

Each inner rail has a locking tab. This tab locks the chassis into place when installed and pushed fully into the rack. These tabs also lock the chassis in place when fully extended from the rack. This prevents the server from coming completely out of the rack when the chassis is pulled out for servicing.

**Figure 2-1: Identifying the Outer Rail and Inner Rails
(Left Rail Assembly Shown)**

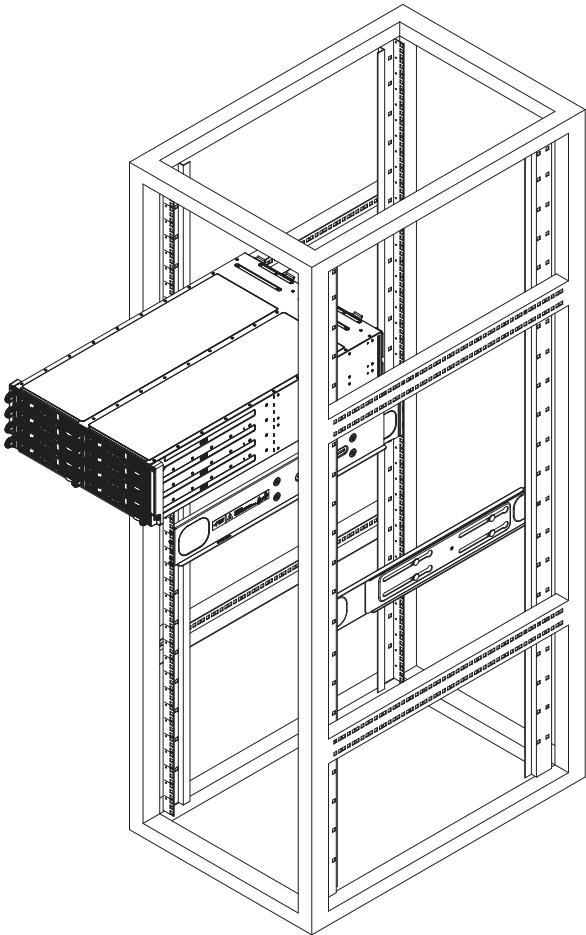


Installing the Rails on a Rack

Installing the Rails

1. Adjust the length of both rails as described on the previous page.
2. Align the front section of the outer rail with the slots on the front post of the rack. Secure the front of the outer rail to the rack with two screws.
3. Pull out the rear section of the outer rail, adjusting the length until it fits within the posts of the rack.
4. Align the rear section of the rail with the slots on the rear post of the rack. Secure the rear of the outer rail to the rear of the rack with two screws.
5. Repeat steps 1-4 for the remaining rail.

Figure 2-2: Attaching the Rails to a Rack



Chassis Installation

Installing the Chassis into a Rack

1. Confirm that the rails are correctly installed on the rack.
2. Align the bottom of the chassis with the bottom of the rails.
3. Insert the chassis into the rails, keeping the pressure even on both sides, pushing the chassis into the rack until it clicks into the locked position.
4. Secure the chassis handles to the front of the rack.

Figure 2-3: Installing into a Rack

2-6 Checking the Serverboard Setup

After you install the FatTwin F618R2-FT in the rack, you will need to open the unit to make sure the serverboard is properly installed and all the connections have been made.

Accessing the inside of the System

Before operating the server for the first time, it is important to remove the protective film covering the top of the chassis, in order to allow for proper ventilation and cooling.

Caution: Except for short periods of time, do NOT operate the server without the cover in place. The chassis cover must be in place to allow proper airflow and prevent overheating.

Checking the Components and Setup

1. You may have one or two processors already installed into the serverboard. Each processor needs its own heat sink. See Chapter 5 for instructions on processor and heat sink installation.
2. Your FatTwin F618R2-FT server system may have come with system memory already installed. Make sure all DIMMs are fully seated in their slots. For details on adding system memory, refer to Chapter 5.
3. If desired, you can install add-on cards to the system. See Chapter 5 for details on installing PCI add-on cards.
4. Make sure all power and data cables are properly connected and not blocking the chassis airflow. Also make sure that no cables are positioned in front of the fans. See Chapter 5 for details on cable connections.

2-7 Checking the Drive Bay Setup

Next, you should check to make sure the peripheral drives and the SATA drives have been properly installed and all connections have been made.

Checking the Drives

1. For the F618R2-FT server, all hard drives are fixed on the serverboard tray and can only be retrieved by removing the top cover.
2. Depending upon your system's configuration, your system may have one or more drives already installed. If you need to install hard drives, please refer to Chapter 6.

Checking the Airflow

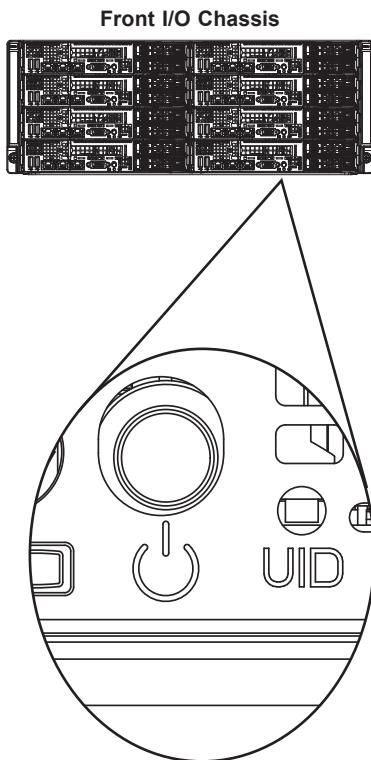
1. Make sure there are no objects to obstruct airflow in and out of the server. In addition, if you are using a front bezel, make sure the bezel's filter is replaced periodically.
2. Do not operate the server without drives or drive trays in the drive bays. Use only recommended server parts.
3. Make sure that no wires or foreign objects obstruct air flow through the chassis. Pull all excess cabling out of the airflow path or use shorter cables. The control panel LEDs inform you of the system status. See "Chapter 3 System Interface" for details on the LEDs and the control panel buttons.

Providing Power

1. Plug the power cord(s) from the power supply unit(s) into a high-quality power strip that offers protection from electrical noise and power surges. It is recommended that you use an uninterruptible power supply (UPS).
2. Depress the power on button on the front of the chassis.

Notes

Chapter 3


System Interface

3-1 Overview

There are several LEDs on the control panel and on the drive carriers to keep you constantly informed of the overall status of the system. F418IL chassis with front I/O (right image below) have a power button LED and a UID indicator, with additional LED indicators directly on the serverboard.

This chapter explains the meanings of all LED indicators and the appropriate response you may need to take.

Figure 3-1: Chassis Control Panel

3-2 Control Panel Buttons

- **Power:** The main power button on each of the four control panels is used to apply or remove power from the power supply to each of the four systems in the chassis. Turning off system power with this button removes the main power, but keeps standby power supplied to the system. Therefore, you must unplug system before servicing. The power button has a built-in LED which will turn green when the power is on.

- **UID:** When used with a UID compatible serverboard, the UID indicator is used to turn on or off the blue light function of the LED. This is built into the front side of the UID button and at the rear end of each serverboard node, for those serverboards which support it. Once the blue light is activated, the unit can be easily located in very large racks and server banks.

Chapter 4

Standardized Warning Statements for AC Systems

4-1 About Standardized Warning Statements

The following statements are industry standard warnings, provided to warn the user of situations which have the potential for bodily injury. Should you have questions or experience difficulty, contact Supermicro's Technical Support department for assistance. Only certified technicians should attempt to install or configure components.

Read this appendix in its entirety before installing or configuring components in the Supermicro chassis.

These warnings may also be found on our web site at http://www.supermicro.com/about/policies/safety_information.cfm.

Warning Definition

Warning!

This warning symbol means danger. You are in a situation that could cause bodily injury. Before you work on any equipment, be aware of the hazards involved with electrical circuitry and be familiar with standard practices for preventing accidents.

警告の定義

この警告サインは危険を意味します。

人身事故につながる可能性がありますので、いずれの機器でも動作させる前に、

電気回路に含まれる危険性に注意して、標準的な事故防止策に精通して下さい。

此警告符号代表危险。

您正处于可能受到严重伤害的工作环境中。在您使用设备开始工作之前，必须充分意识到触电的危险，并熟练掌握防止事故发生的标准工作程序。请根据每项警告结尾的声明号码找到此设备的安全性警告说明的翻译文本。

此警告符号代表危險。

您目前所處的工作環境可能讓您受傷。您使用任何設備之前，請注意觸電的危險，並且要熟悉預防事故發生的標準工作程序。請依照每一注意事項後的號碼找到相關的翻譯說明內容。

Warnung

WICHTIGE SICHERHEITSHINWEISE

Dieses Warnsymbol bedeutet Gefahr. Sie befinden sich in einer Situation, die zu Verletzungen führen kann. Machen Sie sich vor der Arbeit mit Geräten mit den Gefahren elektrischer Schaltungen und den üblichen Verfahren zur Vorbeugung vor Unfällen vertraut. Suchen Sie mit der am Ende jeder Warnung angegebenen Anweisungsnummer nach der jeweiligen Übersetzung in den übersetzten Sicherheitshinweisen, die zusammen mit diesem Gerät ausgeliefert wurden.

BEWAHREN SIE DIESE HINWEISE GUT AUF.

INSTRUCCIONES IMPORTANTES DE SEGURIDAD

Este símbolo de aviso indica peligro. Existe riesgo para su integridad física. Antes de manipular cualquier equipo, considere los riesgos de la corriente eléctrica y familiarícese con los procedimientos estándar de prevención de accidentes. Al final de cada advertencia encontrará el número que le ayudará a encontrar el texto traducido en el apartado de traducciones que acompaña a este dispositivo.

GUARDE ESTAS INSTRUCCIONES.

IMPORTANTES INFORMATIONS DE SÉCURITÉ

Ce symbole d'avertissement indique un danger. Vous vous trouvez dans une situation pouvant entraîner des blessures ou des dommages corporels. Avant de travailler sur un équipement, soyez conscient des dangers liés aux circuits électriques et familiarisez-vous avec les procédures couramment utilisées pour éviter les accidents. Pour prendre connaissance des traductions des avertissements figurant dans les consignes de sécurité traduites qui accompagnent cet appareil, référez-vous au numéro de l'instruction situé à la fin de chaque avertissement.

CONSERVEZ CES INFORMATIONS.

תקנון הצהרות אזהרה

הצהרות הבאות הן אזהרות על פי התקני התעשייה, על מנת להזהיר את המשתמש מפני חבלה פיזית אפשרית. במידת או יותר או שאלות או היקלחות בבעיה כלשה, יש ליזור קשר עם מוחלחת תמייה טכנית של סופרמייקרו. טכנאים מוסמכים בלבד רשאי לתקן או להגידו את הרכיבים. יש לקרוא את הנ篇章 במלואו לפני התקנת או הגדרת הרכיבים במאורי סופרמייקרו.

اَكَفَ حَالَةٍ وُكِيْ اَيْ تَتَسَبَّبُ فِي اَصَابَةٍ جَسْدَهُ هَذَا الرَّهْزُ عُ خَطَرٌ ! تَحْذِيرٌ .
قَبْلَ اَيْ تَعْوِلُ عَلَى اَيْ هَذَنَاتِ، كَيْ عَلَى عَلَنِ بِالْوَخَاطِرِ الْأَجْوَهُ عَيْ الْذَّوَائِزِ
الْكَهْرِيَّاتِ .

وَكَيْ عَلَى دَرَاهُ بِالْوَوَارِسَاتِ الْبَقَائِيَّةِ لَوْعُ وَقَعَ اَيْ حَادِثٍ
اَسْتَخِذْ رَقْنَ الْبَلِيِّ الْوَصُّصِ فَهَاهُ كُلَّ تَحْذِيرٍ لِلْعَشْرِ تَزْجُوْتَهَا

안전을 위한 주의사항

경고!

이 경고 기호는 위험이 있음을 알려 줍니다. 작업자의 신체에 부상을 야기 할 수 있는 상태에 있게 됩니다. 모든 장비에 대한 작업을 수행하기 전에 전기회로와 관련된 위험요소들을 확인하시고 사전에 사고를 방지할 수 있도록 표준 작업절차를 준수해 주시기 바랍니다.

해당 번역문을 찾기 위해 각 경고의 마지막 부분에 제공된 경고문 번호를 참조하십시오

BELANGRIJKE VEILIGHEIDSINSTRUCTIES

Dit waarschuwingssymbool betekent gevaar. U verkeert in een situatie die lichamelijk letsel kan veroorzaken. Voordat u aan enige apparatuur gaat werken, dient u zich bewust te zijn van de bij een elektrische installatie betrokken risico's en dient u op de hoogte te zijn van de standaard procedures om ongelukken te voorkomen. Gebruik de nummers aan het eind van elke waarschuwing om deze te herleiden naar de desbetreffende locatie.

BEWAAR DEZE INSTRUCTIES

Installation Instructions

Warning!

Read the installation instructions before connecting the system to the power source.

設置手順書

システムを電源に接続する前に、設置手順書をお読み下さい。

警告

将此系统连接电源前,请先阅读安装说明。

警告

將系統與電源連接前，請先閱讀安裝說明。

Warnung

Vor dem Anschließen des Systems an die Stromquelle die Installationsanweisungen lesen.

¡Advertencia!

Lea las instrucciones de instalación antes de conectar el sistema a la red de alimentación.

Attention

Avant de brancher le système sur la source d'alimentation, consulter les directives d'installation.

יש לקרוא את הוראות התקנה לפני חיבור המערכת למקור מתח.

اقر إرشادات التركيب قبل توصيل النظام إلى مصدر للطاقة

시스템을 전원에 연결하기 전에 설치 안내를 읽어주십시오.

Waarschuwing

Raadpleeg de installatie-instructies voordat u het systeem op de voedingsbron aansluit.

Circuit Breaker

Warning!

This product relies on the building's installation for short-circuit (overcurrent) protection. Ensure that the protective device is rated not greater than: 250 V, 20 A.

サーキット・ブレーカー

この製品は、短絡(過電流)保護装置がある建物での設置を前提としています。

保護装置の定格が250 V, 20 Aを超えないことを確認下さい。

警告

此产品的短路(过载电流)保护由建筑物的供电系统提供,确保短路保护设备的额定电流不大于250V,20A。

警告

此產品的短路(過載電流)保護由建築物的供電系統提供,確保短路保護設備的額定電流不大於250V,20A。

Warnung

Dieses Produkt ist darauf angewiesen, dass im Gebäude ein Kurzschluss- bzw. Überstromschutz installiert ist. Stellen Sie sicher, dass der Nennwert der Schutzvorrichtung nicht mehr als: 250 V, 20 A beträgt.

¡Advertencia!

Este equipo utiliza el sistema de protección contra cortocircuitos (o sobrecorrientes) del edificio. Asegúrese de que el dispositivo de protección no sea superior a: 250 V, 20 A.

Attention

Pour ce qui est de la protection contre les courts-circuits (surtension), ce produit dépend de l'installation électrique du local. Vérifiez que le courant nominal du dispositif de protection n'est pas supérieur à :250 V, 20 A.

מוצר זה מסתמך על הגנה המותקנת במבנה למונעת קצר חשמלי. יש לוודא כי המכשיר המגן מפני הקצר החשמלי הוא לא יותר מ- 250VDC, 20A-M.

هذا المنتج يعتمد على معدات الحماية مه الدوائرالقصيرة التي تم تثبيتها في
المبنى
تأكد من أن تقييم الجهاز الوقائي ليس أكثر من : 20A, 250V

경고!

이 제품은 전원의 단락(과전류)방지에 대해서 전적으로 건물의 관련 설비에
의존합니다. 보호장치의 정격이 반드시 250V(볼트), 20A(암페어)를 초과하지
않도록 해야 합니다.

Waarschuwing

Dit product is afhankelijk van de kortsleutbeveiliging (overspanning) van
uw elektrische installatie. Controleer of het beveiligde apparaat niet groter
gedimensioneerd is dan 250V, 20A.

Power Disconnection Warning

Warning!

The system must be disconnected from all sources of power and the power cord removed from the power supply module(s) before accessing the chassis interior to install or remove system components.

電源切断の警告

システムコンポーネントの取り付けまたは取り外しのために、シャーシー内部にアクセスするには、
システムの電源はすべてのソースから切断され、電源コードは電源モジュールから取り外す必要があります。

警告

在你打开机箱并安装或移除内部器件前,必须将系统完全断电,并移除电源线。

警告

在您打開機殼安裝或移除內部元件前，必須將系統完全斷電，並移除電源線。

Warnung

Das System muss von allen Quellen der Energie und vom Netzanschlusskabel getrennt sein, das von den Spg. Versorgungsteilmodulen entfernt wird, bevor es auf den Chassisinnenraum zurückgreift, um Systemsbestandteile anzubringen oder zu entfernen.

¡Advertencia!

El sistema debe ser disconnected de todas las fuentes de energía y del cable eléctrico quitado de los módulos de fuente de alimentación antes de tener acceso el interior del chasis para instalar o para quitar componentes de sistema.

Attention

Le système doit être débranché de toutes les sources de puissance ainsi que de son cordon d'alimentation secteur avant d'accéder à l'intérieur du châssis pour installer ou enlever des composants de système.

ازהרה מפני ניתוק חשמלי.

ازהרה!

יש לנתק את המערכת מכל מקורות החשמל ויש להסיר את כבל החשמלי מהספק. לפניה גישה לחלק הפנימי של המארז לצורך התקנת או הסרת רכיבים.

يجب فصل جميع مصادر انطاقت وإزالت سلك انكهرباء من وحدة امداد انطاقت قبم

انصلل إني امانتق انداخهيت نههيكم تشبييج أو إزالت مكتبات الجهاز

경고!

시스템에 부품들을 장착하거나 제거하기 위해서는 새시 내부에 접근하기 전에 반드시 전원 공급장치로부터 연결되어있는 모든 전원과 전기코드를 분리해주어야 합니다.

Waarschuwing

Voordat u toegang neemt tot het binnenwerk van de behuizing voor het installeren of verwijderen van systeem onderdelen, dient u alle spanningsbronnen en alle stroomkabels aangesloten op de voeding(en) van de behuizing te verwijderen

Equipment Installation

Warning!

Only trained and qualified personnel should be allowed to install, replace, or service this equipment.

機器の設置

トレーニングを受け認定された人だけがこの装置の設置、交換、またはサービスを許可されています。

警告

只有经过培训且具有资格的人员才能进行此设备的安装、更换和维修。

警告

只有經過受訓且具資格人員才可安裝、更換與維修此設備。

Warnung

Das Installieren, Ersetzen oder Bedienen dieser Ausrüstung sollte nur geschultem, qualifiziertem Personal gestattet werden.

¡Advertencia!

Solamente el personal calificado debe instalar, reemplazar o utilizar este equipo.

Attention

Il est vivement recommandé de confier l'installation, le remplacement et la maintenance de ces équipements à des personnels qualifiés et expérimentés.

ازهاره!

צוות מוסמך בלבד רשאי להתקין, להחליף את הציוד או להת שירות עבור הציוד.

والمدربين لتركيب واستبدال أو خدمة هذا الجهاز يجب أن يسمح فقط للموظفين المؤهلين

경고!

훈련을 받고 공인된 기술자만이 이 장비의 설치, 교체 또는 서비스를 수행할 수 있습니다.

Waarschuwing

Deze apparatuur mag alleen worden geïnstalleerd, vervangen of hersteld door geschoold en gekwalificeerd personeel.

Restricted Area

Warning!

This unit is intended for installation in restricted access areas. A restricted access area can be accessed only through the use of a special tool, lock and key, or other means of security. (This warning does not apply to workstations).

アクセス制限区域

このユニットは、アクセス制限区域に設置されることを想定しています。

アクセス制限区域は、特別なツール、鍵と錠前、その他のセキュリティの手段を用いてのみ出入りが可能です。

警告

此部件应安装在限制进出的场所，限制进出的场所指只能通过使用特殊工具、锁和钥匙或其它安全手段进出的场所。

警告

此裝置僅限安裝於進出管制區域，進出管制區域係指僅能以特殊工具、鎖頭及鑰匙或其他安全方式才能進入的區域。

Warnung

Diese Einheit ist zur Installation in Bereichen mit beschränktem Zutritt vorgesehen. Der Zutritt zu derartigen Bereichen ist nur mit einem Spezialwerkzeug, Schloss und Schlüssel oder einer sonstigen Sicherheitsvorkehrung möglich.

¡Advertencia!

Esta unidad ha sido diseñada para instalación en áreas de acceso restringido. Sólo puede obtenerse acceso a una de estas áreas mediante la utilización de una herramienta especial, cerradura con llave u otro medio de seguridad.

Attention

Cet appareil doit être installée dans des zones d'accès réservés. L'accès à une zone d'accès réservé n'est possible qu'en utilisant un outil spécial, un mécanisme de verrouillage et une clé, ou tout autre moyen de sécurité.

אזרע עם גישה מוגבלת
אזהרה!

יש להתקין את היחידה באזוריים שיש בהם הגבלת גישה. הגישה ניתנת בעזרת
'כל' אבטחה בלבד (מפתח, מנעול וכד.).

תחסיס זה אונחזה נترك בהا פ מנטוק محظורה תם .
مكن אונסילן מנטוק محظורה فقط מ خلال אונחדו אודא אונסט .
או אונס הות אונרי נלאומא אונט ומכה

경고!

이 장치는 접근이 제한된 구역에 설치하도록 되어있습니다. 특수도구, 잠금 장치 및 키, 또는 기타 보안 수단을 통해서만 접근 제한 구역에 들어갈 수 있습니다.

Waarschuwing

Dit apparaat is bedoeld voor installatie in gebieden met een beperkte toegang. Toegang tot dergelijke gebieden kunnen alleen verkregen worden door gebruik te maken van speciaal gereedschap, slot en sleutel of andere veiligheidsmaatregelen.

Battery Handling

Warning!

There is the danger of explosion if the battery is replaced incorrectly. Replace the battery only with the same or equivalent type recommended by the manufacturer. Dispose of used batteries according to the manufacturer's instructions

電池の取り扱い

電池交換が正しく行われなかった場合、破裂の危険性があります。交換する電池はメーカーが推奨する型、または同等のものを使用下さい。使用済電池は製造元の指示に従って処分して下さい。

警告

电池更换不当会有爆炸危险。请只使用同类电池或制造商推荐的功能相当的电池更换原有电池。请按制造商的说明处理废旧电池。

警告

電池更換不當會有爆炸危險。請使用製造商建議之相同或功能相當的電池更換原有電池。請按照製造商的說明指示處理廢棄舊電池。

Warnung

Bei Einsetzen einer falschen Batterie besteht Explosionsgefahr. Ersetzen Sie die Batterie nur durch den gleichen oder vom Hersteller empfohlenen Batterietyp. Entsorgen Sie die benutzten Batterien nach den Anweisungen des Herstellers.

Attention

Danger d'explosion si la pile n'est pas remplacée correctement. Ne la remplacer que par une pile de type semblable ou équivalent, recommandée par le fabricant. Jeter les piles usagées conformément aux instructions du fabricant.

¡Advertencia!

Existe peligro de explosión si la batería se reemplaza de manera incorrecta. Reemplazar la batería exclusivamente con el mismo tipo o el equivalente recomendado por el fabricante. Desechar las baterías gastadas según las instrucciones del fabricante.

ازהה!

קיימת סכנת פיצוץ של הסוללה במידה והוחלפה בדרך לא תקינה. יש להחליף את הסוללה בסוג החותם מחברת יצרן מומלצת. סילוק הסוללות המשומשות יש לבצע לפי הוראות היצרן.

هناك خطر من انفجار في حالة اسحبدال البطارية بطريقة غير صحيحة فعليل اسحبدال البطارية

فقط بنفس النوع أو ما يعادلها مما أوصى به الشرمة المصنعة جخلص من البطاريات المنسحุมة وفقا لتعليمات الشرمة الصانعة

경고!

배터리가 올바르게 교체되지 않으면 폭발의 위험이 있습니다. 기존 배터리와 동일하거나 제조사에서 권장하는 동등한 종류의 배터리로만 교체해야 합니다. 제조사의 안내에 따라 사용된 배터리를 처리하여 주십시오.

Waarschuwing

Er is ontploffingsgevaar indien de batterij verkeerd vervangen wordt. Vervang de batterij slechts met hetzelfde of een equivalent type die door de fabrikant aanbevolen wordt. Gebruikte batterijen dienen overeenkomstig fabrieksvoorschriften afgevoerd te worden.

Redundant Power Supplies

Warning!

This unit might have more than one power supply connection. All connections must be removed to de-energize the unit.

冗長電源装置

このユニットは複数の電源装置が接続されている場合があります。

ユニットの電源を切るためには、すべての接続を取り外さなければなりません。

警告

此部件连接的电源可能不止一个，必须将所有电源断开才能停止给该部件供电。

警告

此裝置連接的電源可能不只一個，必須切斷所有電源才能停止對該裝置的供電。

Warnung

Dieses Gerät kann mehr als eine Stromzufuhr haben. Um sicherzustellen, dass der Einheit kein Strom zugeführt wird, müssen alle Verbindungen entfernt werden.

¡Advertencia!

Puede que esta unidad tenga más de una conexión para fuentes de alimentación. Para cortar por completo el suministro de energía, deben desconectarse todas las conexiones.

Attention

Cette unité peut avoir plus d'une connexion d'alimentation. Pour supprimer toute tension et tout courant électrique de l'unité, toutes les connexions d'alimentation doivent être débranchées.

אם קיים יותר מספק אחד
אוורהה!

ליחדה יש יותר מחיבור אחד של ספק. יש להסיר את כל החיבורים על מנת לירוק
את היחידה.

قد يكون لهذا الجهاز عدة اتصالات بوحدات امداد الطاقة .

يجب إزالة كافة الاتصالات لغسل الوحدة عن الكهرباء

경고!

이 장치에는 한 개 이상의 전원 공급 단자가 연결되어 있을 수 있습니다. 이 장치에 전원을 차단하기 위해서는 모든 연결 단자를 제거해야만 합니다.

Waarschuwing

Deze eenheid kan meer dan één stroomtoevoeraansluiting bevatten. Alle aansluitingen dienen verwijderd te worden om het apparaat stroomloos te maken.

Backplane Voltage

Warning!

Hazardous voltage or energy is present on the backplane when the system is operating. Use caution when servicing.

バックプレーンの電圧

システムの稼働中は危険な電圧または電力が、バックプレーン上にかかりています。

修理する際には注意ください。

警告

当系统正在进行时，背板上有很危险的电压或能量，进行维修时务必小心。

警告

當系統正在進行時，背板上有危險的電壓或能量，進行維修時務必小心。

Warnung

Wenn das System in Betrieb ist, treten auf der Rückwandplatine gefährliche Spannungen oder Energien auf. Vorsicht bei der Wartung.

¡Advertencia!

Cuando el sistema está en funcionamiento, el voltaje del plano trasero es peligroso. Tenga cuidado cuando lo revise.

Attention

Lorsque le système est en fonctionnement, des tensions électriques circulent sur le fond de panier. Prendre des précautions lors de la maintenance.

מתוח בפנل האחורי
אוורה!

קיימות סכנת מתוח בפנל האחורי בזמן תפעול המערכת. יש להיזהר ממהלך
העובדות.

هناك خطر من التيار الكهربائي أو الطاقة المبذلة على اللحمة
عندما يكن النظام يعمل كه حذرا عند خدمة هذا الجهاز

경고!

시스템이 동작 중일 때 후면판 (Backplane)에는 위험한 전압이나 에너지가 발생
합니다. 서비스 작업 시 주의하십시오.

Waarschuwing

Een gevaarlijke spanning of energie is aanwezig op de backplane wanneer het
systeem in gebruik is. Voorzichtigheid is geboden tijdens het onderhoud.

Comply with Local and National Electrical Codes

Warning!

Installation of the equipment must comply with local and national electrical codes.

地方および国の電気規格に準拠

機器の取り付けはその地方および国の電気規格に準拠する必要があります。

警告

设备安装必须符合本地与本国电气法规。

警告

設備安裝必須符合本地與本國電氣法規。

Warnung

Die Installation der Geräte muss den Sicherheitsstandards entsprechen.

¡Advertencia!

La instalacion del equipo debe cumplir con las normas de electricidad locales y
nacionales.

Attention

L'équipement doit être installé conformément aux normes électriques nationales et locales.

תיאום חוקי החשמל הארץ
אוורה!

התקנת הציג חיבת לחיות תואמת לחוקי החשמל המקומיים והארציים.

تركيب المعدات الكهربائية يجب أن يتناسب للقوانين المحلية والوطنية المتعلقة بالكهرباء.

경고!

현 지역 및 국가의 전기 규정에 따라 장비를 설치해야 합니다.

Waarschuwing

Bij installatie van de apparatuur moet worden voldaan aan de lokale en nationale elektriciteitsvoorschriften.

Product Disposal**Warning!**

Ultimate disposal of this product should be handled according to all national laws and regulations.

製品の廃棄

この製品を廃棄処分する場合、国の関係する全ての法律・条例に従い処理する必要があります。

警告

本产品的废弃处理应根据所有国家的法律和规章进行。

警告

本產品的廢棄處理應根據所有國家的法律和規章進行。

Warnung

Die Entsorgung dieses Produkts sollte gemäß allen Bestimmungen und Gesetzen des Landes erfolgen.

¡Advertencia!

Al deshacerse por completo de este producto debe seguir todas las leyes y reglamentos nacionales.

Attention

La mise au rebut ou le recyclage de ce produit sont généralement soumis à des lois et/ou directives de respect de l'environnement. Renseignez-vous auprès de l'organisme compétent.

סילוק המוצר

אוורה!

סילוק סופי של מוצר זה חייב להיות בהתאם להנחיות וחוקי המדינה.

التخلص النهائي من هذا المنتج ينبغي التعامل معه وفقاً لجميع القوانين واللائح البيئية عند

경고!

이 제품은 해당 국가의 관련 법규 및 규정에 따라 폐기되어야 합니다.

Waarschuwing

De uiteindelijke verwijdering van dit product dient te geschieden in overeenstemming met alle nationale wetten en reglementen.

Hot Swap Fan Warning

Warning!

Hazardous moving parts. Keep away from moving fan blades. The fans might still be turning when you remove the fan assembly from the chassis. Keep fingers, screwdrivers, and other objects away from the openings in the fan assembly's housing.

ファン・ホットスワップの警告

警告!回転部品に注意。運転中は回転部(羽根)に触れないでください。シャーシから冷却ファン装置を取り外した際、ファンがまだ回転している可能性があります。ファンの開口部に、指、ドライバー、およびその他のものを近づけないで下さい。

警告!

警告！危险的可移动性零件。请务必与转动的风扇叶片保持距离。当您从机架移除风扇装置，风扇可能仍在转动。小心不要将手指、螺丝起子和其他物品太靠近风扇

警告

危險的可移動性零件。請務必與轉動的風扇葉片保持距離。當您從機架移除風扇裝置，風扇可能仍在轉動。小心不要將手指、螺絲起子和其他物品太靠近風扇。

Warnung

Gefährlich Bewegende Teile. Von den bewegenden Lüfterblätter fern halten. Die Lüfter drehen sich u. U. noch, wenn die Lüfterbaugruppe aus dem Chassis genommen wird. Halten Sie Finger, Schraubendreher und andere Gegenstände von den Öffnungen des Lüftergehäuses entfernt.

¡Advertencia!

Riesgo de piezas móviles. Mantener alejado de las aspas del ventilador. Los ventiladores podran dar vuelta cuando usted quite el montaje del ventilador del chasis. Mantenga los dedos, los destornilladores y todos los objetos lejos de las aberturas del ventilador

Attention

Pieces mobiles dangereuses. Se tenir a l'écart des lames du ventilateur Il est possible que les ventilateurs soient toujours en rotation lorsque vous retirerez le bloc ventilateur du châssis. Prenez garde à ce que doigts, tournevis et autres objets soient éloignés du logement du bloc ventilateur.

ازهرا!

חלקים נעים מסוימים. התרחק מלהבי המא Orr בפיעולה כאשר מסירים את חלקו המא Orr מהמארז, יתכן והמא Orrים עדיין עובדים. יש להרחק בטווח את הא צבעות וכלי עבודה שונים מהפתחים בתוך המא Orr

تحذير! أجزاء متحركة خطيرة. ابتعد عن شفرات المروحة المتحركة. من الممكن أن المروحة لا تزال تدور عند إزالة كتلة المروحة من الهيكل يجب إبقاء الأصابع ومفكات البراغي وغيرها من الأشياء بعيداً عن الفتحات في كتلة المروحة.

경고!

움직이는 위험한 부품. 회전하는 송풍 날개에 접근하지 마세요. 새시로부터 팬 조립품을 제거할 때 팬은 여전히 회전하고 있을 수 있습니다. 팬 조립품 외관의 열려있는 부분들로부터 손가락 및 스크류드라이버, 다른 물체들이 가까이 하지 않도록 배치해 주십시오.

Waarschuwing

Gevaarlijk bewegende onderdelen. Houd voldoende afstand tot de bewegende ventilatorbladen. Het is mogelijk dat de ventilator nog draait tijdens het verwijderen van het ventilatorsamenstel uit het chassis. Houd uw vingers, schroevendraaiers en eventuele andere voorwerpen uit de buurt van de openingen in de ventilatorbehuizing.

Power Cable and AC Adapter

Warning!

Warning! When installing the product, use the provided or designated connection cables, power cables and AC. Using any other cables and adaptors could cause a malfunction or a fire. Electrical Appliance and Material Safety Law prohibits the use of UL or CSA -certified cables (that have UL/CSA shown on the code) for any other electrical devices than products designated by Supermicro only..

電源コードとACアダプター

製品を設置する場合、提供または指定および購入された接続ケーブル、電源コードとACアダプターを、該当する地域の条例や安全基準に適合するコードサイズやプラグと共に使用下さい。他のケーブルやアダプタを使用すると故障や火災の原因になることがあります。電気用品安全法は、ULまたはCSA認定のケーブル(UL/CSEマークがコードに表記)を Supermicroが指定する製品以外に使用することを禁止しています。

警告

安装此产品时,请使用本身提供的或指定的或采购的连接线,电源线和电源适配器 . 包含遵照当地法规和安全要求的合规的电源线尺寸和插头. 使用其它线材或适配器可能会引起故障或火灾。除了Supermicro所指定的产品,电气用品和材料安全法律规定禁止 使用未经UL或CSA认证的线材。(线材上会显示UL/CSA符号)。

警告

安装此產品時,請使用本身提供的或指定的或採購的連接線,電源線和電源適配器 . 包含遵照當地法規和安全要求的合規的電源線尺寸和插頭. 使用其它線材或適配器可能會引起故障或火災。除了Supermicro所指定的產品,電氣用品和材料安全法律規定禁止 使用未經UL或CSA認證的線材。(線材上會顯示UL/CSA符號)。

Warnung

Nutzen Sie beim Installieren des Produkts ausschließlich die von uns zur Verfügung gestellten Verbindungskabeln, Stromkabeln und/oder Adaptern, die Ihre örtlichen Sicherheitsstandards einhalten. Der Gebrauch von anderen Kabeln und Adaptern können Fehlfunktionen oder Feuer verursachen. Die Richtlinien untersagen das Nutzen von UL oder CAS zertifizierten Kabeln (mit UL/CSA gekennzeichnet), an Geräten oder Produkten die nicht mit Supermicro gekennzeichnet sind.

¡Advertencia!

Cuando instale el producto, utilice la conexión provista o designada o procure cables, Cables de alimentación y adaptadores de CA que cumplan con los códigos locales y los requisitos de seguridad, incluyendo el tamaño adecuado del cable y el enchufe. El uso de otros cables y adaptadores podría causar un mal funcionamiento o un incendio. La Ley de Seguridad de Aparatos Eléctricos y de Materiales prohíbe El uso de cables certificados por UL o CSA (que tienen el certificado UL / CSA en el código) para cualquier otros dispositivos eléctricos que los productos designados únicamente por Supermicro. **Attention**

Attention

Lors de l'installation du produit, utilisez les cables de connection fournis ou désigné ou achetez des cables, cables de puissance et adaptateurs respectant les normes locales et les conditions de sécurité y compris les tailles de cables et les prises électriques appropriées. L'utilisation d'autres cables et adaptateurs peut provoquer un dysfonctionnement ou un incendie. Appareils électroménagers et la Loi sur la Sécurité Matériel interdit l'utilisation de câbles certifiés- UL ou CSA (qui ont UL ou CSA indiqué sur le code) pour tous les autres appareils électriques sauf les produits désignés par Supermicro seulement.

**AC כבלים شاملים ומותאמים!
אזהרה!**

אשר נרכשו או AC כאשר מתקנים את המוצר, יש להשתמש בכבליים, ספקים ומתחמים בהתאם לצורכי התקנה, ואשר הותאמו לדרישות הבטיחות המקומיות, כולל מידת נוכנה של הcabל והתקע . שימוש בכל או מותאם מסווג אחד, עלול לנגרום לתקלה או קצף השם. בהתאם לחוקי השימוש במכשורי החשמל והוויי הבטיחות, קיים אישור להשתמש בעבר (UL/CSA) (אשר מופיע עליהם קוד של UL-CSA-או ב UL -כבליים המוסמכים ב Supermicro כל מוצר شامل אחד, אלא רק ב מוצר אשר הותאם ע"י.

عند تركيب المنتج، قم باستخدام التوصيات المتوفرة أو المحددة أو قم بشراء الكابلات الكهربائية ومحولات التيار المتزددة مع الالتزام بقوانيين ومتطلبات السلامة المحلية لها في ذلك حجم الموصول والقبسات السليمة. استخدام أي كابلات ومحولات أخرى قد يتسبب في عطل أو حريق. يحظر قانون السلامة للأجهزة الكهربائية والمعدات استخدام مع أي معدات أخرى غير المنتجات المعنية (UL/CSA) والتي تحمل علامة CSA أو UL الكابلات المعتمدة من قبل Supermicro والمحددة من قبل.

전원 케이블 및 AC 어댑터

경고! 제품을 설치할 때 현지 코드 및 적절한 굽기의 코드와 플러그를 포함한 안전 요구 사항을 준수하여 제공되거나 지정된 연결 혹은 구매 케이블, 전원 케이블 및 AC 어댑터를 사용하십시오.

다른 케이블이나 어댑터를 사용하면 오작동이나 화재가 발생할 수 있습니다. 전기 용품 안전법은 UL 또는 CSA 인증 케이블 (코드에 UL / CSA가 표시된 케이블) 을 Supermicro가 지정한 제품 이외의 전기 장치에 사용하는 것을 금지합니다.

Stroomkabel en AC-Adapter

Waarschuwing! Bij het aansluiten van het Product uitsluitend gebruik maken van de geleverde Kabels of een andere geschikte aan te schaffen Aansluitmethode, deze moet altijd voldoen aan de lokale voorschriften en veiligheidsnormen, inclusief de juiste kabeldikte en stekker. Het gebruik van niet geschikte Kabels en/of Adapters kan een storing of brand veroorzaken. Wetgeving voor Elektrische apparatuur en Materiaalveiligheid verbied het gebruik van UL of CSA -gecertificeerde Kabels (met UL/CSA in de code) voor elke andere toepassing dan de door Supermicro hiervoor beoogde Producten.

Chapter 5

Advanced Serverboard Setup

This chapter covers the steps required to install the X10DRFF serverboard into the chassis, connect the data and power cables and install add-on cards. All serverboard jumpers and connections are also described. A layout and quick reference chart are included in this chapter for your reference. Remember to completely close the chassis when you have finished working with the serverboard to better cool and protect the system.

5-1 Handling the Serverboard

Electrostatic Discharge (ESD) can damage electronic components. To prevent damage to any printed circuit boards (PCBs), it is important to handle them very carefully (see previous chapter). To prevent the serverboard from bending, keep one hand under the center of the board to support it when handling. The following measures are generally sufficient to protect your equipment from electric static discharge.

Precautions

- Use a grounded wrist strap designed to prevent Electrostatic Discharge (ESD).
- Touch a grounded metal object before removing any board from its antistatic bag.
- Handle a board by its edges only; do not touch its components, peripheral chips, memory modules or gold contacts.
- When handling chips or modules, avoid touching their pins.
- Put the serverboard, add-on cards and peripherals back into their antistatic bags when not in use.
- For grounding purposes, make sure your computer chassis provides excellent conductivity between the power supply, the case, the mounting fasteners and the serverboard.

Unpacking

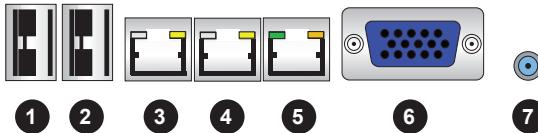
The serverboard is shipped in antistatic packaging to avoid electrical static discharge. When unpacking the board, make sure the person handling it is static protected.

5-2 Connecting Cables

Now that the processors are installed, the next step is to connect the cables to the serverboard.

Connecting Data Cables

The cables used to transfer data from the peripheral devices have been carefully routed in preconfigured systems to prevent them from blocking the flow of cooling air that moves through the system from front to back. If you need to disconnect any of these cables, you should take care to reroute them as they were originally after reconnecting them (make sure the red wires connect to the pin 1 locations). If you are configuring the system, keep the airflow in mind when routing the cables.


The following cables are connected in the FatTwin F618R2-FT system:

- Sixteen (16) 21-cm 30AWG SATA round cables (CBL-0473L)
- Eight (8) 15-cm 18AWG 2x2 to 2x2 SATA Power cables (CBL-0486L)

5-3 I/O Ports

The rear I/O ports are in conformance with the PC 99 specification. See Figure 5-1 below for the colors and locations of the various I/O ports.

Figure 5-1. Rear I/O Ports

Back Panel I/O Port Locations and Definitions	
1	Back Panel USB 3.0 Port 1
2	Back Panel USB 3.0 Port 2
3	Gigabit LAN Port 1
4	Gigabit LAN Port 2
5	IPMI LAN Port
6	VGA Port
7	Power Switch LED

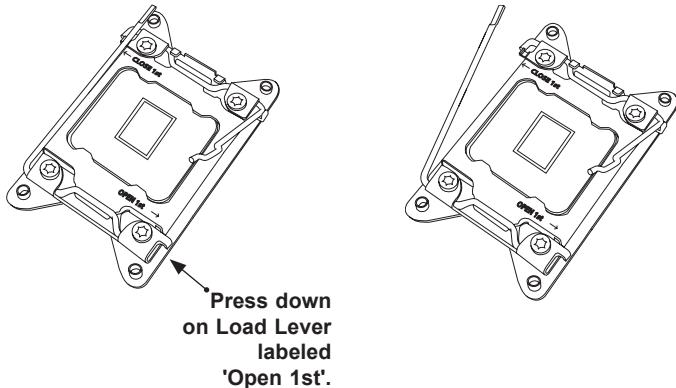
5-4 Processor and Heatsink Installation

Warning: When handling the processor package, avoid placing direct pressure on the label area. Also, improper CPU installation or socket/pin misalignment can cause serious damage to the CPU or the serverboard that will require RMA repairs. Be sure to read and follow all instructions thoroughly before installing your CPU and heatsink.

Note: Always connect the power cord last, and always remove it before adding, removing or changing any hardware components. Make sure that you install the processor into the CPU socket before you install the CPU heatsink.

Caution! If you buy a CPU separately, make sure that you use an Intel-certified multi-directional heatsink only.

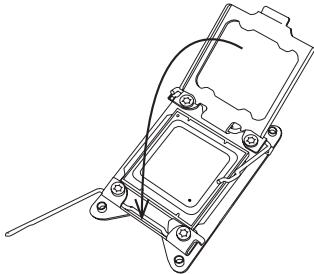
Note: Make sure to install the system board into the chassis before you install the CPU heatsink.

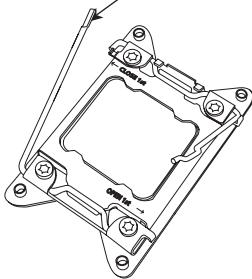

Note: When receiving a server board without a processor pre-installed, make sure that the plastic CPU socket cap is in place and none of the socket pins are bent; otherwise, contact your retailer immediately.

Note: Refer to the Supermicro website for updates on CPU support.

Note: When one CPU is installed, be sure to installed on CPU Socket 1 first.

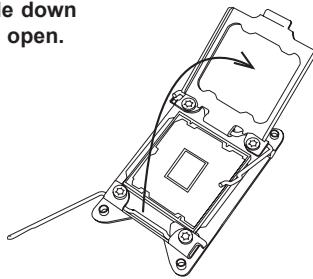
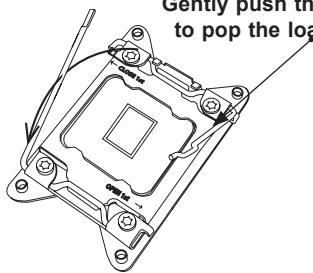
Installing the LGA2011 Processor


1. There are two load levers on the LGA2011 socket. To open the socket cover, first press and release the load lever labeled 'Open 1st'.

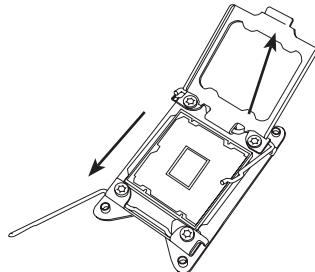

Note: the graphics provided in the manual are for illustration only. Your components may or may not look the same as the ones shown in this manual.

2. Press the second load lever labeled 'Close 1st' to release the load plate that covers the CPU socket from its locking position.

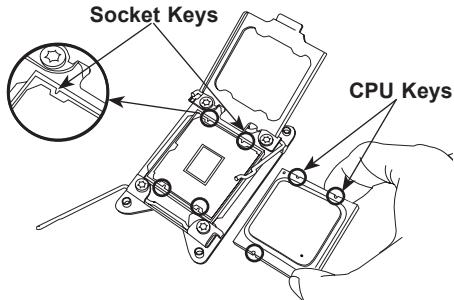
**Gently close
the load plate.**

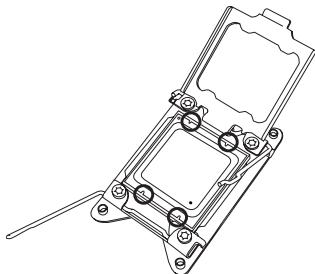



**Push down and lock the
lever labelled 'Close 1st'.**

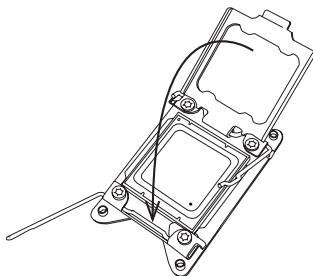


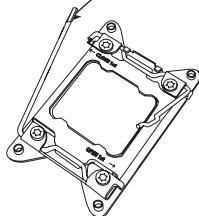
3. With the lever labelled 'Close 1st' fully retracted, gently push down on the lever labelled 'Open 1st' to open the load plate. Lift the load plate to open it completely.


**Gently push the handle down
to pop the load plate open.**


4. Use your thumb and the index finger to loosen the lever and open the load plate.

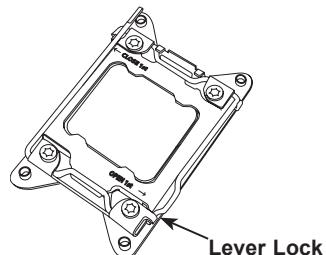
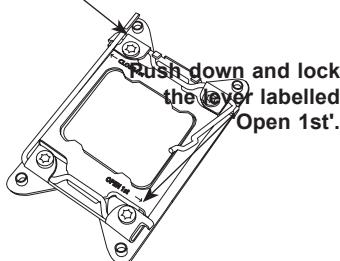
5. Using your thumb and index finger, hold the CPU on its edges. Align the CPU keys, which are semi-circle cutouts, against the socket keys.


6. Once they are aligned, carefully lower the CPU straight down into the socket. (Do not drop the CPU on the socket. Do not move the CPU horizontally or vertically. Do not rub the CPU against the surface or against any pins of the socket to avoid damaging the CPU or the socket.)

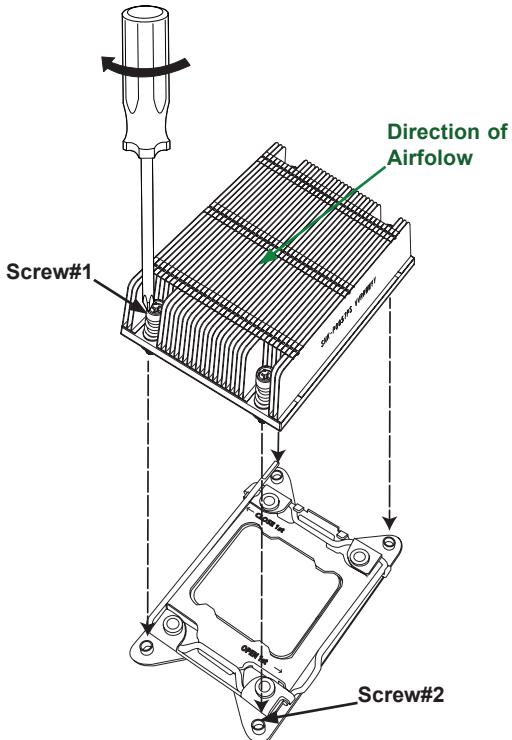

Warning: You can only install the CPU inside the socket in one direction. Make sure that it is properly inserted into the CPU socket before closing the load plate. If it doesn't close properly, do not force it as it may damage your CPU. Instead, open the load plate again to make sure that the CPU is aligned properly.

- With the CPU inside the socket, inspect the four corners of the CPU to make sure that the CPU is properly installed.

Gently close the load plate.

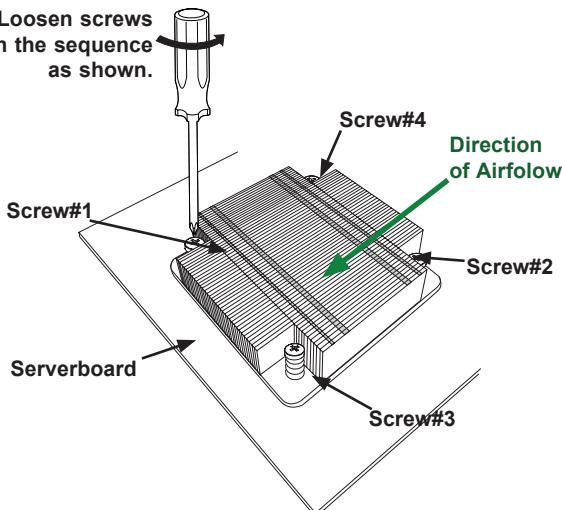
Push down and lock the lever labelled 'Close 1st'.


- Close the load plate with the CPU inside the socket. Lock the lever labelled 'Close 1st' first, then lock the lever labelled 'Open 1st' second. Using your thumb gently push the load levers down to the lever locks.

Lever Lock

Installing a Passive CPU Heatsink

1. Apply the proper amount of thermal grease to the heatsink.
2. Place the heatsink on top of the CPU so that the two mounting holes on the heatsink are aligned with those on the retention mechanism.
3. Insert two push-pins on the sides of the heatsink through the mounting holes on the serverboard, and turn the push-pins clockwise to lock them.

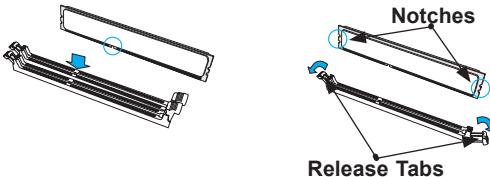


Note: For optimized airflow, please follow your chassis airflow direction to install the correct CPU heatsink direction. Graphic drawings included in this manual are for reference only. They might look different from the components installed in your system.

Removing the Passive Heatsink

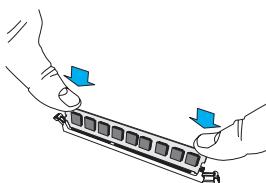
Warning: We do not recommend that the CPU or the heatsink be removed. However, if you do need to remove the heatsink, please follow the instructions below to uninstall the heatsink to avoid damaging the CPU or other components.

1. Unplug the power cord from the power supply.
2. Press down the push-pin on the heatsink, and turn counter-clock-wise to loosen it. Repeat the same step to loosen the second push-pin.
3. Hold the heatsink as shown in the picture below, and gently wriggle the heatsink to loosen it. (Do not use excessive force when wriggling the heatsink.)
4. Once the heatsink is loosened, remove it from the serverboard.


Note: For optimized airflow, please follow your chassis airflow direction to install the correct CPU heatsink direction. Graphic drawings included in this manual are for reference only. They might look different from the components installed in your system.

5-5 Installing Memory

Warning: Exercise extreme care when installing or removing DIMM modules to prevent any possible damage.


Installing & Removing DIMMs

1. Insert the desired number of DIMMs into the memory slots, starting with P1-DIMMA1. (For best performance, please use the memory modules of the same type and speed in the same bank.)
2. Push the release tabs outwards on both ends of the DIMM slot to unlock it.

3. Align the key of the DIMM module with the receptive point on the memory slot.
4. Align the notches on both ends of the module against the receptive points on the ends of the slot.
5. Use two thumbs together to press the notches on both ends of the module straight down into the slot until the module snaps into place.
6. Press the release tabs to the locking positions to secure the DIMM module into the slot.

**Press both notches
straight down into
the memory slot at
the same time.**

Note: Check Supermicro's website for recommended memory modules.

Removing Memory Modules

Press the release tabs on both ends of the memory module to unlock it. Once it is loosened, remove the DIMM module from the memory slot.

Notes:

- 1 GB, 2 GB, 4 GB, 8 GB, 16 GB, 32 GB 64 GB or 128 GB (3DS LRDIMM only) size at 1.20V memory modules are supported.
- It is highly recommended that you remove the power cord from the system before installing or changing memory modules.
- Please refer to our web site for memory that has been tested on the X10DRFF serverboard.

Memory Support for the X10DRFF Serverboard

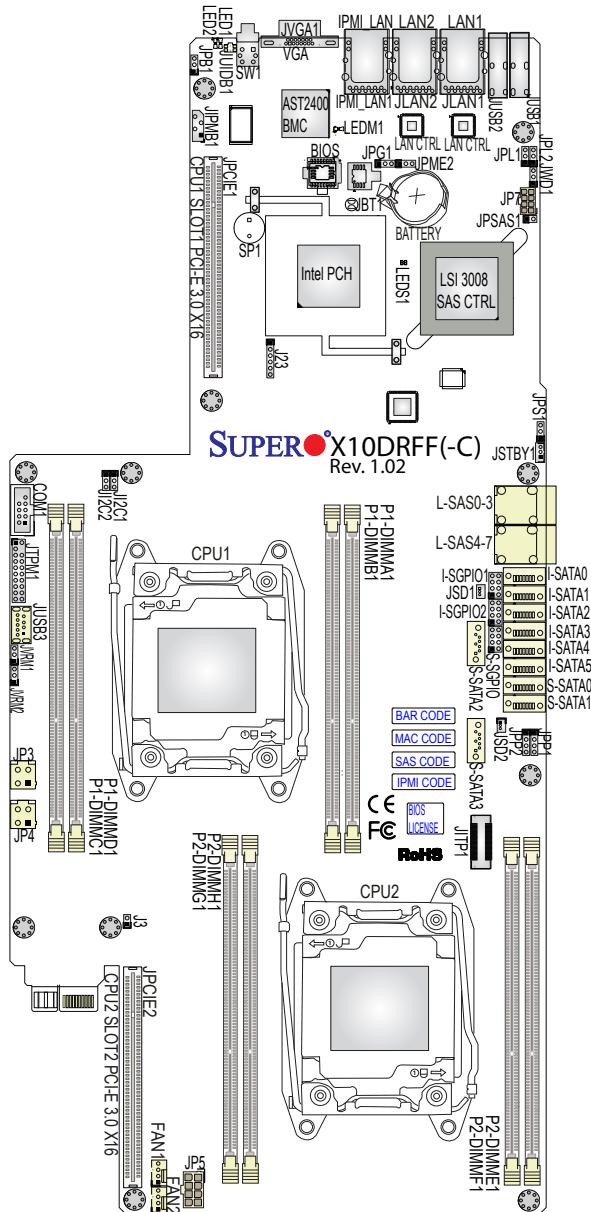
The X10DRFF serverboard supports up to 1 TB of Load Reduced (3DS LRDIMM) or up to 512 GB of Registered (RDIMM) DDR4-2400/2133/1866/1600 MHz memory modules in eight (8) slots (with 1 DIMM per channel). Memory speed support is pending on the processors used in the system. For the latest memory updates, please refer to our website at <http://www.supermicro.com/products/serverboard>.

Processor & Memory Module Population Configuration

For memory to work properly, follow the tables below for memory installation.

Processors and their Corresponding Memory Modules				
CPU#	Corresponding DIMM Modules			
CPU 1	P1-DIMMA1	P1-DIMMB1	P1-DIMMC1	P1-DIMMD1
CPU2	P2-DIMME1	P2-DIMMF1	P2-DIMMG1	P2-DIMMH1

Processor and Memory Module Population for Optimal Performance	
Number of CPUs+DIMMs	CPU and Memory Population Configuration Table (For memory to work properly, please follow the instructions below.)
1 CPU & 2 DIMMs	CPU1 P1-DIMMA1/P1-DIMMB1
1 CPU & 4 DIMMs	CPU1 P1-DIMMA1/P1-DIMMB1, P1-DIMMC1/P1-DIMMD1
2 CPUs & 4 DIMMs	CPU1 + CPU2 P1-DIMMA1/P1-DIMMB1, P2-DIMME1/P2-DIMMF1
2 CPUs & 6 DIMMs	CPU1 + CPU2 P1-DIMMA1/P1-DIMMB1/P1-DIMMC1/P1-DIMMD1, P2-DIMME1/P2-DIMMF1
2 CPUs & 8 DIMMs	CPU1 + CPU2 P1-DIMMA1/P1-DIMMB1/P1-DIMMC1/P1-DIMMD1, P2-DIMME1/P2-DIMMF1/P2-DIMMG1/P2-DIMMH1


Populating DIMM Memory Modules

Populating RDIMM/LRDIMM DDR4 Memory Modules						
Type	Ranks Per DIMM and Data Width	DIMM Capacity (GB)	Speed (MT/s); Voltage (V); Slots per Channel (SPC) and DIMMs per Channel (DPC)			
			2 Slots per Channel			
			1 DPC		2 DPC	
		4 Gb	8 Gb	1.2 V	1.2 V	1.2 V
RDIMM	SRx4	8 GB	16 GB	2133	2400	1866
RDIMM	SRx8	4 GB	8 GB	2133	2400	1866
RDIMM	DRx8	8 GB	16 GB	2133	2400	1866
RDIMM	DRx4	16 GB	32 GB	2133	2400	1866
LRDIMM	QRx4	32 GB	64 GB	2133	2400	2133
LRDIMM 3DS	8Rx4	64 GB	128 GB	2133	2400	2133

Note: For the memory modules to work properly, please install DIMM modules of the same type, same speed and same operating frequency on the serverboard. Mixing of RDIMMs, UDIMMs or LRDIMMs is not allowed. Do not install both ECC and Non-ECC memory modules on the same serverboard.

5-7 Serverboard Details

Figure 5-4. X10DRFF Serverboard Layout
(not drawn to scale)

Notes:

1. For the latest CPU/Memory updates, please refer to our website at <http://www.supermicro.com/products/serverboard/> for details.
2. Use only the correct type of onboard CMOS battery as specified by the manufacturer. Do not install the onboard battery upside down to avoid possible explosion.
3. Jumpers not indicated are for test purposes only.
4. All graphics shown in this manual were based upon the latest PCB Revision available at the time of publishing of the manual. The serverboard you've received may or may not look exactly the same as the graphics shown in this manual.

X10DRFF Serverboard Jumpers

Jumper	Description	Default Setting
JBR1	BIOS Recovery	Pins 1-2 (Normal)
JBT1	Clear CMOS	See Chapter 2
JI ² C1/JI ² C2	SMB to PCI-E Slots	Pins 2-3 (Disabled)
JPG1	VGA Enabled	Pins 1-2 (Enabled)
JPL1/JPL2	Gigabit LAN Port1/Port2 Enable	Pins 1-2 (Enabled)
JPME2	Manufacture Mode (ME) Select	Pins 1-2 (Normal)
JPS1 (X10DRFF-C Only)	SAS Enabled	Pins 1-2 (Enabled)
JWD1	Watch Dog	Pins 1-2 (Reset)

X10DRFF Serverboard LED Indicators

LED	State
LED1 Power Switch LED	On: Power On
LED2 UID LED	Blue: Unit Identified
LEDM1 BMC Heartbeat LED	Green (Blinking): BMC Normal
LEDS1 SAS Heartbeat LED (For X10DRFF-C)	Green (Blinking): SAS Normal

X10DRFF Serverboard Connectors

Connectors	Description
Battery	Onboard CMOS Battery (See the Note on Page 1-3.)
COM1	Serial port header
FAN1/2	CPU/system cooling fan headers 1/2
IPMI_LAN1	IPMI_Dedicated LAN Port (JIPMI_LAN1)
JLAN1/JLAN2	Gigabit LAN Ports 1/2 (LAN1/2)
JIPMB1	4-pin external BMC I ² C header (for an IPMI Card)
JP3/JP4	4-pin power connectors
JP5	8-pin power connectors
JPCIE1	CPU1 Slot1 PCI-Exp. 3.0 x16 slot
JPCIE2	CPU2 Slot2 PCI-Exp. 3.0 x16 slot
JTPM1	TPM (Trusted Platform Module)/Port 80
JSD1/JSD2	SATA DOM (Device_On_Module) power connection headers 1/2
JSTBY1	5V standby power header
JUSB1	Rear USB 3.0 Port 1(3.0)
JUSB2	Rear USB 3.0 Port 2 (3.0)
JUSB3	Front_Accessible USB USB 3.0 Connector 6
JVGA1	VGA Port (VGA)
I-SATA0-5	I-SATA Connectors 0-5 (supported by the Intel PCH)
S-SATA0-1	S-SATA Connectors 0-1 (supported by the Intel SCU)
S-SATA2/3	SATA DOM (Device_on_Module) and Power Connectors 2/3
L-SAS0-3/4-7 (X10DRFF-C Only)	SAS Connections 0-3/4-7 supported by the LSI SAS controller
I-SGPIO1/2	SATA General Purpose I/O Headers 1/2 (I-SGPIO1:I-SATA 0-3, I-SGPIO2: I-SATA 4/5 supported by Intel PCH)
S-SGPIO	SCU General Purpose I/O Header 3 for S-SATA 0-3 support (from the SCU chip)
SP1	Internal buzzer/Onboard speaker
SW1	Power switch
UID (JUIDB1)	UID (Unit-Identifier) button

Note: To provide adequate power supply to the serverboard, be sure to connect the 8-pin power connector (JP5) and the 4-pin power connectors (JP3/JP4) to the power supply. Failure to do so might void the manufacturer warranty on your power supply and serverboard.

5-8 Connector Definitions

Power Connectors

To provide adequate power supply to the serverboard, two 8-pin power connectors (JP5), and two 4-pin power connectors (JP3/JP4) are located on the serverboard. The 8-pin power connectors provide power supply to the serverboard. The 4-pin power connectors are used to provide power to onboard HDDs.

12V 8-pin PWR Pin Definitions	
Pins	Definition
1~3	+12V
4~8	Ground

Required

12V 4-pin PWR Pin Definitions	
Pins	Definition
1	+12V
2-3	Ground
4	+5V

Required

SATA_DOM/SAS Power Connectors

In addition to 4-pin and 8-pin power connectors, two 3-pin power connectors (JSD1/JSD2) are used to provide power to onboard SATA DOM (Disk_On_Module) devices, and one 2-pin power connector (JPSAS1) is used for SAS power supply. Connect an appropriate cables here to provide power for your SATA DOM and SAS devices. See the layout below for the locations of the power connectors.

DOM PWR Pin Definitions	
Pin#	Definition
1	+5V
2	Ground
3	Ground

Warning: To ensure adequate power supply to your serverboard, be sure to connect all the power connectors mentioned above to your power supply For proper system operation.

Power Button

A power button is located at POWERBUTTON on the serverboard. Connect a cable here to use the power button, which will allow you to power on or power off the system from the front side of the chassis. See the layout for the location.

Power Button Pin Definitions	
Pin#	Definition
1	Control
2	Ground

Standby Power

The Standby Power header is located at STBY1 on the serverboard. See the table on the right for pin definitions.

Standby Power Pin Definitions

Pin#	Definition
1	+5V Standby
2	Ground
3	No Connection

Universal Serial Bus (USB) Connections

Two USB ports (JUSB1/JUSB2) are located on the I/O back panel. JUSB1 is used as Rear USB 3.0 Port 1; while JUSB2 is used as USB 3.0 Port 2. In addition, JUSB3, located next to the TPM/Port 80 slot, is used as USB 3.0 Connector 6 for front chassis access. USB Cables are not included. See the tables on the right for pin definitions.

Rear USB 1/2 (3.0) Pin Definitions

Pin#	Signal Name	Description
1	VBUS	Power
2	D-	USB 3.0 Differential Pair
3	D+	
4	Ground	Ground of PWR Return
5	StdA_SSRX-	SuperSpeed Receiver
6	StdA_SSRX+	Differential Pair
7	GND_DRAIN	Ground for Signal Return
8	StdA_SSTX-	SuperSpeed Transmitter
9	StdA_SSTX+	Differential Pair

USB6 (3.0) for Front Panel Access Pin Definitions

USB 5 Pin#	Definition	USB 4/6 Pin#	Definition
1	+5V	2	+5V
3	USB_PN2	4	USB_PN3
5	USB_PP2	6	USB_PP3
7	Ground	8	Ground
9	Key	10	Ground

IPMB I²C SMB

A System Management Bus header for the IPMI slot is located at JIPMB1. Connect an appropriate cable here to use the IPMB I²C connection on your system.

SMB Header (JIPMB1) Pin Definitions

Pin#	Definition
1	Data
2	Ground
3	Clock
4	No Connection

Ethernet LAN Ports

Two Ethernet ports (LAN1/2) are located on the I/O backplane on the serverboard. These two LAN ports support Gigabit LAN connections. In addition, an IPMI-dedicated LAN, located next to LAN 2 on the backplane, provides IPMI KVM support. All these ports accept RJ45 type cables. (**Note:** Please refer to the LED Indicator Section for LAN LED information.)

LAN Ports (LAN1/2) Pin Definition			
Pin#	Definition	Pin#	Definition
1	P2V5SB	10	SGND
2	TD0+	11	Act LED
3	TD0-	12	P3V3SB
4	TD1+	13	Link 100 LED (Yellow, +3V3SB)
5	TD1-	14	Link 1000 LED (Yellow, +3V3SB)
6	TD2+	15	Ground
7	TD2-	16	Ground
8	TD3+	17	Ground
9	TD3-	18	Ground

NC indicates no connection.

Serial Port Header

A COM port header is located next to the DIMM memory P1-DIMM1 slot. See the table on the right for pin definitions.

Serial Port Header Pin Definitions (COM1)			
Pin#	Definition	Pin#	Definition
1	CDC	6	DSR
2	RXD	7	RTS
3	TXD	8	CTS
4	DTR	9	RI
5	Ground		

NC indicates no connection.

Fan Headers

This serverboard has two system/CPU fan headers (Fan 1/Fan 2) on the serverboard. Both 4-pin fans headers are backward compatible with the traditional 3-pin fans. However, fan speed control is available for 4-pin fans only. The fan speeds are controlled by Thermal Management via the IPMI 2.0 interface. See the table on the right for pin definitions.

Fan Header Pin Definitions	
Pin#	Definition
1	Ground
2	+12V
3	Tachometer
4	PWR Modulation

Internal Buzzer

The internal buzzer located at SP1 can be used to provide audible indications for various beep codes. See the table on the right for pin definitions.

Internal Buzzer (SP1) Pin Definition		
Pin#	Definition	
Pin 1	Pos. (+)	Beep In
Pin 2	Neg. (-)	Alarm Speaker

TPM Header/Port 80

A Trusted Platform Module/Port 80 header, located at JTPM1, provides TPM support and Port 80 connection. Use this header to enhance system performance and data security. See the table on the right for pin definitions.

TPM/Port 80 Header (JTPM1) Pin Definitions			
Pin#	Definition	Pin#	Definition
1	LCLK	2	GND
3	LFRAME#	4	<(KEY)>
5	LRESET#	6	+5V (X)
7	LAD 3	8	LAD 2
9	+3.3V	10	LAD1
11	LAD0	12	GND
13	SMB_CLK4	14	SMB_DAT4
15	+3V_DUAL	16	SERIRQ
17	GND	18	CLKRUN# (X)
19	LPCPD#	20	LDRQ# (X)

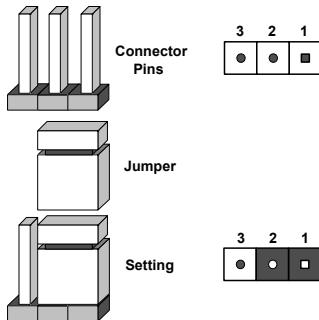
I-SGPIO 1/2 & S-SGPIO Headers

Three SGPIO (Serial-Link General Purpose Input/Output) headers (I-SGPIO 1/2 & S-SGPIO) are located on the serverboard. I-SGPIO 1 supports Serial_Link interface for onboard I- SATA 0-3, and I-SGPIO 2, I-SATA 4/5 connections. S-SGPIO supports S-SATA 0-3 from the Intel SCU. See the table on the right for pin definitions.

T-SGPIO1/2, S-SGPIO Pin Definitions			
Pin#	Definition	Pin	Definition
1	NC	2	NC
3	Ground	4	Data
5	Load	6	Ground
7	Clock	8	NC

NC indicates no connection.

Video Connector


A Video (VGA) connector is located next to IPMI_LAN on the IO backplane. This connector provides video and CRT display. Refer to the board layout below for the location.

5-9 Jumper Settings

Explanation of Jumpers

To modify the operation of the serverboard, jumpers can be used to choose between optional settings. Jumpers create shorts between two pins to change the function of the connector. Pin 1 is identified with a square solder pad on the printed circuit board. See the diagram at right for an example of jumping pins 1 and 2. Refer to the serverboard layout page for jumper locations.

Note: On two-pin jumpers, "Closed" means the jumper is on and "Open" means the jumper is off the pins.

JBT1 contact pads

CMOS Clear

JBT1 is used to clear CMOS, which will also clear any passwords. Instead of pins, this jumper consists of contact pads to prevent accidentally clearing the contents of CMOS.

To Clear CMOS

1. First power down the system and unplug the power cord(s). It is also recommended that you remove the onboard battery from the serverboard.
2. With the power disconnected, short the CMOS pads with a metal object such as a small screwdriver.
3. Remove the screwdriver (or shorting device).
4. Reconnect the power cord(s) and power on the system.

Note 1. For an ATX power supply, you must completely shut down the system, remove the AC power cord, and then short JBT1 to clear CMOS.

Note 2. Be sure to remove the onboard CMOS Battery before you short JBT1 to clear CMOS.

Note 3. Clearing CMOS will also clear all passwords.

Note 4: Do not use the PW_ON connector to clear CMOS.

LAN Ports 1/2 Enable

JPL1/JPL2 enable or disable onboard Gigabit LAN ports 1 and 2. The default setting is Enabled. See the table on the right for jumper settings.

LAN Enable Jumper Settings	
Jumper Setting	Definition
Pins 1-2	Enabled (default)
Pins 2-3	Disabled

Watch Dog Enable/Disable

Watch Dog (JWD1) is a system monitor that can reboot the system when a software application hangs. Close Pins 1-2 to reset the system if an application hangs. Close Pins 2-3 to generate non-maskable interrupt signals for the application that hangs. See the table on the right for jumper settings. Watch Dog must also be enabled in the BIOS.

Watch Dog (JWD1) Jumper Settings	
Jumper Setting	Definition
Pins 1-2	Reset (default)
Pins 2-3	NMI
Open	Disabled

VGA Enable

Jumper JPG1 allows the user to enable the onboard VGA connector. The default setting is 1-2 to enable the connection. See the table on the right for jumper settings.

VGA Enable (JPG1) Jumper Settings	
Jumper Setting	Definition
Pins 1-2	Enabled (Default)
Pins 2-3	Disabled

BMC Enable

Jumper JPB1 enables or disables the onboard BMC (Baseboard Management) Controller to provide IPMI 2.0/KVM support on the serverboard. See the table on the right for jumper settings.

BMC Enable (JPB1) Jumper Settings	
Jumper Setting	Definition
Pins 1-2	BMC Enable (Default)
Pins 2-3	Normal

I2C Bus to PCI-Exp. Slots

Jumpers JI²C1 and JI²C2 allow you to connect the System Management Bus (I²C) to PCI-Express slots. The default setting is on Pins 2/3 for normal operation. See the table on the right for jumper settings.

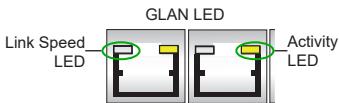
I2C to PCI-Exp (JI ² C1/JI ² C2) Jumper Settings	
Jumper Setting	Definition
Pins 1-2	Enabled
Pins 2-3	Disabled (Default)

Manufacturer Mode Select

Close pin 2 and pin 3 of Jumper JPME2 to bypass SPI flash security and force the system to operate in the Manufacturer mode, allowing the user to flash the system firmware from a host server for system setting modifications. See the table on the right for jumper settings.

ME Mode Select Jumper Settings	
Jumper Setting	Definition
Pins 1-2	Normal (Default)
Pins 2-3	Manufacture Mode

SAS Enable (For X10DRFF-C Only)

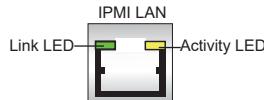

Jumper JPS1 allows you to enable the onboard SAS connectors. The default setting is 1-2 to enable the connection. See the table on the right for jumper settings.

SAS Enable Jumper Settings	
Jumper Setting	Definition
Pins 1-2	Enabled (Default)
Pins 2-3	Disabled

5-10 Onboard Indicators

GLAN LEDs

There are two GLAN ports (JLAN1/2) on the serverboard. Each Ethernet LAN port has two LEDs. The Yellow LED on the right indicates connection and activity. The Link LED on the left side may be green, amber or off to indicate the speed of the connection. See the tables at right for more information.



GLAN Activity Indicator (Right) LED Settings		
Color	Status	Definition
Off	No Connections	
Yellow	Flashing	Active

LAN Connection Speed Indicator (Left) LED Settings	
LED Color	Definition
Off	10 MHz
Green	100 MHz
Amber	1 GHz

IPMI Dedicated LAN LEDs

In addition to GLAN 1/2, an IPMI Dedicated LAN is also located on the I/O Backplane. The amber LED on the right indicates connection and activity, while the green LED on the left indicates the speed of the connection. See the tables at right for more information.

IPMI LAN Link/Speed LED (Left) & Activity LED (Right)		
Color	Status	Definition
Off	Off	No Connection
Green: Solid	Link/Speed (Left)	100 Mb/s
Amber Blinking	Activity (Right)	Active

BMC Heartbeat LED

A BMC Heartbeat LED is located at LEDM1 on the serverboard. When LEDM1 is blinking, BMC functions normally. See the table at right for more information.

BMC Heartbeat (DP1) LED Status	
Color/State	Definition
Green: Blinking	BMC: Normal
Steady On	BMC Disabled, or Failed

Unit Identification Switch/LED

A Unit Identifier button (UID) and a rear UID LED indicator (LED2) are located next to the power switch on the serverboard. When the user pushes the UID button on the rear side of chassis, the UID LED indicator will be turned on. Push the UID button again to turn off the LED indicator. The UID indicator provides easy identification of a system unit that may be in need of service.

UID LED Status		
Color/State	OS	Status
Blue: On	Windows OS	Unit Identified
Blue: Blinking	Linux OS	Unit Identified

SAS Heartbeat LED (X10DRFF-C Only)

An SAS Heartbeat LED is located at LEDS1 on the serverboard. When LEDS1 is blinking, BMC functions normally. See the table at right for more information.

SAS Heartbeat LED Status	
Color/State	Definition
Green: On	SAS: Normal

5-11 SAS/Serial ATA/PCI-E Connections

Serial ATA Ports

There are six Serial ATA Ports (I-SATA0~I-SATA 5) located on the serverboard. These SATA ports are supported by the Intel PCH. In addition, four S-SATA connectors (S-SATA0-3), supported by Intel SCU, are also located on the serverboard. S-SATA 2/3 support SATA DOMs (Devices on the modules) that contains the power pins. All SATA ports provide serial-link signal connections, which are faster than the connections of Parallel ATA. See the table on the right for pin definitions.

SATA Pin Definitions	
Pin#	Definition
1	Ground
2	TX_P
3	TX_N
4	Ground
5	RX_N
6	RX_P
7	Ground

Notes: For more information on SATA HostRAID configuration, please refer to the Intel SATA HostRAID User's Guide posted on our website @ <http://www.supermicro.com>.

SAS Ports (X10DRFF-C Only)

Eight SAS Ports, supported by LSI SAS 3008 SAS controller, are located on the serverboard. L-SAS 0-3 and L-SAS 4-7 support serial-link signal connections. See the table on the right for pin definitions.

Notes: For more information on SAS RAID configuration, please refer to the LSI MegaRAID User's Guide posted on our website @ <http://www.supermicro.com>.

PCI-Express 3.0 x16 Slots

Two PCI-Express 3.0 x16 slots (CPU1_Slot1/CPU2_Slot2) are located at JPCIE1/JPCIE2 on the serverboard. This slots support PCI-Express 3.0 connections. Refer to the layout below for the locations.

5-11 Installing Drivers

The Supermicro website contains drivers and utilities for your system at <https://www.supermicro.com/wftp/driver>. Some of these must be installed, such as the chipset driver.

After accessing the website, go into the CDR_Images (in the parent directory of the above link) and locate the ISO file for your motherboard. Download this file to a USB flash drive or a DVD. (You may also use a utility to extract the ISO file if preferred.)

Another option is to go to the Supermicro website at <http://www.supermicro.com/products/>. Find the product page for your motherboard, and "Download the Latest Drivers and Utilities".

Insert the flash drive or disk and the screenshot shown below should appear.

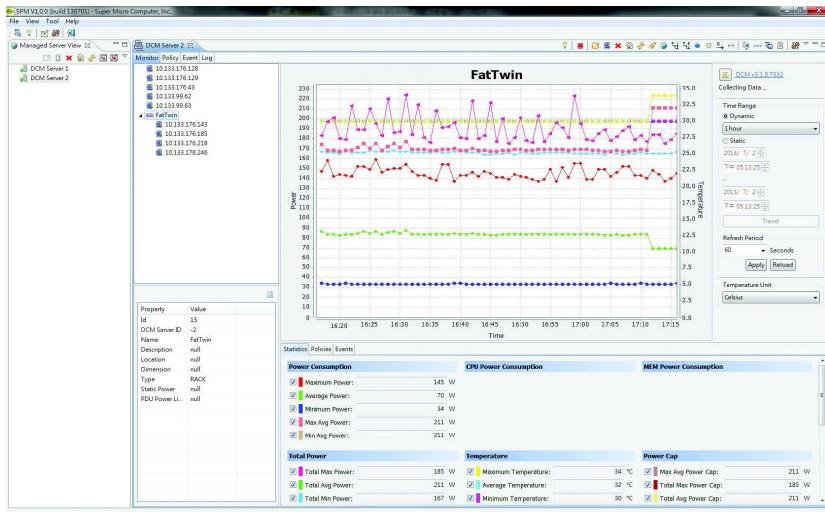
After creating a CD/DVD with the ISO files, insert the disk into the CD/DVD drive on your system and the display shown in Figure 5-5 should appear.

Figure 5-5. Driver/Tool Installation Display Screen

Note: Click the icons showing a hand writing on paper to view the readme files for each item. Click the computer icons to the right of these items to install each item (from top to the bottom) one at a time. **After installing each item, you must re-boot the system before moving on to the next item on the list.** The bottom icon with a CD on it allows you to view the entire contents.

SuperDoctor 5

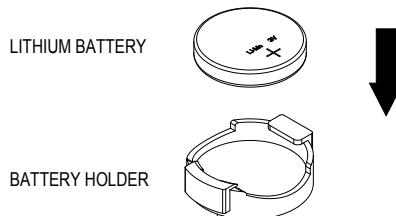
The Supermicro SuperDoctor® 5 is a hardware and operating system services monitoring program that functions in a command-line or web-based interface in Windows and Linux operating systems. The program monitors system health information such as CPU temperature, system voltages, system power consumption, fan speed, and provides alerts via email or Simple Network Management Protocol (SNMP).


SuperDoctor 5 comes in local and remote management versions and can be used with Nagios to maximize your system monitoring needs. With SuperDoctor 5 Management Server (SSM Server), you can remotely control power on/off and reset chassis intrusion for multiple systems with SuperDoctor 5 or IPMI. SD5 Management Server monitors HTTP, FTP, and SMTP services to optimize the efficiency of your operation.

Note: The default User Name and Password for SuperDoctor 5 is admin / admin.

Figure 5-6. SuperDoctor 5 Interface Display Screen (Health Information)

Figure 5-7. SuperDoctor 5 Interface Display Screen (Remote Control)



Note: The SuperDoctor 5 program and User's Manual can be downloaded from the Supermicro web site at http://www.supermicro.com/products/nfo/sms_sd5.cfm. For Linux, we recommend that you use the SuperDoctor II application instead.

5-12 Serverboard Battery

Caution: There is a danger of explosion if the onboard battery is installed upside down, which will reverse its polarities (see Figure 5-8). This battery must be replaced only with the same or an equivalent type recommended by the manufacturer (CR2032). Dispose of used batteries according to the manufacturer's instructions.

Figure 5-8. Installing the Onboard Battery

Please handle used batteries carefully. Do not damage the battery in any way; a damaged battery may release hazardous materials into the environment. Do not discard a used battery in the garbage or a public landfill. Please comply with the regulations set up by your local hazardous waste management agency to dispose of your used battery properly.

Notes

Chapter 6

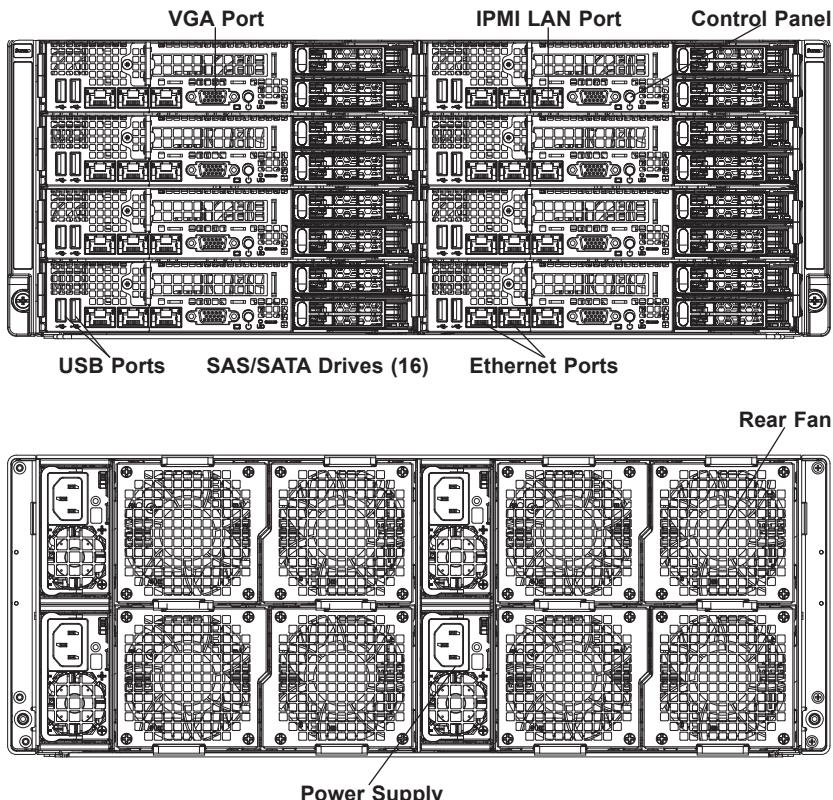
Advanced Chassis Setup

This chapter covers the steps required to install components and perform maintenance on the SCF418IL-R1K62BP chassis. For component installation, follow the steps in the order given to eliminate the most common problems encountered. If some steps are unnecessary, skip ahead to the step that follows.

Tools Required: The only tool you will need to install components and perform maintenance is a Philips screwdriver.

6-1 Static-Sensitive Devices

Electrostatic discharge (ESD) can damage electronic components. To prevent damage to any printed circuit boards (PCBs), it is important to handle them very carefully. The following measures are generally sufficient to protect your equipment from ESD damage.


Precautions

- Use a grounded wrist strap designed to prevent static discharge.
- Touch a grounded metal object before removing any board from its antistatic bag.
- Handle a board by its edges only; do not touch its components, peripheral chips, memory modules or gold contacts.
- When handling chips or modules, avoid touching their pins.
- Put the serverboard, add-on cards and peripherals back into their antistatic bags when not in use.
- For grounding purposes, make sure your computer chassis provides excellent conductivity between the power supply, the case, the mounting fasteners and the serverboard.

Unpacking

The serverboard is shipped in antistatic packaging to avoid static damage. When unpacking the board, make sure the person handling it is static protected.

Figure 6-1. Front Chassis Views

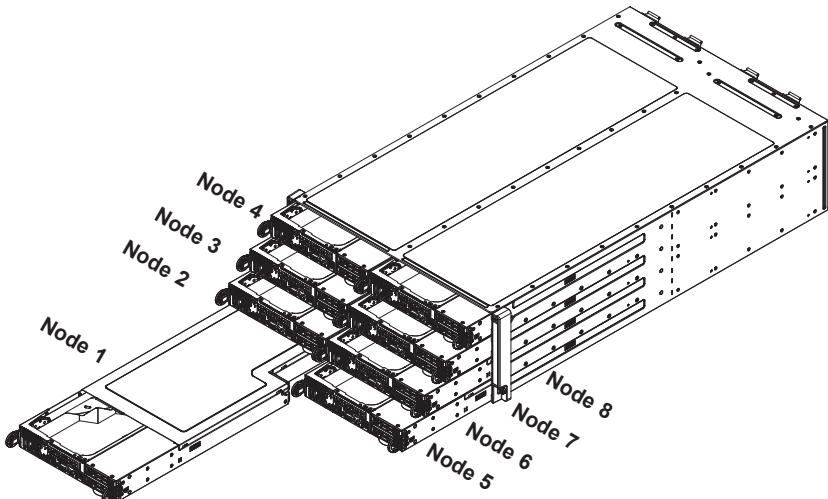
6-2 Control Panel

The control panel for each node is located on the front of the chassis. The LEDs inform you of system status.

See Chapter 3 for details on the LEDs and the control panel buttons.

6-3 Removing the Power Cord

Before performing any setup or maintenance on the chassis, use the following procedure to ensure that power has been removed disconnected from the system.


Removing the Power Cord

1. Use the operating system to power down the system, following the on-screen prompts.
2. After the system has completely shut-down, carefully grasp the head of the power cord and gently pull it out of the back of the power supply.
3. If your system has dual redundant power supplies, remove the cords from both power supplies.
4. Disconnect the cord from the power strip or wall outlet.

6-4 Installing and Removing the Node Drawers

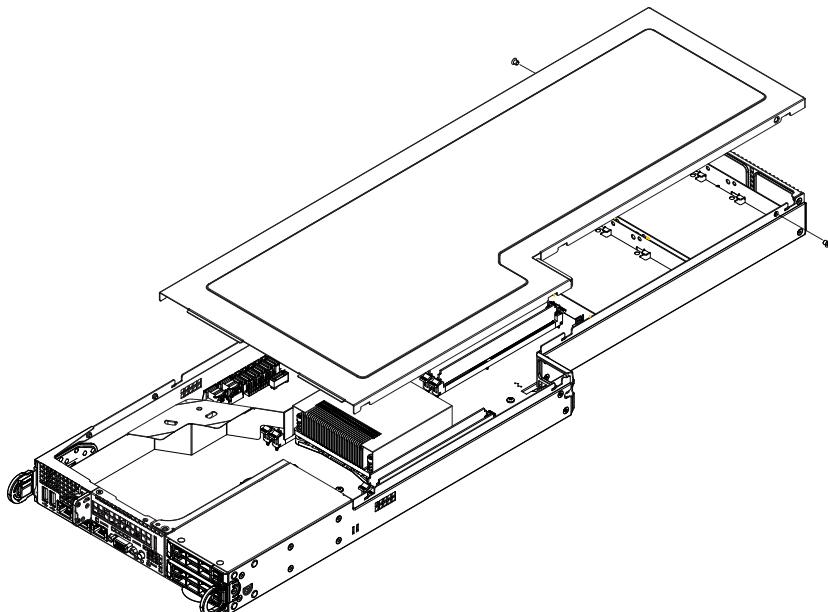
The F418IL chassis contains eight individual serverboards in separate node drawers (Figure 6-2). Each serverboard node controls a set of two hard drives. Note that if a serverboard node drawer is pulled out of the chassis, the hard drives associated with that node will power down as well.

Figure 6-2: Hard Drives and the Corresponding Serverboards

6-5 Removing Nodes from the Chassis

Each of the eight individual nodes may be removed from the chassis. Note that when a node is removed from the chassis, the hard drives located in the node will shut-down.

Removing a Node

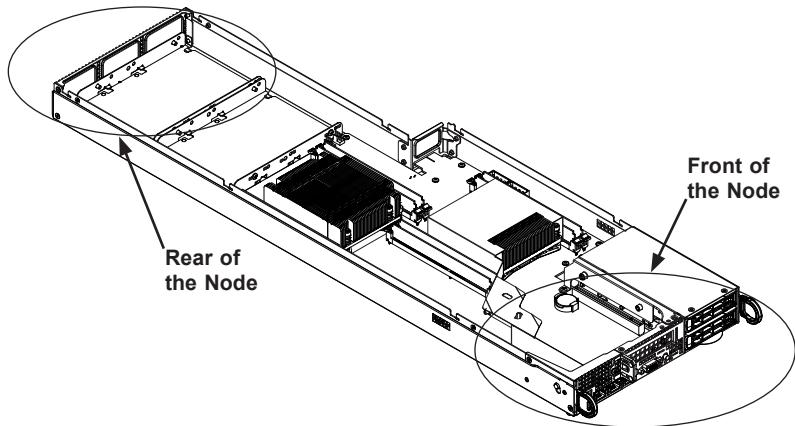

1. Power down the system and remove the power cords from the rear of the node as described in Section 6-3.
2. Grasp the node by the handles on either side of the front of the node.
3. Pull down the left side handle to release the locking mechanism.
4. Carefully pull the node forward and out of the chassis.

6-6 Removing the Cover from the Node

Removing the Node Cover

1. Remove the power cord from the node as described in Section 5-2 and remove the node from the chassis as described in Section 5-4.
2. Remove the two screws on either side of the rear of the node.
3. Lift the cover up and off the node.

Figure 6-3: Removing the Node Cover

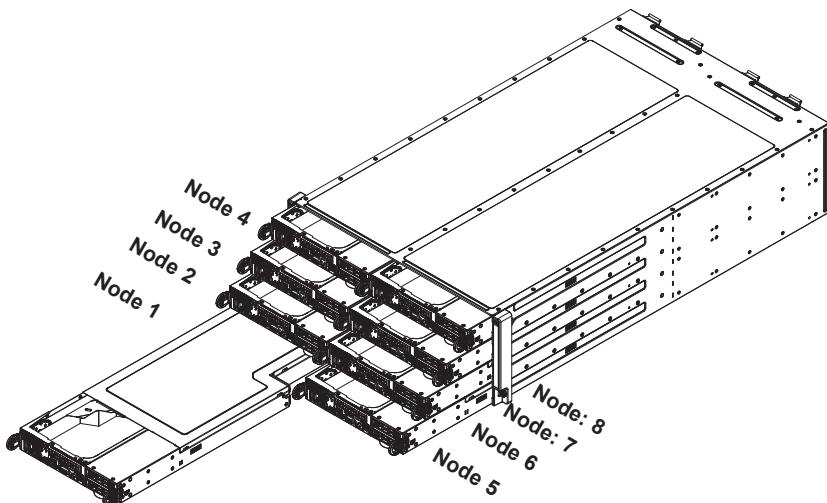

6-7 Node Configuration

SCF418IL-R1K62BP Node Layout

The specifications for the SCF418IL-R1K62BP nodes are shown in the table below and the layout is shown in Figure 6-4.

SCF418IL-R1K62BP Node Layout Specifications	
Front of Node	Rear of Node
One Low-profile Expansion Card and Two 2.5" HDD	Nothing

Figure 6-4: SCF418IL-R1K62BP Node

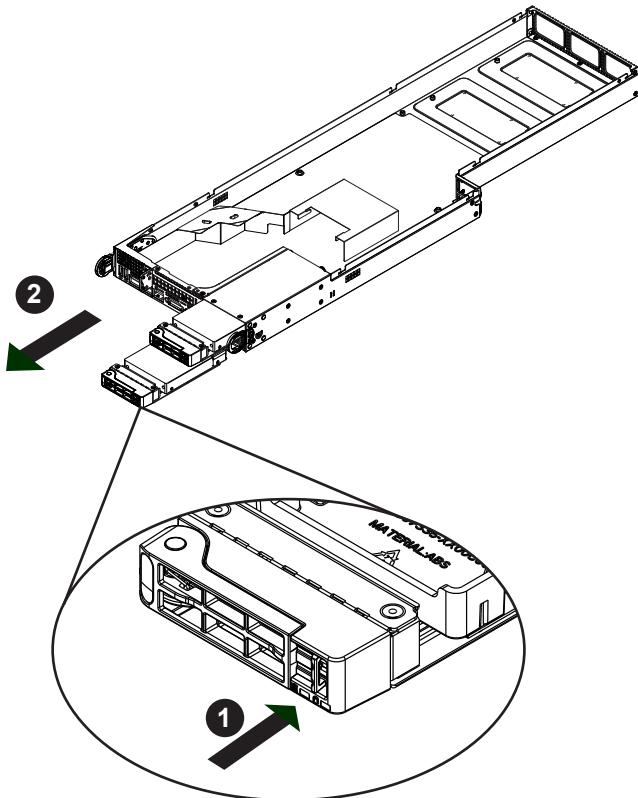


6-8 Nodes and Associated Hard Drives

The F418IL chassis contains eight individual serverboards in separate 1U nodes. Each node controls the hard drives contained within that node. Note that if a node is pulled out of the chassis, the hard drives associated with that node will power down as well. Refer to the charts below for your specific chassis configuration

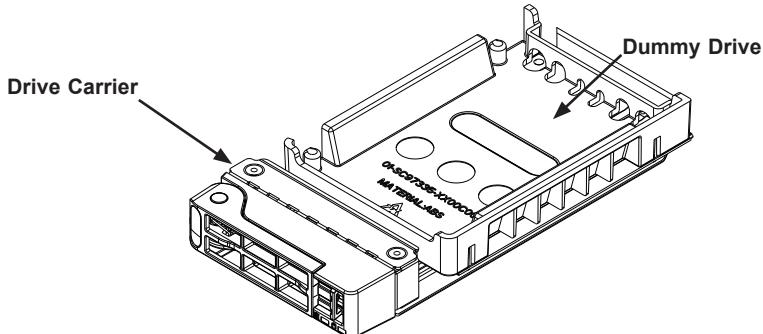
SCF418IL-R1K62BP	
Node 4 Controls two HDDs D1-D2	Node 8 Controls two HDDs H1-H2
Node 3 Controls two HDDs C1-C2	Node 7 Controls two HDDs G1-G2
Node 2 Controls two HDDs B1-B2	Node 6 Controls two HDDs, F1-F2
Node 1 Controls two HDDs A1-A2	Node 5 Controls two HDDs E1-E2

Figure 6-5: Hard Drives and the Corresponding Serverboards

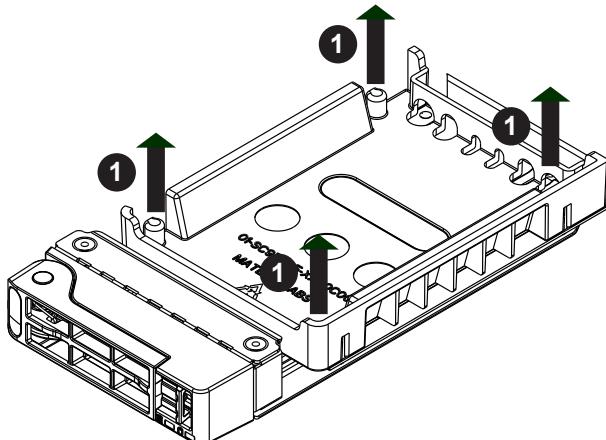

Installing and Removing 2.5" Hot-swap Hard Drives

Removing 2.5" Hard Drive Carriers from the Node

1. Press the release button on the drive carrier. This extends the drive bay handle.
2. Use the handle to pull the drive carrier out of the chassis.


Figure 6-6: Removing a 2.5" Hard Drive Carrier

Note: Your nodes may vary from the one shown in the illustration.


Removing 2.5" Hard Drive Carriers from the Node

1. Press the release button on the drive carrier. This extends the drive bay handle.
2. Use the handle to pull the drive carrier out of the chassis.

Figure 6-7: 2.5" Hard Drive Carrier

The 2.5" hard drives are mounted in the drive carrier to simplify their installation and removal from the chassis. These carriers also help promote proper airflow for the drive bays.

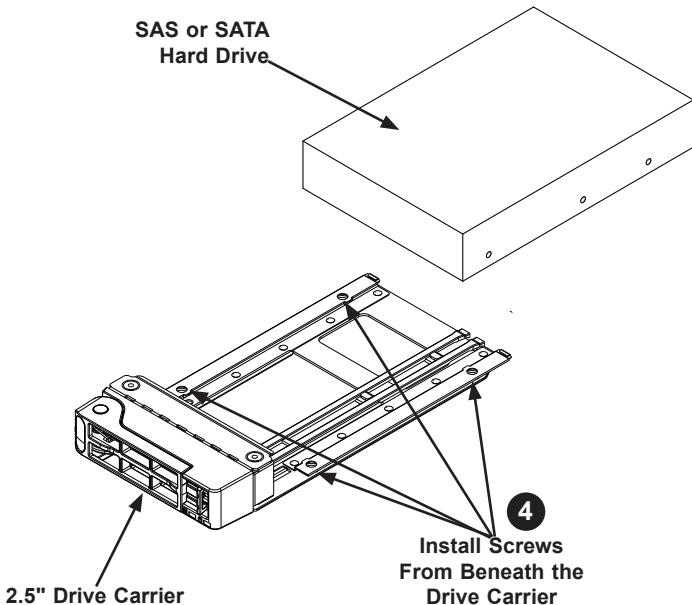

Warning: Except for short periods of time while swapping hard drives, do not operate the server with the hard drives bays empty.

Figure 6-8: Removing the Dummy Drive from the 2.5" Drive Carrier

Installing a 2.5" Drive into the Hard Drive Carrier

1. Remove the two screws holding the drive to the carrier.
2. Remove the drive from the carrier.
3. Install a new drive into the carrier with the printed circuit board side facing down so that the mounting holes align with those in the carrier.
4. Secure the hard drive by tightening all four screws.

Figure 6-9: Installing a 2.5" Hard Drive in the Drive Carrier

5. Use the open handle to replace the drive carrier into the chassis. Make sure to close the drive carrier handle.

Note that if a node is pulled out of the chassis, the hard drives associated with that node will power down as well. The hard drives are hot-swappable and may be removed from the node without removing the node from the chassis or powering down the system.

Caution: Enterprise level hard disk drives are recommended for use in Supermicro chassis and servers. For information on recommended HDDs, visit the Supermicro Web site at <http://www.supermicro.com/products/info/files/storage/SAS-CompList.pdf>

6-9 Installing the Serverboard

Compatible Serverboards

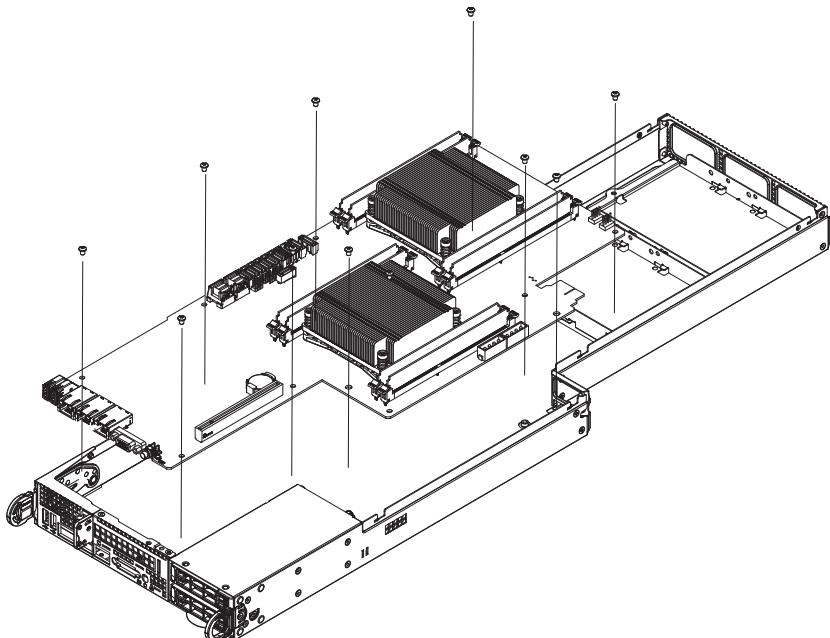
For the most up-to-date information on compatible serverboards and other parts, visit the Supermicro Web site at www.supermicro.com.

Permanent and Optional Standoffs

Standoffs prevent short circuits by creating space between the serverboard and the floor of the node. The F418IL chassis includes permanent standoffs in locations used by most serverboards. These standoffs use the rounded Phillips head screws included in the F418IL accessories packaging.

Some serverboards require additional screws for heatsinks, general components and/or non-standard security. Optional standoffs are used for these serverboards.

To use an optional standoff, compare the mounting holes in the serverboard with those in the floor of the node. Then place a screw through the bottom the node and secure the screw with a hexagonal nut (rounded side up).


Depending upon the configuration of the serverboard being used, it is also possible that some of the optional standoffs which are pre-installed in the chassis, may need to be removed. Add or remove standoffs as needed.

Installing the Serverboard

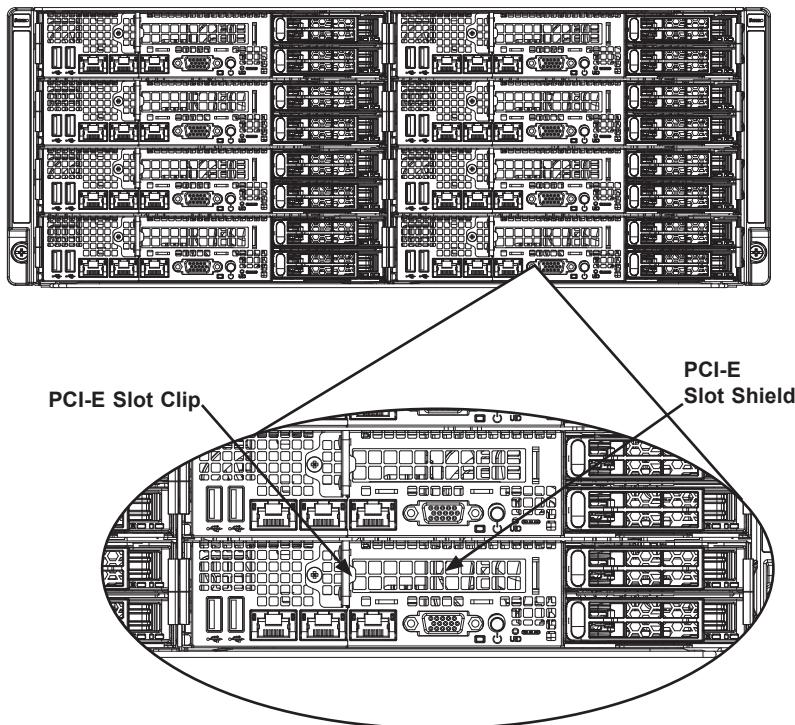
1. Review the documentation that came with your serverboard. Become familiar with component placement, requirements, cautions, and cable connections.
2. Remove the power cords from the rear of the power supplies as described in Section 6-3. Remove the node from the chassis as described in Section 6-5 and remove the cover from the node as described in Section 6-6.
3. Compare the holes in the serverboard to those in the node. Add or remove standoffs as necessary.
4. Lay the serverboard in the node, aligning the standoffs with the serverboard.
5. Secure the serverboard to the floor of the node tray using the rounded, Phillips head screws included for this purpose. Do not exceed eight pounds of torque when tightening down the serverboard.
6. Install the expansion card associated with the serverboard if the chassis is a hot-swappable version. Refer to the next section for instructions on installing the expansion card
7. Secure the CPU(s), heatsinks, and other components to the serverboard as described in the serverboard documentation. Do not exceed eight pounds of torque when tightening down the serverboard.

8. Connect the cables between the serverboard, backplane, chassis, front panel, and power supply, as needed. The fans may be temporarily removed to allow access to the backplane ports.
9. Replace the expansion card bracket and secure the bracket with a screw.

Figure 6-9: Installing the Serverboard in the Node Tray

6-10 Installing Expansion Cards

F418IL PCI-E Slot Configurations

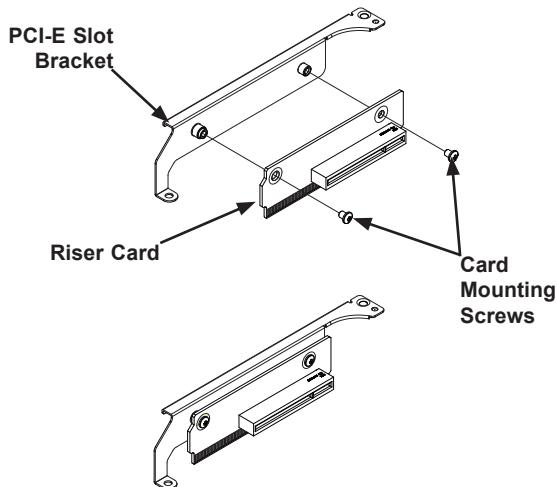

Some F418IL chassis models support one or more expansion cards in each node. Refer to the tables below to determine the PCI-E slot configuration for your particular chassis.

SCF418IL-R1K62BP Node Layout Specifications	
Front of Node	Rear of Node
One Low-profile Expansion Card and Two 2.5" HDD	Nothing

Installing Front Low-profile Expansion Cards

The following instructions are for chassis nodes in which the expansion cards are mounted in the front of the node.

Figure 6-10: I/O Shield Configuration


Assembling the PCI-E Slot Bracket Assembly

Each node supports one expansion card. This expansion card must be plugged into a riser card, which in turn plugs into the serverboard.

Assembling the PCI-E Slot Bracket Assembly

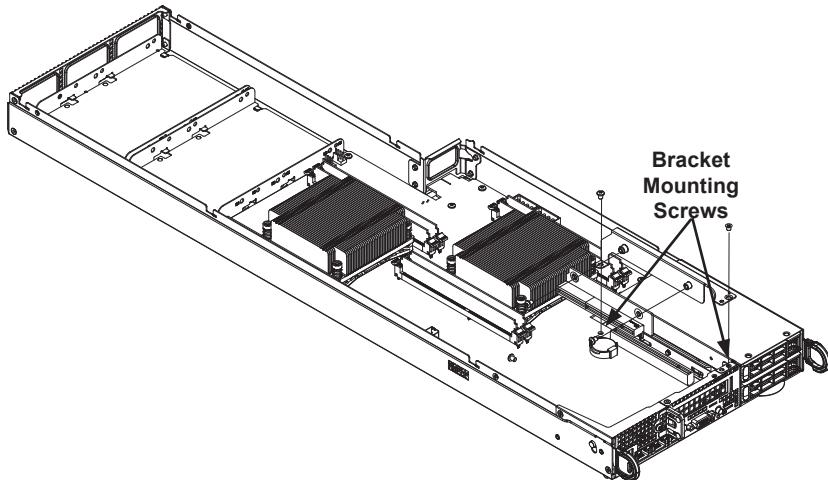

1. Power down the system and remove the power cords from the rear of the power supplies as described in Section 6-3. Remove the node from the chassis as described in Section 6-5 and remove the cover from the node as described in Section 6-6.
2. Open the PCI-E slot clip and remove the PCI-E slot shield. (See the illustration on the previous page)
3. Remove the three mounting screws securing the PCI-E slot bracket to the node.
4. Lift the PCI-E slot bracket out of the node.

Figure 6-12: Assembling the PCI-E Slot Bracket and Riser Card

5. Secure the riser card to the PCI-E slot bracket using the two screws included in the accessory box.

Figure 6-13: Installing the Riser Card and Bracket

6. Insert the riser card into the appropriate slot on the serverboard.
7. Simultaneously insert the expansion card into the riser card, while sliding the expansion card bracket into the open PCI-E slot.
8. Secure the expansion card bracket to the PCI-E slot bracket using two screws as illustrated.

6-11 Installing Air Shrouds

Air Shrouds

Air shrouds concentrate airflow to maximize fan efficiency. The F418IL chassis requires an air shroud in each node.

Installing an Air Shroud

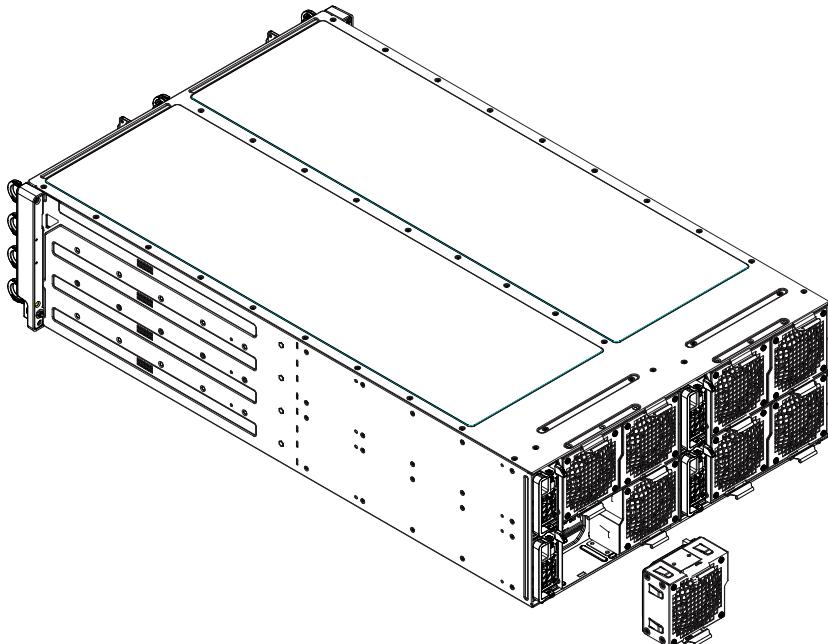
1. Power down the system and remove the power cords from the rear of the power supplies as described in Section 6-3. Remove the node from the chassis as described in Section 6-5 and remove the cover from the node as described in Section 6-6.
2. Make sure that the serverboard and all components are properly installed in each node.
3. Place the air shroud over the serverboard, as illustrated below. The air shroud sits behind the system fans and goes over the top of the serverboard and its components.
4. Repeat the procedure for the remaining three nodes.

Figure 6-14: Installing the Air Shroud

6-12 Removing and Installing System Fans

The F418IL chassis includes eight (8) 8-cm cooling fans per system. These fans are redundant, hot-plug and must be replaced when they fail.

Removing and Installing External System Fans


Removing a Rear Exhaust Fan

1. Determine the failed fan.
2. Press the release tab on the top and bottom of the fan and pull it away from rear of the node.

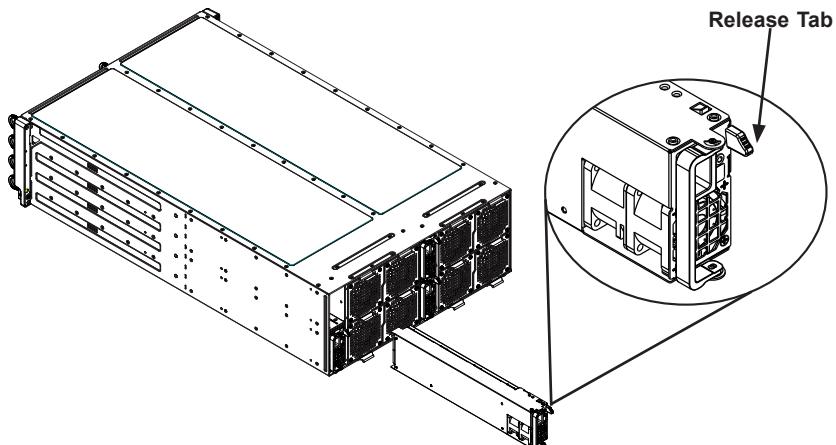
Installing a Rear Exhaust Fan

1. Press the release tab on the top and bottom of the fan and insert it into the open fan bay.
2. Push the fan into the bay until it clicks into the locked position.

Figure 6-15: Installing the External Fan

6-13 Replacing the Power Supplies

The F418IL chassis includes 1620 Watt power supplies. These power supplies are auto-switching capable. This enables the power supplies to automatically sense and operate at a 100v to 240v input voltage. An amber light will be illuminated on the power supply when the power is off. An illuminated green light indicates that the power supply is operating.


Power Supply Replacement

The F418IL chassis utilizes redundant, hot-plug power supplies. In the unlikely event that the power supply unit needs to be replaced, one power supply can be removed, without powering down the system. Replacement units can be ordered directly from Supermicro (See the contact information in Chapter 1 of this manual).

Changing the Power Supply

1. Disconnect the AC power cord on the back of the failed power supply.
2. Press the release tab on the back of the power supply and pull the power supply out using the handle provided.
3. Push the replacement power supply module into the power bay until it clicks into the locked position.
4. Plug the AC power cord back into the module and power up the node.

Figure 6-16: Changing the F418IL Chassis Power Supplies

Notes

Chapter 7

BIOS

7-1 Introduction

This chapter describes the AMI BIOS Setup Utility for the X10DRFF serverboard. The 16 MB AMI SPI BIOS® Flash ROM is stored in a Flash EEPROM and can be easily updated. This chapter describes the basic navigation of the AMI BIOS Setup Utility setup screens.

Starting BIOS Setup Utility

To enter the AMI BIOS Setup utility screens, press the **** key while the system is booting up.

Note: In most cases, the **** key is used to invoke the AMI BIOS setup screen. There are a few cases when other keys are used, such as **<F3>**, **<F4>**, etc.

Each main BIOS menu option is described in this manual. The Main BIOS setup menu screen has two main frames. The left frame displays all the options that can be configured. Grayed-out options cannot be configured. Options in blue can be configured by the user. The right frame displays the key legend. Above the key legend is an area reserved for informational text related to the option currently selected in the left frame.

Note: The AMI BIOS has default informational messages built in. The manufacturer retains the option to include, omit, or change any of these informational messages.

The AMI BIOS Setup utility uses a key-based navigation system called "hot keys." Most of the AMI BIOS setup utility "hot keys" can be used at any time during setup navigation. These keys include **<F3>**, **<F4>**, **<Enter>**, **<ESC>**, arrow keys, etc.

Note 1: In this section, options printed in **Bold** are default settings.

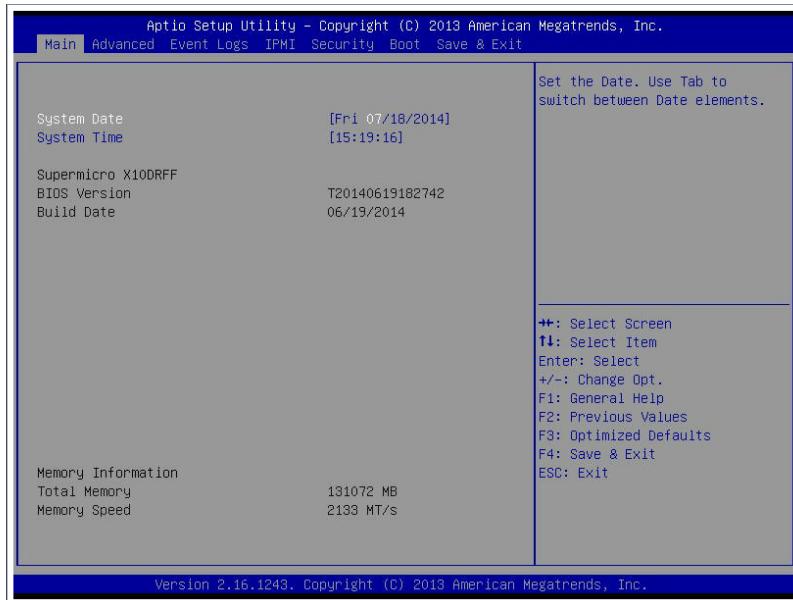
Note 2: **<F3>** is used to load optimal default settings. **<F4>** is used to save the settings and exit the setup utility.

How To Change the Configuration Data

The configuration data that determines the system parameters may be changed by entering the AMI BIOS Setup utility. This Setup utility can be accessed by pressing **<Delete>** at the appropriate time during system boot.

Note: For AMI UEFI BIOS Recovery, please refer to the UEFI BIOS Recovery User Guide posted @ <http://www.supermicro.com/support/manuals/>.

Starting the Setup Utility


Normally, the only visible Power-On Self-Test (POST) routine is the memory test. As the memory is being tested, press the <Delete> key to enter the main menu of the AMI BIOS Setup utility. From the main menu, you can access the other setup screens. An AMI BIOS identification string is displayed at the left bottom corner of the screen below the copyright message.

Warning! Do not upgrade the BIOS unless your system has a BIOS-related issue. Flashing the wrong BIOS can cause irreparable damage to the system. In no event shall the manufacturer be liable for direct, indirect, special, incidental, or consequential damage arising from a BIOS update. If you have to update the BIOS, do not shut down or reset the system while the BIOS is being updated to avoid possible boot failure.

7-2 Main Setup

When you first enter the AMI BIOS setup utility, you will enter the Main setup screen. You can always return to the Main setup screen by selecting the Main tab on the top of the screen. The Main BIOS setup screen is shown below.

The following Main menu items will be displayed:

System Date/System Time

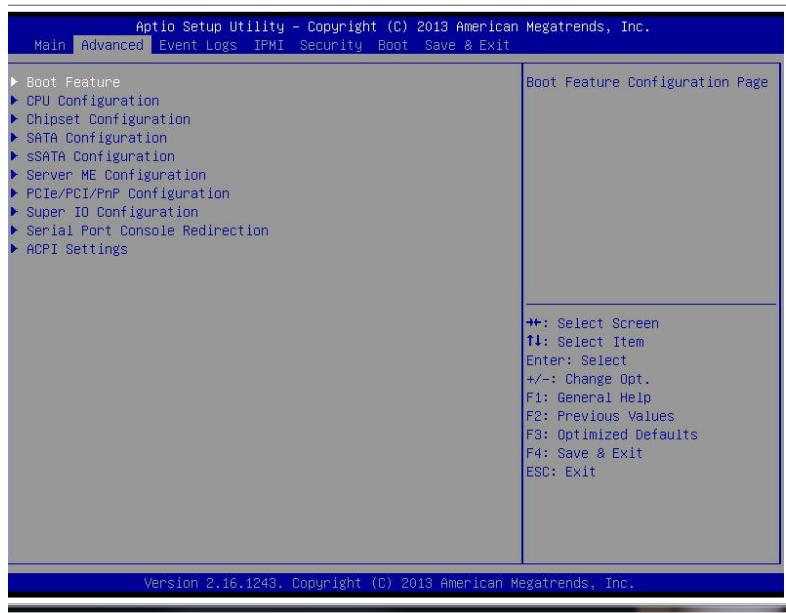
Use this option to change the system date and time. Highlight *System Date* or *System Time* using the arrow keys. Enter new values using the keyboard. Press the <Tab> key or the arrow keys to move between fields. The date must be entered in Day MM/DD/YYYY format. The time is entered in HH:MM:SS format.

Note: The time is in the 24-hour format. For example, 5:30 P.M. appears as 17:30:00.

Supermicro X10DRFF

BIOS Version: This item displays the version of the BIOS ROM used in the system.

Build Date: This item displays the date when the version of the BIOS ROM used in the system was built.


Memory Information

Total Memory: This item displays the total size of memory available in the system.

Memory Speed: This item displays the default speed of the memory modules installed in the system.

7-3 Advanced Setup Configurations

Use the arrow keys to select Advanced setup and press <Enter> to access the submenu items:

Warning: Take Caution when changing the Advanced settings. An incorrect value, a very high DRAM frequency or an incorrect BIOS timing setting may cause the system to malfunction. When this occurs, restore the setting to the manufacture default setting.

►Boot Feature

Quiet Boot

Use this feature to select the screen display between POST messages or the OEM logo at bootup. Select Disabled to display the POST messages. Select Enabled to display the OEM logo instead of the normal POST messages. The options are **Enabled** and **Disabled**.

AddOn ROM Display Mode

Use this item to set the display mode for the Option ROM. Select Keep Current to use the current AddOn ROM display setting. Select Force BIOS to use the Option ROM display mode set by the system BIOS. The options are **Force BIOS** and **Keep Current**.

Bootup Num-Lock State

Use this feature to set the Power-on state for the Numlock key. The options are **Off** and **On**.

Wait For 'F1' If Error

Select Enabled to force the system to wait until the 'F1' key is pressed if an error occurs. The options are **Disabled** and **Enabled**.

INT19 (Interrupt 19) Trap Response

Interrupt 19 is the software interrupt that handles the boot disk function. When this item is set to **Immediate**, the ROM BIOS of the host adaptors will "capture" Interrupt 19 at bootup immediately and allow the drives that are attached to these host adaptors to function as bootable disks. If this item is set to **Postponed**, the ROM BIOS of the host adaptors will not capture Interrupt 19 immediately and allow the drives attached to these adaptors to function as bootable devices at bootup. The options are **Immediate** and **Postponed**.

Re-try Boot

When **EFI Boot** is selected, the system BIOS will automatically reboot the system from an EFI boot device after its initial boot failure. Select **Legacy Boot** to allow the BIOS to automatically reboot the system from a Legacy boot device after its initial boot failure. The options are **Disabled**, **Legacy Boot**, and **EFI Boot**.

Power Configuration

DeepSx Power Policies

Use this feature to configure the Advanced Configuration and Power Interface (ACPI) settings for the system. Enable S3 to use Standby Mode (Suspend-to-RAM) and maintain power supply to the system RAM when the system is in the sleep mode. Enable S4 to use Hibernation mode (Suspend to Disk) so that all data stored in the main memory can be saved in a non-volatile memory area such as in a hard drive and then power down the system. Enable S5 to power off the whole system except the power supply unit (PSU) and keep the power button "alive" so that the user can "wake-up" the system by using an USB keyboard or mouse. The options are **Disabled**, **Enabled in S5**, **Enabled in S4-S5**, and **Enabled in S3-S4-S5**.

Watch Dog Function

Select Enabled to allow the Watch Dog timer to reboot the system when it is inactive for more than 5 minutes. The options are **Enabled** and **Disabled**.

Power Button Function

This feature controls how the system shuts down when the power button is pressed. Select 4 Seconds Override for the user to power off the system after pressing and holding the power button for 4 seconds or longer. Select Instant Off to instantly power off the system as soon as the user presses the power button. The options are 4 Seconds Override and **Instant Off**.

Restore on AC Power Loss

Use this feature to set the power state after a power outage. Select Power-Off for the system power to remain off after a power loss. Select Power-On for the system power to be turned on after a power loss. Select Last State to allow the system to resume its last power state before a power loss. The options are Power-On, Stay-Off and **Last State**.

►CPU Configuration

This submenu displays the following CPU information as detected by the BIOS. It also allows the user to configure CPU settings.

- Processor Socket
- Processor ID
- Processor Frequency
- Processor Max Ratio
- Processor Min Ratio
- Microcode Revision
- L1 Cache RAM
- L2 Cache RAM
- L3 Cache RAM
- CPU 1 Version
- CPU 2 Version

Clock Spread Spectrum

Select Enabled to allow the BIOS to monitor and attempt to reduce the level of Electromagnetic Interference caused by the components whenever needed. The options are **Disabled** and Enabled.

Hyper-Threading (All)

Select Enable to support Intel's Hyper-threading Technology to enhance CPU performance. The options are **Enable** and Disable.

Cores Enabled

This feature allows the user to set the number of CPU cores to enable. Enter "0" to enable all cores. There are 14 cores available in the system. The default setting is **0**.

Execute-Disable Bit (Available if supported by the OS & the CPU)

Select Enable for Execute Disable Bit Technology support, which will allow the processor to designate areas in the system memory where an application code can execute and where it cannot, thus preventing a worm or a virus from flooding illegal codes to overwhelm the processor to damage the system during an attack. This feature is used in conjunction with the items: "Clear MCA," "VMX," "Enable SMX," and "Lock Chipset" for Virtualization media support. The options are **Enable** and Disable. (Refer to Intel and Microsoft websites for more information.)

PPIN Control

Select Unlock/Enable to use the Protected-Processor Inventory Number (PPIN) in the system. The options are **Unlock/Enable** and Unlock/Disable.

Hardware Prefetcher (Available when supported by the CPU)

If set to Enable, the hardware prefetcher will prefetch streams of data and instructions from the main memory to the L2 cache to improve CPU performance. The options are Disable and **Enable**.

Adjacent Cache Prefetch (Available when supported by the CPU)

Select Enable for the CPU to prefetch both cache lines for 128 bytes as comprised. Select Disable for the CPU to prefetch both cache lines for 64 bytes. The options are Disable and **Enable**.

Note: Please reboot the system for changes on this setting to take effect.
Please refer to Intel's website for detailed information.

DCU (Data Cache Unit) Streamer Prefetcher (Available when supported by the CPU)

If set to Enable, the DCU Streamer Prefetcher will prefetch data streams from the cache memory to the DCU (Data Cache Unit) to speed up data accessing and processing to enhance CPU performance. The options are Disable and **Enable**.

DCU IP Prefetcher

If set to Enable, the IP prefetcher in the DCU (Data Cache Unit) will prefetch IP addresses to improve network connectivity and system performance. The options are **Enable** and Disable.

DCU Mode

Use this feature to set the data-prefecting mode for the DCU (Data Cache Unit). The options are **32KB 8Way Without ECC** and **16KB 4Way With ECC**.

Direct Cache Access (DCA)

Select Enable to use Intel DCA (Direct Cache Access) Technology to improve the efficiency of data transferring and accessing. The options are **Auto**, **Enable**, and **Disable**.

DCA Prefetch Delay

A DCA Prefetcher is used with a TOE (TCP/IP Offload Engine) adapter to prefetch data in order to shorten execution cycles and maximize data processing efficiency. Prefetching data too frequently can saturate the cache directory and delay necessary cache access. This feature reduces or increases the frequency the system prefetches data. The options are **Disable**, [8], [16], [24], **[32]**, [40], [48], [56], [64], [72], [80], [88], [96], [104], [112].

X2 APIC (Advanced Programmable Interrupt Controller)

Based on Intel's Hyper-Threading architecture, each logical processor (thread) is assigned 256 APIC IDs (APIDs) in 8-bit bandwidth. When this feature is set to **Enable**, the APIC ID will be expanded from 8 bits (X2) to 16 bits to provide 512 APIDs to each thread to enhance CPU performance. The options are **Disable** and **Enable**.

AES-NI

Select **Enable** to use the Intel Advanced Encryption Standard (AES) New Instructions (NI) to ensure data security. The options are **Enable** and **Disable**.

Intel Virtualization Technology

Select **Enable** to use Intel Virtualization Technology support for Direct I/O VT-d support by reporting the I/O device assignments to the VMM (Virtual Machine Monitor) through the DMAR ACPI tables. This feature offers fully-protected I/O resource sharing across Intel platforms, providing greater reliability, security and availability in networking and data-sharing. The options are **Enable** and **Disable**.

►Advanced Power Management Configuration

Advanced Power Management Configuration

Power Technology

Select Energy Efficient to support power-saving mode. Select Custom to customize system power settings. Select Max Performance to optimize system performance. Select Disabled to disable power-saving settings. The options are Disable, **Energy Efficient**, and Custom.

If the option is set to Energy Efficient or Custom, the following items will display:

Config TDP (Configuring Thermal Design Power)

Select Enable to configure TDP power settings to enhance thermal management for the CPUs. The options are Enable and **Disable**.

Config TDP Level (Available when Config TDP above is set to Enable)

Use this item to set TDP configuration level to enhance CPU thermal management. The options are **Nominal**, Level 1, and Level 2.

►CPU P State Control (Available when Power Technology is set to Custom)

EIST (P-states)

EIST (Enhanced Intel SpeedStep Technology) allows the system to automatically adjust processor voltage and core frequency to reduce power consumption and heat dissipation. The options are Disable and **Enable**.

Turbo Mode

Select Enabled to use the Turbo Mode to boost system performance. The options are **Enable** and Disable.

P-state Coordination

This feature is used to change the P-state (Power-Performance State) coordination type. P-state is also known as "SpeedStep" for Intel processors. Select HW_ALL to change the P-state coordination type for hardware components only. Select SW_ALL to change the P-state coordination type for all software installed in the system. Select SW_ANY to change the P-state coordination type for a software program in the system. The options are **HW_All**, **SW_All**, and **SW_Any**.

►CPU C State Control (Available when Power Technology is set to Custom)

Package C State limit

Use this item to set the limit on the C-State package register. The options are C0/1 state, C2 state, C6 (non-Retention) state, and **C6 (Retention) state**.

CPU C3 Report

Select Enable to allow the BIOS to report the CPU C3 State (ACPI C2) to the operating system. During the CPU C3 State, the CPU clock generator is turned off. The options are Enable and **Disable**.

CPU C6 Report (Available when Power Technology is set to Custom)

Select Enable to allow the BIOS to report the CPU C6 state (ACPI C3) to the operating system. During the CPU C6 state, power to all cache is turned off. The options are **Enable** and Disable.

Enhanced Halt State (C1E)

Select Enabled to use Enhanced Halt-State technology, which will significantly reduce the CPU's power consumption by reducing the CPU's clock cycle and voltage during a Halt-state. You will need to reboot the system for the change of this setting to take effect. The options are Disable and **Enable**.

►CPU T State Control (Available when Power Technology is set to Custom)

ACPI (Advanced Configuration Power Interface) T-States

Select Enable to support CPU throttling by the operating system to reduce power consumption. The options are **Enable** and Disable.

►Chipset Configuration

Warning! Please set the correct settings for the items below. A wrong configuration setting may cause the system to become malfunction.

►North Bridge

This feature allows the user to configure the settings for the Intel North Bridge.

►IIO Configuration

EV DFX (Device Function On-Hide) Feature

When this feature is set to Enable, the EV_DFX Lock Bits that are located on a processor will always remain clear during electric tuning. The options are **Disable** and **Enable**.

►IIO1 Configuration/IIO2 Configuration

EV DFX (Device Function On-Hide) Feature

When this feature is set to Enable, the EV_DFX Lock Bits that are located on a processor will always remain clear during electric tuning. The options are **Disable** and **Enable**.

►IIO1 Configuration

CPU1 SLOT1 PCI-E 3.0 x16 Link Speed

Use this item to configure the link speed of a PCI-E device installed on the PCI-E slot specified by the user. The options are Gen 1 (2.5 GT/s), Gen 2 (5 GT/s), and **Gen 3 (8 GT/s)**.

►IIO2 Configuration

CPU2 SLOT2 PCI-E 3.0 x16 Link Speed

Use this item to configure the link speed of a PCI-E device installed on the PCI-E slot specified by the user. The options are Gen 1 (2.5 GT/s), Gen 2 (5 GT/s), and **Gen 3 (8 GT/s)**.

►IOAT (Intel® IO Acceleration) Configuration

Enable IOAT

Select Enable to enable Intel I/OAT (I/O Acceleration Technology) support, which will significantly reduce CPU overhead by leveraging CPU architectural improvements and freeing the system resource for other tasks. The options are **Enable** and **Disable**.

No Snoop

Select Enable to support no-snoop mode for each CB device. The options are **Disable** and **Enable**.

Relaxed Ordering

Select Enable to enable Relaxed Ordering support which will allow certain transactions to violate the strict-ordering rules of PCI bus for a transaction to be completed prior to other transactions that have already been enqueued earlier. The options are **Disable** and **Enable**.

►Intel VT for Directed I/O (VT-d)

Intel VT for Direct I/O (VT-d)

Intel® VT for Directed I/O (VT-d)

Select Enable to use Intel Virtualization Technology support for Direct I/O VT-d support by reporting the I/O device assignments to the VMM (Virtual Machine Monitor) through the DMAR ACPI Tables. This feature offers fully-protected I/O resource sharing across Intel platforms, providing greater reliability, security and availability in networking and data-sharing. The options are **Enable** and **Disable**.

Interrupt Remapping

Select Enable for Interrupt Remapping support to enhance system performance. The options are **Enable** and **Disable**.

Coherency Support (Non-Isoch)

Select Enable for the Non-Isoch VT-d engine to pass through DMA (Direct Memory Access) to enhance system performance. The options are **Enable** and **Disable**.

Coherency Support (Isoch)

Select Enable for the Isoch VT-d engine to pass through ATS to enhance system performance. The options are **Enable** and **Disable**.

►QPI (Quick Path Interconnect) Configuration

QPI Status

The following information will display:

- Number of CPU
- Number of IIO
- Current QPI Link Speed
- Current QPI Link Frequency
- QPI Global MMIO Low Base/Limit
- QPI Global MMIO High Base/Limit
- QPI PCIe Configuration Base/Size

Link Speed Mode

Use this item to select the data transfer speed for QPI Link connections. The options are **Fast** and **Slow**.

Link Frequency Select

Use this item to select the desired frequency for QPI Link connections. The options are 6.4GB/s, 8.0GB/s, 9.6GB/s, **Auto**, and Auto Limited.

Link L0p Enable

Select Enable for Link L0p support. The options are **Enable** and **Disable**.

Link L1 Enable

Select Enable for Link L1 support. The options are **Enable** and **Disable**.

COD Enable (Available when the OS and the CPU support this feature)

Select Enabled for Cluster-On-Die support to enhance system performance in cloud computing. The options are **Enable**, **Disable**, and **Auto**.

Early Snoop (Available when the OS and the CPU support this feature)

Select Enable for Early Snoop support to enhance system performance. The options are **Enable**, **Disable**, and **Auto**.

Isoc Mode

Select Enable for Isochronous support to meet QoS (Quality of Service) requirements. This feature is especially important for Virtualization Technology. The options are **Enable** and **Disable**.

►Memory Configuration

Enforce POR

Select Enable to enforce POR restrictions on DDR4 frequency and voltage programming. The options are **Enabled** and **Disabled**.

Memory Frequency

Use this feature to set the maximum memory frequency for onboard memory modules. The options are **Auto**, 1333, 1400, 1600, 1800, 1867, 2000, 2133, 2200, 2400, 2600, 2667, and **Reserved** (Do not select **Reserved**).

ECC Support

Select Enable to enable Error Checking & Correction (ECC) support for onboard memory modules. The options are **Auto**, **Enable** and **Disable**.

Data Scrambling

Select Enabled to enable data scrambling to enhance system performance and data integrity. The options are **Auto**, **Disabled** and **Enabled**.

Enable ADR

Select Enabled for ADR (Automatic Diagnostic Repository) support to enhance memory performance. The options are **Enabled** and **Disabled**.

DRAM RAPL (Running Average Power Limit) Baseline

Use this feature to set the run-time power-limit baseline for the DRAM modules. The options are **Disable**, DRAM RAPL Mode 0, and **DRAM RAPL Mode 1**.

Set Throttling Mode

Throttling improves reliability and reduces power consumption in processors via automatic voltage control during processor idle states. The options are **Disabled** and **CLTT** (Closed Loop Thermal Throttling).

Socket Interleave Below 4GB

Select Enabled for the memory above the 4G Address space to be split between two sockets. The options are **Enable** and **Disable**.

Channel Interleaving

Use this item to set the channel interleaving mood for the DIMM modules. The options are **Auto**, 1-Way Interleave, 2-Way Interleave, 3-Way Interleave, and 4-Way Interleave.

Rank Interleaving

Use this item to select the memory interleaving mode for memory ranks. The options are **Auto**, 1-Way, 2-Way, 4-Way, and 8-Way.

A7 Mode

Select Enabled to support the A7 (Addressing) mode to improve memory performance. The options are **Enable** and **Disable**.

►DIMM Information

This item displays the status of a DIMM module as detected by the BIOS.

P1-DIMMA1/P1-DIMMB1/P1-DIMMC1/P1-DIMMD1/P2-DIMME1/P2-DIMMF1/P2-DIMMG1/P2-DIMMH1

►Memory RAS (Reliability_Availability_Serviceability) Configuration

Use this submenu to configure the following Memory RAS settings.

RAS Mode

When **Disable** is selected, RAS is not supported. When **Mirror** is selected, the serverboard maintains two identical copies of all data in memory for data backup. When **Lockstep** is selected, the serverboard uses two areas of memory to run the same set of operations in parallel to boost performance. The options are **Disable**, **Mirror**, and **Lockstep Mode**.

Lockstep x4 DIMMs

Select **Enabled** to enable Lockstep support for x4 DIMM modules. The options are **Auto**, **Disabled**, and **Enabled**.

Memory Rank Sparing

Select **Enable** to enable memory-sparing support for memory ranks to improve memory performance. The options are **Disabled** and **Enabled**.

Patrol Scrub

Patrol Scrubbing is a process that allows the CPU to correct correctable memory errors detected on a memory module and send the correction to the requestor (the original source). When this item is set to **Enable**, the PCH (Platform Control Hub) will read and write-back one cache line every 16K cycles if there is no delay caused by internal processing. By using this method, roughly 64 GB of memory behind the PCH will be scrubbed every day. The options are **Enable** and **Disable**.

Patrol Scrub Interval

This feature allows you to decide how many hours the system should wait before the next complete patrol scrub is performed. Use the keyboard to enter a value from 0-24. The Default setting is **24**.

Demand Scrub

Demand Scrubbing is a process that allows the CPU to correct correctable memory errors found on a memory module. When the CPU or I/O issues a demand-read command, and the read data from memory turns out to be a correctable error, the error is corrected and sent to the requestor (the original source). Memory is updated as well. Select Enable to use Demand Scrubbing for ECC memory correction. The options are **Enable** and **Disable**.

Device Tagging

Select Enable to support device tagging. The options are **Disable** and **Enable**.

►South Bridge Configuration

The following South Bridge information will display:

►USB Configuration

- USB Module Version
- USB Devices

Legacy USB Support

Select Enabled to support onboard legacy USB devices. Select Auto to disable legacy support if there are no legacy USB devices present. Select Disable to have all USB devices available for EFI applications only. The options are **Enabled**, **Disabled** and **Auto**.

XHCI (Extensible Host Controller Interface) Hand-Off

This is a work-around solution for operating systems that do not support XHCI (Extensible Host Controller Interface) hand-off. The XHCI ownership change should be claimed by the XHCI driver. The settings are **Enabled** and **Disabled**.

EHCI (Enhanced Host Controller Interface) Hand-Off

This item is for operating systems that do not support Enhanced Host Controller Interface (EHCI) hand-off. When this item is enabled, EHCI ownership change will be claimed by the EHCI driver. The settings are **Enabled** and **Disabled**.

USB Mass Storage Driver Support

Select Enabled for USB mass storage device support. The options are **Disabled** and **Enabled**.

Port 60/64 Emulation

Select Enabled for I/O port 60h/64h emulation support, which in turn, will provide complete legacy USB keyboard support for the operating systems that do not support legacy USB devices. The options are **Disabled** and **Enabled**.

USB 3.0 Support

Select Enabled for USB 3.0 support. The options are **Smart Auto**, **Auto**, **Enabled**, **Disabled** and **Manual**.

EHCI1

Select Enabled to enable EHCI (Enhanced Host Controller Interface) support on USB 2.0 connector #1 (-at least one USB 2.0 connector should be enabled for EHCI support.) The options are **Disabled** and **Enabled**.

EHCI2

Select Enabled to enable EHCI (Enhanced Host Controller Interface) support on USB 2.0 connector #2 (-at least one USB 2.0 connector should be enabled for EHCI support.) The options are **Disabled** and **Enabled**.

XHCI (Extensible Host Controller Interface) Pre-Boot Drive

Select Enabled to enable XHCI (Extensible Host Controller Interface) support on a pre-boot drive specified by the user. The options are **Enabled** and **Disabled**.

XHCI (Extensible Host Controller Interface) Idle L1

Select Enabled for XHCI (Extensible Host Controller Interface) Idle Level 1 support on a USB 3.0 connector specified by the user. The options are **Enabled** and **Disabled**.

PCH DMI ASPM

Select Enabled to enable ASPM (Active State Power Management) support for a PCH DMI drive. The options are **Disabled** and **Enabled**.

►SATA Configuration

When this submenu is selected, AMI BIOS automatically detects the presence of the SATA devices that are supported by the Intel PCH chip and displays the following items:

SATA Controller

This item enables or disables the onboard SATA controller supported by the Intel PCH chip. The options are **Enabled** and **Disabled**.

Configure SATA as

Select IDE to configure a SATA drive specified by the user as an IDE drive. Select AHCI to configure a SATA drive specified by the user as an AHCI drive. Select RAID to configure a SATA drive specified by the user as a RAID drive. The options are IDE, **AHCI**, and RAID.

**If the item above "Configure SATA as" is set to AHCI, the following items will display:*

Support Aggressive Link Power Management

When this item is set to Enabled, the SATA AHCI controller manages the power usage of the SATA link. The controller will put the link to a low power state when the I/O is inactive for an extended period of time, and the power state will return to normal when the I/O becomes active. The options are **Enabled** and **Disabled**.

SATA Port 0~ Port 5

This item displays the information detected on the installed SATA drive on the particular SATA port.

- Model number of drive and capacity
- Software Preserve Support

Port 0~ Port 5

Select Enabled to enable a SATA port specified by the user. The options are **Disabled** and **Enabled**.

Port 0 ~ Port 5 Hot Plug

Select Enabled to enable hot-plugging support for a port specified by the user, which will allow the user to replace a SATA disk drive installed on this port without shutting down the system. The options are **Enabled** and **Disabled**.

Port 0 ~ Port 5 Spin Up Device

On an edge detect from 0 to 1, set this item to allow the PCH to initialize the device. The options are **Enabled** and **Disabled**.

Port 0 ~ Port 5 SATA Device Type

Use this item to specify if the SATA port specified by the user should be connected to a Solid State drive or a Hard Disk Drive. The options are **Hard Disk Drive** and **Solid State Drive**.

**If the item above "Configure SATA as" is set to IDE, the following items will display:*

Serial ATA Port 0~ Port 5

This item indicates that a SATA port specified by the user is installed (present) or not.

Port 0 ~ Port 5 SATA Device Type (Available when a SATA port is detected)

Use this item to specify if the SATA port specified by the user should be connected to a Solid State drive or a Hard Disk Drive. The options are **Hard Disk Drive** and **Solid State Drive**.

**If the item above "Configure SATA as" is set to RAID, the following items will display:*

Support Aggressive Link Power Management

When this item is set to Enabled, the SATA AHCI controller manages the power usage of the SATA link. The controller will put the link to a low power state when the I/O is inactive for an extended period of time, and the power state will return to normal when the I/O becomes active. The options are **Enabled** and **Disabled**.

SATA RAID Option ROM/UEFI Driver

Select EFI to load the EFI driver for system boot. Select Legacy to load a legacy driver for system boot. The options are **Disabled**, **EFI**, and **Legacy**.

SATA/sSATA RAID Boot Select

Select SATA Controller to boot the system from a SATA RAID device. Select sSATA Controller to boot the system from a S-SATA RAID device. Select Both to boot the system either from a SATA RAID device or from an sSATA RAID device. Please note that the option-Both is not supported by the Windows Server 2012/R2 OS. The options are **Both**, **SATA Controller**, and **sSATA Controller**.

Serial ATA Port 0~ Port 5

This item displays the information detected on the installed SATA drives on the particular SATA port.

- Model number of drive and capacity
- Software Preserve Support

Port 0~ Port 5

Select Enabled to enable a SATA port specified by the user. The options are Disabled and **Enabled**.

Port 0 ~ Port 5 Hot Plug

Select Enabled to enable hot-plugging support for a port specified by the user, which will allow the user to replace a SATA disk drive installed on this port without shutting down the system. The options are **Enabled** and Disabled.

Port 0 ~ Port 5 Spin Up Device

On an edge detect from 0 to 1, set this item to allow the PCH to start a COMRESET initialization to the device. The options are Enabled and **Disabled**.

Port 0 ~ Port 5 SATA Device Type

Use this item to specify if the SATA port specified by the user should be connected to a Solid State drive or a Hard Disk Drive. The options are **Hard Disk Drive** and Solid State Drive.

►sSATA Configuration

When this submenu is selected, AMI BIOS automatically detects the presence of the SATA devices that are supported by the PCH-sSATA controller and displays the following items:

sSATA Controller

This item enables or disables the onboard SATA controller supported by the Intel PCH-sSATA controller. The options are **Enabled** and Disabled.

Configure sSATA as

Select IDE to configure an sSATA drive specified by the user as an IDE drive. Select AHCI to configure an sSATA drive specified by the user as an AHCI drive. Select RAID to configure an sSATA drive specified by the user as a RAID drive. The options are IDE, **AHCI**, and RAID.

**If the item above "Configure sSATA as" is set to AHCI, the following items will display:*

Support Aggressive Link Power Management

When this item is set to Enabled, the SATA AHCI controller manages the power usage of the SATA link. The controller will put the link to a low power state when the I/O is inactive for an extended period of time, and the power state will return to normal when the I/O becomes active. The options are **Enabled** and Disabled.

sSATA Port 0~ Port 3

This item displays the information detected on the installed on the sSATA port specified by the user.

- Model number of drive and capacity
- Software Preserve Support

sSATA Port 0~ Port 3

Select Enabled to enable an sSATA port specified by the user. The options are Disabled and Enabled.

sSATA Port 0 ~ Port 3 Hot Plug

Select Enabled to enable hot-plugging support for a port specified by the user, which will allow the user to replace a sSATA disk drive installed on this port without shutting down the system. The options are **Enabled** and **Disabled**.

sSATA Port 0 ~ Port 3 Spin Up Device

On an edge detect from 0 to 1, set this item to allow the PCH to start a COMRESET initialization to the device. The options are Enabled and **Disabled**.

Port 0 ~ Port 3 sSATA Device Type

Use this item to specify if the sSATA port specified by the user should be connected to a Solid State drive or a Hard Disk Drive. The options are **Hard Disk Drive** and Solid State Drive.

**If the item above "Configure sSATA as" is set to IDE, the following items will display:*

sSATA Port 0~ Port 3

This item indicates that an sSATA port specified by the user is installed (present) or not.

Port 0 ~ Port 3 sSATA Device Type (Available when a SATA port is detected)

Use this item to specify if the sSATA port specified by the user should be connected to a Solid State drive or a Hard Disk Drive. The options are **Hard Disk Drive** and Solid State Drive.

**If the item above "Configure sSATA as" is set to RAID, the following items will display:*

Support Aggressive Link Power Management

When this item is set to Enabled, the SATA AHCI controller manages the power usage of the SATA link. The controller will put the link to a low power state when the I/O is inactive for an extended period of time, and the power state will return to normal when the I/O becomes active. The options are **Enabled** and **Disabled**.

sSATA RAID Option ROM/UEFI Driver

Select EFI to load the EFI driver for system boot. Select Legacy to load a legacy driver for system boot. The options are **Disabled**, **EFI**, and **Legacy**.

SATA/sSATA RAID Boot Select

Select SATA Controller to use a device supported by the SATA connector for system boot. Select sSATA Controller to use a device supported by the sSATA connector for system boot. The options are **SATA Controller**, **sSATA Controller**, and **Both**.

sSATA Port 0~ Port 3

This item displays the information detected on the installed sSATA drives on the particular sSATA port.

- Model number of drive and capacity
- Software Preserve Support

sSATA Port 0~ Port 3

Select Enabled to enable an sSATA port specified by the user. The options are **Disabled** and **Enabled**.

sSATA Port 0 ~ Port 3 Hot Plug

This feature designates this port for hot plugging. Set this item to Enabled for hot-plugging support, which will allow the user to replace an sSATA drive without shutting down the system. The options are **Enabled** and **Disabled**.

sSATA Port 0 ~ Port 3 Spin Up Device

On an edge detect from 0 to 1, set this item to allow the PCH to start a COMRESET initialization to the device. The options are **Enabled** and **Disabled**.

Port 0 ~ Port 3 sSATA Device Type

Use this item to specify if the sSATA port specified by the user should be connected to a Solid State drive or a Hard Disk Drive. The options are **Hard Disk Drive** and **Solid State Drive**.

► Server ME (Management Engine) Configuration

This feature displays the following system ME configuration settings.

- General ME Configuration
- Operational Firmware Version
- Recovery Firmware Version
- ME Firmware Features
- ME Firmware Status #1
- ME Firmware Status #2
 - Current State
 - Error Code

► PCIe/PCI/PnP Configuration

The following PCI information will be displayed:

- PCI Bus Driver Version

VGA Palette Snoop

Select Enabled to support VGA palette register snooping which will allow a PCI card that does not contain its own VGA color palette to examine a video card palette and mimic it for proper color display. The options are **Disabled** and Enabled.

PCI AER (Advanced Error-Reporting) Support

Select Enabled to support Advanced Error-Reporting for onboard PCI devices. The options are **Disabled** and Enabled.

Above 4G Decoding (Available if the system supports 64-bit PCI decoding)

Select Enabled to decode a PCI device that supports 64-bit in the space above 4G Address. The options are Enabled and **Disabled**.

SR-IOV (Available if the system supports Single-Root Virtualization)

Select Enabled for Single-Root IO Virtualization support. The options are Enabled and **Disabled**.

Maximum Payload

Select Auto for the system BIOS to automatically set the maximum payload value for a PCI-E device to enhance system performance. The options are **Auto**, 128 Bytes, and 256 Bytes.

Maximum Read Request

Select Auto for the system BIOS to automatically set the maximum size for a read request for a PCI-E device to enhance system performance. The options are **Auto**, 128 Bytes, 256 Bytes, 512 Bytes, 1024 Bytes, 2048 Bytes, and 4096 Bytes.

ASPM Support

Use this item to set the Active State Power Management (ASPM) level for a PCI-E device. Select Auto for the system BIOS to automatically set the ASPM level based on the system configuration. Select Disabled to disable ASPM support. The options are **Disabled** and Auto.

Warning: Enabling ASPM support may cause some PCI-E devices to fail!

MMIOHBase

Use this item to select the base memory size according to memory-address mapping for the PCH. The base memory size must be between 4032G to 4078G. The options are **56T**, 48T, 24T, 512G, and 256G.

MMIO High Size

Use this item to select the high memory size according to memory-address mapping for the PCH. The options are **256G**, 128G, 512G, and 1024G.

CPU1 Slot1 PCI-E 3.0X16 OPROM/CPU2 Slot2 PCI-E 3.0X16 OPROM/ Onboard SAS Option ROM

Select Enabled to enable Option ROM support to boot the computer using a device installed on the slot specified by the user. The options are **Disabled**, **Legacy** and **EFI**.

Onboard LAN Option ROM Type

Select **Legacy** to boot the computer using a Legacy device installed on the serverboard. The options are **Legacy** and **EFI**.

Onboard LAN1 Option ROM/Onboard LAN2 Option ROM/Onboard Video Option ROM

Use this option to select the type of device installed in LAN Port1, LAN Port2 or the onboard video device used for system boot. The default setting for LAN1 Option ROM is **PXE**, for LAN2 Option ROM is **Disabled**, and for Onboard Video Option ROM is **Legacy**.

VGA Priority

Use this item to select the graphics device to be used as the primary video display for system boot. The options are **Onboard** and **Offboard**.

Network Stack

Select Enabled to enable PXE (Preboot Execution Environment) or UEFI (Unified Extensible Firmware Interface) for network stack support. The options are Enabled and **Disabled**.

►Super IO Configuration

Super IO Chip AST2400

►COM1 Configuration/SOL (Serial-Over-LAN) Configuration

COM1/SOL

Select Enabled to enable the onboard serial port specified by the user. The options are **Enabled** and **Disabled**.

Device Settings

This item displays the base I/O port address and the Interrupt Request address of a serial port specified by the user.

Change Port 1 Settings/Change Port 2 Settings

This feature specifies the base I/O port address and the Interrupt Request address of Serial Port 1 or Serial Port 2. Select **Auto** for the BIOS to automatically assign the base I/O and IRQ address to a serial port specified.

The options for Serial Port 1 are **Auto**, (IO=3F8h; IRQ=4), (IO=3F8h; IRQ=3, 4, 5, 6, 7, 9, 10, 11, 12), (IO=2F8h; IRQ=3, 4, 5, 6, 7, 9, 10, 11, 12); (IO=3E8h; IRQ=3, 4, 5, 6, 7, 9, 10, 11, 12), and (IO=2E8h; IRQ=3, 4, 5, 6, 7, 9, 10, 11, 12).

The options for SOL are **Auto**, (IO=3F8h; IRQ=4), (IO=3F8h; IRQ=3, 4, 5, 6, 7, 9, 10, 11, 12), (IO=2F8h; IRQ=3, 4, 5, 6, 7, 9, 10, 11, 12); (IO=3E8h; IRQ=3, 4, 5, 6, 7, 9, 10, 11, 12), and (IO=2E8h; IRQ=3, 4, 5, 6, 7, 9, 10, 11, 12).

►Serial Port Console Redirection

COM 1

COM 1 Console Redirection

Select Enabled to enable COM Port 1 Console Redirection, which will allow a client machine to be connected to a host machine at a remote site for networking. The options are **Disabled** and **Enabled**.

**If the item above set to Enabled, the following items will become available for configuration:*

►COM1 Console Redirection Settings

Terminal Type

This feature allows the user to select the target terminal emulation type for Console Redirection. Select VT100 to use the ASCII Character set. Select VT100+ to add color and function key support. Select ANSI to use the Extended ASCII Character Set. Select VT-UTF8 to use UTF8 encoding to map Unicode characters into one or more bytes. The options are ANSI, VT100, **VT100+**, and VT-UTF8.

Bits Per second

Use this item to set the transmission speed for a serial port used in Console Redirection. Make sure that the same speed is used in the host computer and the client computer. A lower transmission speed may be required for long and busy lines. The options are 9600, 19200, 38400, 57600 and **115200** (bits per second).

Data Bits

Use this feature to set the data transmission size for Console Redirection. The options are 7 (Bits) and **8 (Bits)**.

Parity

A parity bit can be sent along with regular data bits to detect data transmission errors. Select Even if the parity bit is set to 0, and the number of 1's in data bits is even. Select Odd if the parity bit is set to 0, and the number of 1's in data bits is odd. Select None if you do not want to send a parity bit with your data bits in transmission. Select Mark to add a mark as a parity bit to be sent along with the data bits. Select Space to add a Space as a parity bit to be sent with your data bits. The options are **None**, Even, Odd, Mark and Space.

Stop Bits

A stop bit indicates the end of a serial data packet. Select 1 Stop Bit for standard serial data communication. Select 2 Stop Bits if slower devices are used. The options are **1** and **2**.

Flow Control

Use this item to set the flow control for Console Redirection to prevent data loss caused by buffer overflow. Send a "Stop" signal to stop sending data when the receiving buffer is full. Send a "Start" signal to start sending data when the receiving buffer is empty. The options are **None** and Hardware RTS/CTS.

VT-UTF8 Combo Key Support

Select Enabled to enable VT-UTF8 Combination Key support for ANSI/VT100 terminals. The options are **Enabled** and **Disabled**.

Recorder Mode

Select Enabled to capture the data displayed on a terminal and send it as text messages to a remote server. The options are **Disabled** and **Enabled**.

Resolution 100x31

Select Enabled for extended-terminal resolution support. The options are **Disabled** and **Enabled**.

Legacy OS Redirection Resolution

Use this item to select the number of rows and columns used in Console Redirection for legacy OS support. The options are **80x24** and **80x25**.

Putty KeyPad

This feature selects Function Keys and KeyPad settings for Putty, which is a terminal emulator designed for the Windows OS. The options are **VT100**, **LINUX**, **XTERMR6**, **SCO**, **ESCN**, and **VT400**.

Redirection After BIOS Post

Use this feature to enable or disable legacy Console Redirection after BIOS POST. When the option-Bootloader is selected, legacy Console Redirection is disabled before booting the OS. When Always Enable is selected, legacy Console Redirection remains enabled upon OS bootup. The options are **Always Enable** and **Bootloader**.

SOL Console Redirection

SOL Console Redirection

Select Enabled to use the SOL port for Console Redirection. The options are **Enabled** and **Disabled**.

**If the item above set to Enabled, the following items will become available for user's configuration:*

►SOL Console Redirection Settings

Use this feature to specify how the host computer will exchange data with the client computer, which is the remote computer used by the user.

Terminal Type

Use this feature to select the target terminal emulation type for Console Redirection. Select VT100 to use the ASCII Character set. Select VT100+ to add color and function key support. Select ANSI to use the Extended ASCII Character Set. Select VT-UTF8 to use UTF8 encoding to map Unicode characters into one or more bytes. The options are ANSI, VT100, **VT100+**, and VT-UTF8.

Bits Per second

Use this feature to set the transmission speed for a serial port used in Console Redirection. Make sure that the same speed is used in the host computer and the client computer. A lower transmission speed may be required for long and busy lines. The options are 9600, 19200, 38400, 57600 and **115200** (bits per second).

Data Bits

Use this feature to set the data transmission size for Console Redirection. The options are 7 (Bits) and **8 (Bits)**.

Parity

A parity bit can be sent along with regular data bits to detect data transmission errors. Select Even if the parity bit is set to 0, and the number of 1's in data bits is even. Select Odd if the parity bit is set to 0, and the number of 1's in data bits is odd. Select None if you do not want to send a parity bit with your data bits in transmission. Select Mark to add a mark as a parity bit to be sent along with the data bits. Select Space to add a Space as a parity bit to be sent with your data bits. The options are **None**, Even, Odd, Mark and Space.

Stop Bits

A stop bit indicates the end of a serial data packet. Select 1 Stop Bit for standard serial data communication. Select 2 Stop Bits if slower devices are used. The options are **1** and **2**.

Flow Control

Use this feature to set the flow control for Console Redirection to prevent data loss caused by buffer overflow. Send a "Stop" signal to stop sending data when the receiving buffer is full. Send a "Start" signal to start data-sending when the receiving buffer is empty. The options are **None** and Hardware RTS/CTS.

VT-UTF8 Combo Key Support

Select Enabled to enable VT-UTF8 Combination Key support for ANSI/VT100 terminals. The options are **Enabled** and **Disabled**.

Recorder Mode

Select Enabled to capture the data displayed on a terminal and send it as text messages to a remote server. The options are **Disabled** and **Enabled**.

Resolution 100x31

Select Enabled for extended-terminal resolution support. The options are **Disabled** and **Enabled**.

Legacy OS Redirection Resolution

Use this feature to select the number of rows and columns used in Console Redirection for legacy OS support. The options are **80x24** and **80x25**.

Putty KeyPad

This feature selects Function Keys and KeyPad settings for Putty, which is a terminal emulator designed for the Windows OS. The options are **VT100**, **LINUX**, **XTERMR6**, **SCO**, **ESCN**, and **VT400**.

Redirection After BIOS Post

Use this feature to enable or disable legacy Console Redirection after BIOS POST (Power-On Self-Test). When this feature is set to Bootloader, legacy Console Redirection is disabled before booting the OS. When this feature is set to Always Enable, legacy Console Redirection remains enabled upon OS boot. The options are **Always Enable** and **Bootloader**.

Serial Port for Out-of-Band Management/Windows Emergency Management Services (EMS)

The submenu allows the user to configure Console Redirection settings to support Out-of-Band Serial Port management.

EMS Console Redirection

Select Enabled to use a COM port selected by the user for EMS Console Redirection. The options are **Enabled** and **Disabled**.

**If the item above set to Enabled, the following items will become available for user's configuration:*

►EMS Console Redirection Settings (Available when EMS Console Redirection is enabled)

Use this feature to specify how the host computer will exchange data with the client computer, which is the remote computer used by the user.

Out-of-Band Management Port

The feature selects a serial port in a client server to be used by the Windows Emergency Management Services (EMS) to communicate with a remote host server. The options are **COM1 (Console Redirection)** and SOL (Console Redirection).

Terminal Type

Use this feature to select the target terminal emulation type for Console Redirection. Select VT100 to use the ASCII character set. Select VT100+ to add color and function key support. Select ANSI to use the extended ASCII character set. Select VT-UTF8 to use UTF8 encoding to map Unicode characters into one or more bytes. The options are ANSI, VT100, VT100+, and **VT-UTF8**.

Bits Per Second

This item sets the transmission speed for a serial port used in Console Redirection. Make sure that the same speed is used in both host computer and the client computer. A lower transmission speed may be required for long and busy lines. The options are 9600, 19200, 57600, and **115200** (bits per second).

Flow Control

Use this item to set the flow control for Console Redirection to prevent data loss caused by buffer overflow. Send a "Stop" signal to stop data-sending when the receiving buffer is full. Send a "Start" signal to start data-sending when the receiving buffer is empty. The options are **None**, Hardware RTS/CTS, and Software Xon/Xoff.

The setting for each these features is displayed:

Data Bits, Parity, Stop Bits

►Trusted Computing (Available when a TPM device is installed and detected by the BIOS)

Configuration

Security Device Support

If this feature and the TPM jumper on the serverboard are both set to Enabled, onboard security devices will be enabled for TPM (Trusted Platform Module) support to enhance data integrity and network security. Please reboot the system for a change on this setting to take effect. The options are Enabled and **Disabled**.

TPM State

Select Enabled to use TPM (Trusted Platform Module) settings to enhance system data security. Please reboot your system for any change on the TPM state to take effect. The options are Disabled and **Enabled**.

Pending Operation

Use this item to schedule a TPM-related operation to be performed by a security device for system data integrity. Your system will reboot to carry out a pending TPM operation. The options are **0**, Enable Take Ownership, Disable Take Ownership, and TPM Clear.

Note: Your system will reboot to carry out a pending TPM operation.

Current Status Information

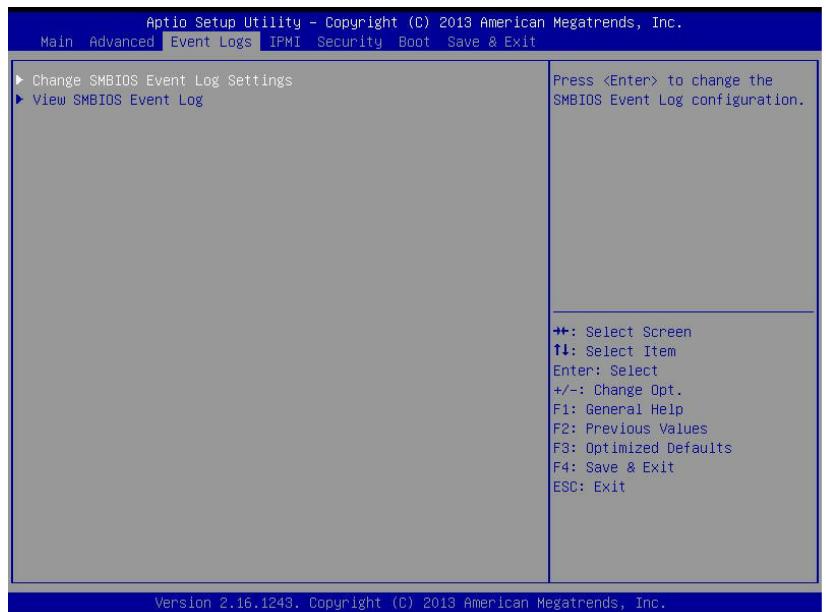
This item displays the status of the TPM support on this serverboard.

►ACPI Settings

WHEA Support

Select Enabled to support the Windows Hardware Error Architecture (WHEA) platform and provide a common infrastructure for the system to handle hardware errors within the Windows OS environment to reduce system crashes and to enhance system recovery and health monitoring. The options are **Enabled** and **Disabled**.

High Precision Timer


Select Enabled to activate the High Precision Event Timer (HPET) that produces periodic interrupts at a much higher frequency than a Real-time Clock (RTC) does in synchronizing multimedia streams, providing smooth playback and reducing the dependency on other timestamp calculation devices, such as an x86 RDTSC Instruction embedded in the CPU. The High Performance Event Timer is used to replace the 8254 Programmable Interval Timer. The options are **Enabled** and **Disabled**.

NUMA (Available when the OS supports this feature)

Select Enabled to enable Non-Uniform Memory Access support to enhance system performance. The options are **Enabled** and **Disabled**.

7-4 Event Logs

Use this feature to configure Event Log settings.

►Change SMBIOS Event Log Settings

This feature allows the user to configure SMBIOS Event settings.

Enabling/Disabling Options

SMBIOS Event Log

Select Enabled to enable SMBIOS (System Management BIOS) Event Logging during system boot. The options are **Enabled** and **Disabled**.

Runtime Error Logging Support

Select Enable to support Runtime Error Logging. The options are **Enable** and **Disable**. If this item is set to Enable, the following item will be available for configuration:

Memory Corrected Error Enabling (Available when the item above-Runtime Error Logging Support is set to Enable)

Select Enable for the BIOS to correct a memory error if it is correctable. The options are **Enable** and **Disable**.

PCI-Ex (PCI-Express) Error Enable

Select Yes for the BIOS to correct errors occurred in the PCI-E slots. The options are Yes and **No**.

Memory Correctable Error Threshold

Use this item to enter the threshold value for correctable memory errors. The default setting is **10**.

Erasing Settings

Erase Event Log

Select Enabled to erase all error events in the SMBIOS (System Management BIOS) log before an event logging is initialized at bootup. The options are **No** and Yes.

When Log is Full

Select Erase Immediately to immediately erase all errors in the SMBIOS event log when the event log is full. Select Do Nothing for the system to do nothing when the SMBIOS event log is full. The options are **Do Nothing** and Erase Immediately.

SMBIOS Event Log Standard Settings

Log System Boot Event

Select Enabled to log system boot events. The options are **Disabled** and Enabled.

MECI (Multiple Event Count Increment)

Enter the increment value for the multiple event counter. Enter a number between 1 to 255. The default setting is **1**.

METW (Multiple Event Count Time Window)

This item is used to determine how long (in minutes) should the multiple event counter wait before generating a new event log. Enter a number between 0 to 99. The default setting is **60**.

Note: Please reboot the system for the changes to take effect.

►View SMBIOS Event Log

This item allows the user to view the event in the SMBIOS event log. Select this item and press <Enter> to view the status of an event in the log. The following categories are displayed:

Date/Time/Error Code/Severity

7-5 IPMI

Use this feature to configure Intelligent Platform Management Interface (IPMI) settings.

IPMI Firmware Revision

This item indicates the IPMI firmware revision used in your system.

IPMI Status

This item indicates the status of the IPMI firmware installed in your system.

▶System Event Log

Enabling/Disabling Options

SEL Components

Select Enabled to enable all system event logging support at bootup. The options are **Enabled** and **Disabled**.

Erasing Settings

Erase SEL

Select Yes, On next reset to erase all system event logs upon next system reboot.

Select Yes, On every reset to erase all system event logs upon each system reboot.

Select No to keep all system event logs after each system reboot. The options are

No, Yes, On next reset, and Yes, On every reset.

When SEL is Full

This feature allows the user to determine what the AMI BIOS should do when the system event log is full. Select Erase Immediately to erase all events in the log when the system event log is full. The options are **Do Nothing** and Erase Immediately.

Note: After making changes on a setting, be sure to reboot the system for the changes to take effect.

►BMC Network Configuration

The following items will be displayed:

- IPMI LAN Selection
- IPMI Network Link Status

Update IPMI LAN Configuration

Select Yes for the system BIOS to automatically reset the following IPMI settings at next system boot. The options are Yes and **No**.

Configuration Address Source (Available when the item above - Update IPMI LAN Configuration is set to Yes)

Use this item to select the IP address source for this computer. If Static is selected, you will need to know the IP address of this computer and enter it to the system manually in the field. If DHCP is selected, AMI BIOS will search for a DHCP (Dynamic Host Configuration Protocol) server attached to the network and request the next available IP address for this computer. The options are **DHCP** Unspecified, and **Static**.

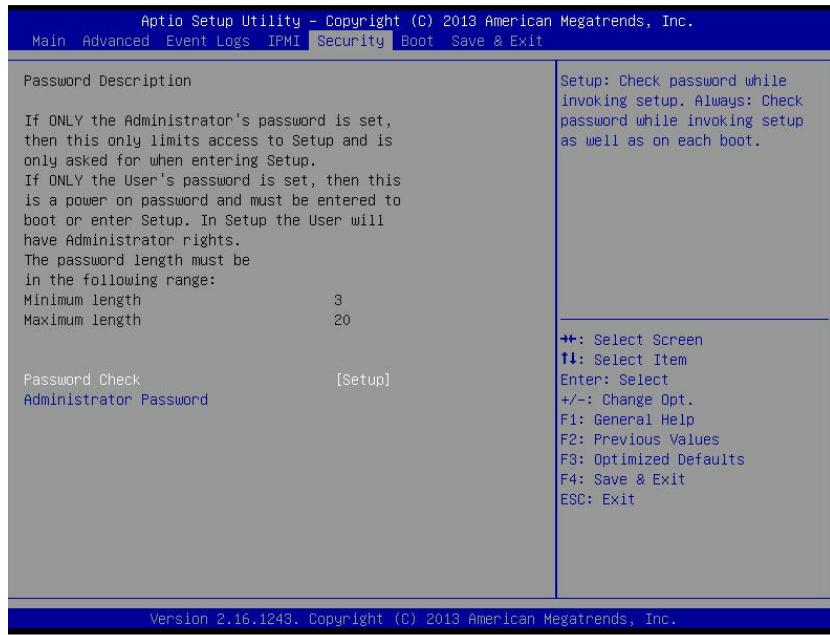
Station IP Address

This item displays the Station IP address for this computer. This should be in decimal and in dotted quad form (i.e., 192.168.10.253).

Subnet Mask

This item displays the sub-network that this computer belongs to. The value of each three-digit number is separated by dots and it should not exceed 255.

Station MAC Address


This item displays the Station MAC address for this computer. Mac addresses are 6 two-digit hexadecimal numbers.

Gateway IP Address

This item displays the Gateway IP address for this computer. This should be in decimal and in dotted quad form (i.e., 192.168.10.253).

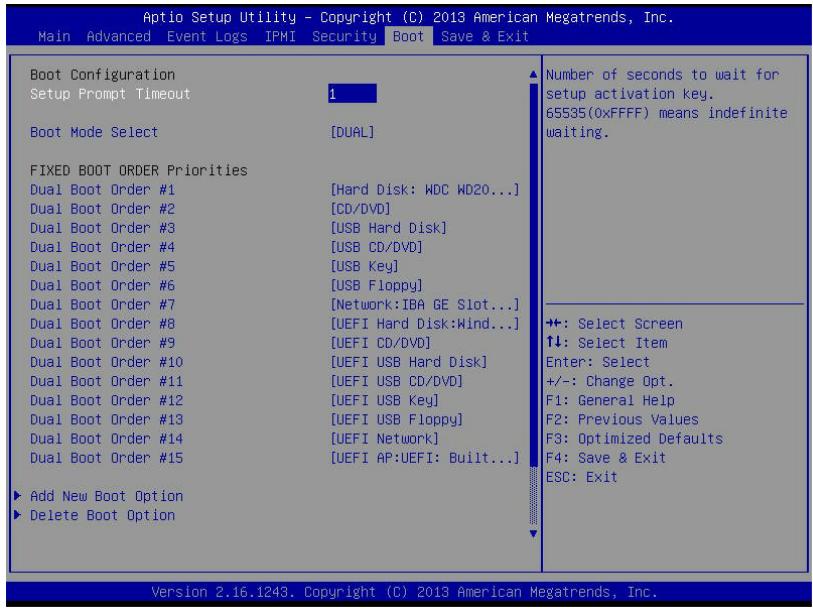
7-6 Security Settings

This menu allows the user to configure the following security settings for the system.

Password Check

Select Setup for the system to prompt for a password when the user's entering the BIOS setup utility. Select Always for the system to prompt for a password at bootup and when the user's entering the BIOS Setup utility. The options are **Setup** and **Always**.

Administrator Password


Use this feature to set the administrator password which is required before the user entering the BIOS setup utility. The length of the password should be from 3 characters to 20 characters long.

User Password

Use this feature to set the user password which is required to enter the BIOS setup utility. The length of the password should be from 3 characters to 20 characters long.

7-7 Boot Settings

Use this feature to configure Boot Settings:

Boot Configuration

Setup Prompt Timeout

Use this item to indicate how many seconds the system shall wait for the BIOS setup activation key to respond before the system starts to boot. The default setting is 1.

Boot Mode Select

Use this item to select the type of device to be used for system boot. The options are Legacy, UEFI, and **Dual**.

Fixed Boot Order Priorities

This option prioritizes the order of bootable devices from which the system will boot. Press <Enter> on each entry from top to bottom to select devices.

- Dual Boot Order #1
- Dual Boot Order #2
- Dual Boot Order #3
- Dual Boot Order #4
- Dual Boot Order #5
- Dual Boot Order #6
- Dual Boot Order #7
- Dual Boot Order #8
- Dual Boot Order #9
- Dual Boot Order #10
- Dual Boot Order #11
- Dual Boot Order #12
- Dual Boot Order #13
- Dual Boot Order #14
- Dual Boot Order #15

► Add New Boot Option

Use this item to select a new boot device to add to the boot priority list.

Add Boot Option

Select the target boot device to add to the boot priority list.

Path for Boot Option

Select the device path (-the file system) for the new boot device to use.

Create

After selecting a boot device to add and the path for this new device, choose this feature and click OK to add the new device to the boot priority list.

► Delete Boot Option

Use this item to select a boot device to delete from the boot priority list.

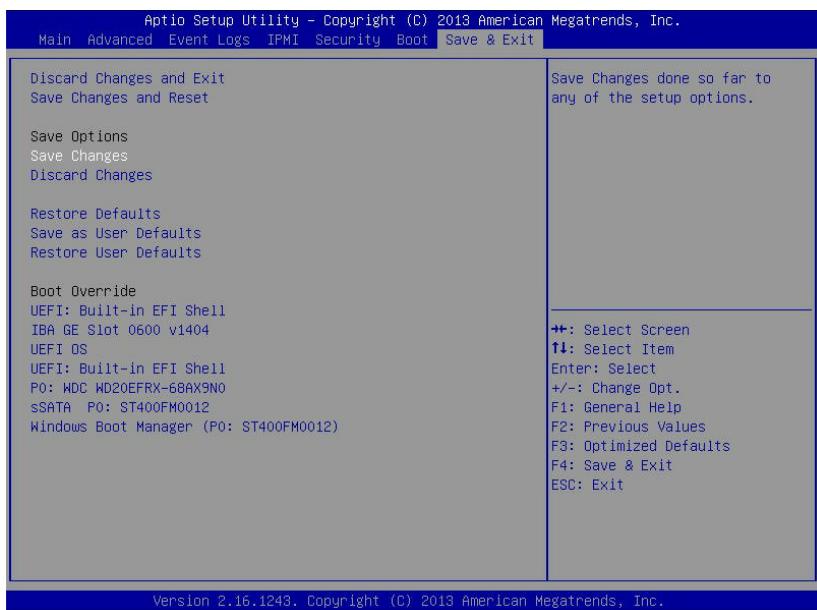
Delete Boot Option

Select the target boot device to delete.

►Hard Disk Drive BBS Priorities

- Legacy Boot Order #1
- Legacy Boot Order #2

►Network Drive BBS Priorities


- Legacy Boot Order #1

►UEFI Application Boot Priorities

- UEFI Boot Order #1

7-8 Save & Exit

Select the Save & Exit tab from the BIOS setup screen to configure the settings below.

Discard Changes and Exit

Select this option to quit the BIOS setup without making any permanent changes to the system configuration, and reboot the computer. Select Discard Changes and Exit from the Exit menu and press <Enter>.

Save Changes and Reset

When you have completed the system configuration changes, select this option to leave the BIOS setup utility and reboot the computer for the new system configuration parameters to take effect. Select Save Changes and Exit from the Exit menu and press <Enter>.

Save Options

Save Changes

When you have completed the system configuration changes, select this option to save all changes made. This will not reset (reboot) the system.

Discard Changes

Select this option and press <Enter> to discard all the changes and return to the AMI BIOS setup utility.

Restore Defaults

To set this feature, select Restore Defaults from the Exit menu and press <Enter>. These are manufacture default settings designed for maximum system performance but not for maximum stability.

Save as User Defaults

To set this feature, select Save as User Defaults from the Exit menu and press <Enter>. This enables the user to save any changes to the BIOS setup for future use.

Restore User Defaults

To set this feature, select Restore User Defaults from the Exit menu and press <Enter>. Use this feature to retrieve user-defined settings that were previously saved.

Boot Override

This feature allows the user to override the Boot priorities sequence in the Boot menu, and immediately boot the system with another device specified by the user. This is a one-time override.

Notes

Appendix A

BIOS Error Beep Codes

During the POST (Power-On Self-Test) routines, which are performed each time the system is powered on, errors may occur.

Non-fatal errors are those which, in most cases, allow the system to continue the boot-up process. The error messages normally appear on the screen.

Fatal errors are those which will not allow the system to continue the boot-up procedure. If a fatal error occurs, you should consult with your system manufacturer for possible repairs.

These fatal errors are usually communicated through a series of audible beeps. The numbers on the fatal error list (on the following page) correspond to the number of beeps for the corresponding error. All errors listed, with the exception of Beep Code 8, are fatal errors.

A-1 AMIBIOS Error Beep Codes

Beep Code	Error Message	Description
1 beep	Refresh	Circuits have been reset (Ready to power up)
5 short beeps and 1 long beep	Memory error	No memory detected in the system
5 long and 2 short beeps	Display memory read/write error	Video adapter missing or with faulty memory
1 continuous beep	System overheat	System overheat

Notes

Appendix B

System Specifications

Note: Unless noted specifications apply to a complete system (all serverboards). There are eight serverboard drawer nodes per system.

Processors

Two E5-2600 v3/v4 series processors per node in Socket R3 LGA 2011 type sockets

Note: please refer to our website for details on supported processors.

Chipset

One PCH C612 chipset per node

BIOS

16 MB AMI SPI BIOS® Flash ROM Flash EEPROM per node

Memory Capacity

Each X10DRFF serverboard node has eight (8) DIMM slots supporting up to 1 TB 3DS LRDIMM registered ECC or 512 GB of DDR4-2400/2133/1866/1600 MHz speed RDIMM SDRAM in up to 1 GB, 2 GB, 4 GB, 8 GB, 16 GB, 32 GB, 64 GB or 128 GB (3DS LRDIMM only) size at 1.20Vs voltages. See Chapter 5 for details.

Note: refer to Section 5-5 for details on installation.

Note: Check the Supermicro website (www.supermicro.com) for the latest memory support information.

SATA Drive Bays

Each node of the FatTwin F618R2-FT contains two (2) hot-swap SATA drives per node.

PCI Expansion

The FatTwin F618R2-FT has one (1) PCI-Exp 3.0 x16 slots available per node.

Serverboard

X10DRFF serverboard (proprietary form factor)

Dimensions: (LxW) 18.724" x 8.539" x (475.59 mm x 216.87 mm)

Chassis

SCF418IL-R1K62BP (4U rackmount)

Dimensions: (WxHxD) 17.63 x 6.96 x 29 in. (448 x 177 x 737 mm)

Weight

Gross (Bare Bone): 200 lbs. (90.71 kg.)

System Cooling

The system has eight 8-cm 9.5k RPM rear fans in the chassis.

Note: The system cooling fans are NOT redundant, hot-plug.

Power Supply

Rated Output Power: 1620 Watt (Part# PWS-1K62P-1R)

Rated Output Voltages: 1000W: +12V/84A; +5Vsb/4A

1200W: +12V/100A; +5Vsb/4A

1620W: +12V/150A; +5Vsb/4A

System Input Requirements

AC Input: 1000W Output @ 100-120V, 12-10A, 50-60Hz

1200W Output @ 120-140V, 12-10A, 50-60Hz

1620W Output @ 180-240V, 10.5-8A, 50-60Hz

Efficiency: 94%+ (Platinum Level)

Note: The system power supplies are redundant, hot-plug.

Operating Environment

Operating Temperature: 10°C to 35°C (50°F to 95°F)

Non-operating Temperature: -40°C to 70°C (-40°F to 158°F)

Operating Relative Humidity: 8% to 90% (non-condensing)

Non-operating Relative Humidity: 5 to 95% (non-condensing)

The table below specifies the preferred ambient temperature versus processor support for the FatTwin F618R2-FT system.

Ambient Temperature versus Processor Support			
	35°C	30°C	25°C
145 W ₁		X ₃	X
135 W	X _{2,3}	X ₃	X
120 W	X ₃	X	X

Note 1: The above matrix is based on Thermal Design Power (TDP), and is in compliance to thermal specifications provided by Intel. If there is power and thermal headroom, the CPU may operate above TDP during opportunistic Turbo and/or Intel Advance Vector Extension (AVX) operation (e.g. LINPACK), which may trigger a CPU throttling event.

Note 2: This excludes frequency optimized CPUs such as E5-2667, E5-2643, and E5-2637.

Note 3: It is recommend that you use SSD drives instead of HDD drives for this system.

Regulatory Compliance

Electromagnetic Emissions: FCC Class A, EN 55032 Class A, EN 61000-3-2/3-3, CISPR 32 Class A

Electromagnetic Immunity: EN 55024/CISPR 24, (EN 61000-4-2, EN 61000-4-3, EN 61000-4-4, EN 61000-4-5, EN 61000-4-6, EN 61000-4-8, EN 61000-4-11)

Safety: CSA/EN/IEC/UL 60950-1 Compliant, UL or CSA Listed (USA and Canada), CE Marking (Europe)

Other: VCCI-CISPR 32 and AS/NZS CISPR 32

Environmental: Directive 2011/65/EU and Directive 2012/19/EU

California Best Management Practices Regulations for Perchlorate Materials:
This Perchlorate warning applies only to products containing CR (Manganese Dioxide) Lithium coin cells. "Perchlorate Material-special handling may apply.
See www.dtsc.ca.gov/hazardouswaste/perchlorate" for further details.

Notes

(continued from front)

The products sold by Supermicro are not intended for and will not be used in life support systems, medical equipment, nuclear facilities or systems, aircraft, aircraft devices, aircraft/emergency communication devices or other critical systems whose failure to perform be reasonably expected to result in significant injury or loss of life or catastrophic property damage. Accordingly, Supermicro disclaims any and all liability, and should buyer use or sell such products for use in such ultra-hazardous applications, it does so entirely at its own risk. Furthermore, buyer agrees to fully indemnify, defend and hold Supermicro harmless for and against any and all claims, demands, actions, litigation, and proceedings of any kind arising out of or related to such ultra-hazardous use or sale.

Appendix C

BSMI Information

限用物質含有情況標示聲明書

Declaration of the Presence Condition of the Restricted Substances Marking

設備名稱：伺服器/ FAT TWIN SYSTEM Equipment name						
型號 (型式)：SYS-F618R2-FC0 Type designation (Type)						
(系列型號: F418-16, F418-FT, SYS-F618R2-FT, SYS-F618R3-FT, SYS-F618R3-FTL)						
限用物質及其化學符號 Restricted substances and its chemical symbols						
單元 Unit	鉛 Lead (Pb)	汞 Mercury (Hg)	鎘 Cadmium (Cd)	六價鉻 Hexavalent chromium (Cr ⁺⁶)	多溴聯苯 Polybrominated biphenyls (PBB)	多溴二苯醚 Polybrominated diphenyl ethers (PBDE)
機殼 (Chassis)	○	○	○	○	○	○
機殼風扇 (Chassis Fan)	-	○	○	○	○	○
線材 (Cable)	○	○	○	○	○	○
主機板 (Motherboard)	-	○	○	○	○	○
電源供應器 (Power Supply)	-	○	○	○	○	○
硬碟 (Hard Disk)	-	○	○	○	○	○
電源背板 (PDB)	-	○	○	○	○	○

備考1. “超出0.1 wt %” 及 “超出0.01 wt %” 係指限用物質之百分比含量超出百分比含量基準值。

Note 1 : “Exceeding 0.1 wt %” and “exceeding 0.01 wt %” indicate that the percentage content of the restricted substance exceeds the reference percentage value of presence condition.

備考2. “○” 係指該項限用物質之百分比含量未超出百分比含量基準值。

Note 2 : “○” indicates that the percentage content of the restricted substance does not exceed the percentage of reference value of presence.

備考3. “-” 係指該項限用物質為排除項目。

Note 3 : The “-” indicates that the restricted substance corresponds to the exemption.

警告使用者：

這是甲類的資訊產品，在居住的環境中使用時，可能會造成
射頻干擾，在這種情況下，使用者會被要求採取某些適當的對策

*輸入額定：

100-127VAC, 50-60Hz, 12-9.5A

200-220VAC, 50-60Hz, 10-9.5A

220-230VAC, 50-60Hz, 10-9.8A

230-240VAC, 50-60Hz, 10-9.8A

*使用者不能任意拆除或替換內部配備

*設備名稱：伺服器

*報驗義務人之姓名或名稱：美超微電腦股份有限公司

*報驗義務人之地址：新北市中和區建一路 150 號 3 樓